JP3139123B2 - 固定床活性炭処理塔における粒状活性炭の引抜及び供給方法 - Google Patents

固定床活性炭処理塔における粒状活性炭の引抜及び供給方法

Info

Publication number
JP3139123B2
JP3139123B2 JP04095711A JP9571192A JP3139123B2 JP 3139123 B2 JP3139123 B2 JP 3139123B2 JP 04095711 A JP04095711 A JP 04095711A JP 9571192 A JP9571192 A JP 9571192A JP 3139123 B2 JP3139123 B2 JP 3139123B2
Authority
JP
Japan
Prior art keywords
activated carbon
water
treatment tower
carbon treatment
fixed bed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04095711A
Other languages
English (en)
Other versions
JPH05293461A (ja
Inventor
圭一 月足
弘志 島崎
昌男 藤生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Original Assignee
Meidensha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp filed Critical Meidensha Corp
Priority to JP04095711A priority Critical patent/JP3139123B2/ja
Publication of JPH05293461A publication Critical patent/JPH05293461A/ja
Application granted granted Critical
Publication of JP3139123B2 publication Critical patent/JP3139123B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Water Treatment By Sorption (AREA)

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は水道水等の前処理として
の高度浄水処理における固定床活性炭処理塔への粒状活
性炭の供給及び引抜方法に関するものである。
【0002】
【従来の技術】近年、都市部での水環境の悪化に伴って
河川とか湖沼の水質汚濁が進んでおり、従来の凝集沈澱
とか濾過処理及び塩素処理との組み合わせだけでは、水
道用原水中の色度,臭気の除去作用に限界点が生じてい
る現状にある。特に我国の水道水として利用される水源
の約70%は、地表水と呼ばれる湖沼水,ダム水及び河
川水に依存しており、これら湖沼水とかダムには富栄養
化に伴う生物活動が活発化することによるカビ臭とか藻
臭の発生があり、他方の河川水には各種排水に含まれて
いる有機物とかアンモニア性窒素が流入され、河川の自
然浄化作用によってこれらの流入物を完全に浄化するこ
とは期待できない状況にある。
【0003】このような高度経済成長に伴う水源の水質
悪化に対処するため、前塩素処理が一般的に採用されて
いるが、前塩素処理を採用した浄水過程で発生する有機
塩素化合物であるトリハロメタン(THM)が発ガン性
を有していることが知られている。このような水源のカ
ビ臭とか藻臭の消去、及びトリハロメタン等発ガン物質
対策として、浄水の操作工程中にオゾン処理、又は該オ
ゾン処理と活性炭処理との複合処理を導入する高度浄水
システムが検討されている。
【0004】上記単位操作の一つである活性炭処理と
は、ヤシ殻系活性炭とか石炭系活性炭,更には木炭系活
性炭等の吸着能を利用して、原水中の主として有機汚濁
物質を吸着除去する方法であり、活性炭の形態上から粉
末活性炭と粒状活性炭とに区別される。更に活性炭に硝
化菌等を付着させた生物活性炭を用いる方法も試みられ
ている。
【0005】例えば木炭等の粒状活性炭の製法として
は、粉砕した原材料を、タールを粘結材として一定粒度
に成形し、乾燥,焼成,賦活する方法が知られている。
【0006】通常の活性炭処理塔では、粒状活性炭を充
填した固定床活性炭処理塔の上部から原水を流入して、
該処理塔の下部から被処理水を流出させる方法が一般に
採用されている。
【0007】前記オゾン処理とは、塩素よりもはるかに
酸化力の強力なオゾンO3を利用した方法であり、原水
の異臭味とか色度除去、有機物質の生物分解性の増大と
塩素要求量の減少等の作用が得られることが特徴となっ
ている。
【0008】
【発明が解決しようとする課題】このような高度浄水処
理工程における活性炭処理を実施した際に、活性炭に対
する有機汚濁物質等被吸着物質の吸着が進行するのに伴
って、活性炭の吸着能が次第に低下して被処理水の水質
も徐々に悪化してしまうため、一定期間毎に活性炭処理
塔内の活性炭を新炭に交換するか、又は補充することが
必要となる。
【0009】通常は活性炭処理塔内のどの部分の活性炭
が劣化したかを感知することが出来ないため、劣化した
活性炭のみを選んで引抜くという作業は行われていな
い。従って活性炭が劣化した場合には、やむを得ず処理
塔内に充填されている活性炭全部を交換する方法を採っ
ているのが実情である。
【0010】しかしながら活性炭処理塔に新炭を補充し
た場合には、定常状態に達するまでに長い時間がかかっ
てしまうのが通例であり、例えば生物活性炭を例にとる
と、処理塔から生物活性炭を引き抜いて新炭を補充して
から生物活性炭として機能するまでに2〜3ケ月もかか
ってしまうので、運転上の支障が生じてしまうという課
題が生じる。更に運転開始時にアンモニア性窒素の除去
が期待できないという難点がある外、それまで生物活性
炭処理層で除去されていた生物分解性有機物が活性炭処
理層に回ってくるため、該活性炭処理層の処理負荷が増
大してしまい、引いては被処理水の水質低下が招来され
るという問題点を有している。
【0011】そこで本発明は上記に鑑みてなされたもの
であり、活性炭処理塔から劣化した活性炭のみを引き抜
いて新炭と交換することを可能として、運転上の支障を
なくすとともに処理塔の機能低下を防止することができ
る活性炭の引抜及び供給方法を提供することを目的とす
る。
【0012】
【課題を解決するための手段】本発明は上記の目的を達
成するために、先ず請求項1により、粒状活性炭が充填
された処理塔に原水を流入して、活性炭の持つ吸着能を
利用して原水中の汚濁物質を吸着除去するようにした高
度浄水処理における固定床活性炭処理塔において、上記
固定床活性炭処理塔の深さ方向に複数段のサンプル採水
口を設け、各サンプル採水口から採取した水を別々に吸
光光度計に導いて吸光光度を測定し、この測定結果から
活性炭の劣化が確認された際に、引抜用ポンプにより該
活性炭処理塔から劣化した活性炭を所定量引抜いて、供
給用ポンプにより引き抜いた分だけの新炭を供給するよ
うにした粒状活性炭の引抜及び供給方法をその実現手段
としている。
【0013】更に請求項2により、上記構成に加えて、
活性炭処理塔に流入する被処理水と、活性炭処理塔から
流出する処理水を別々に吸光光度計に導いて吸光光度を
測定し、この測定結果から固定床活性炭処理塔の全体的
な吸着能をモニタリングして、該処理塔の吸着能が低下
した際に前記各サンプル採水口における測定結果に基づ
いて、劣化が確認された活性炭を引抜用ポンプにより所
定量引抜き、供給用ポンプにより引き抜いた分だけの新
炭を供給する方法を提供する。
【0014】又活性炭処理塔に対する通水時間と活性
炭の劣化との相関に基づいて、活性炭処理塔への通水開
始直後は上段のサンプル採水口からの採水を重点的に行
い、通水開始後数ヶ月は中段のサンプル採取口からの採
水を、更に長期間経過後は下段のサンプル採水口からの
採水を重点的に行うようにしたモニタリング方法を提供
する。
【0015】
【作用】かかる固定床活性炭処理等における粒状活性炭
の引抜及び供給方法によれば、活性炭処理塔の運転時
に、該活性炭処理塔の流下状態に影響を与えないように
して複数段のサンプル採水口を順次切り換えながら各採
水口から吸光光度計にサンプルを導き、吸光光度を測定
することにより、活性炭処理塔の深さ方向の活性炭の状
態が確認される。
【0016】この測定結果から活性炭の劣化が確認され
た際には、一旦活性炭処理を停止して、予め貯留してお
いた活性炭処理水を処理塔内に流入して活性炭を適宜に
膨張させ、劣化した活性炭層を引抜用ポンプを用いて所
定量引抜き、次に活性炭供給用ポンプを用いて、引抜い
た分だけの新炭を処理塔内に供給する。
【0017】又、活性炭被処理水貯留槽と活性炭処理水
貯留槽から別々に吸光光度計に水を導入して吸光光度を
測定することにより、処理水に対する活性炭処理塔自体
の吸着能がモニタリングされ、この吸着能が低下した場
合には、処理塔内に充填された活性炭の少なくとも一部
が劣化したものと判断して、前記した操作態様に基づい
て深さ方向の活性炭の状態を確認し、劣化した活性炭の
みを引抜くとともにこの引抜量に相当する新炭を供給す
る。
【0018】更に活性炭処理塔に対する通水時間と活性
炭の劣化との相関に関する知見に基づいて、活性炭処理
塔への通水開始直後は上段のサンプル採水口からの採水
を、通水開始後数ケ月は中段のサンプル採水口からの採
水を、更に長期間経過後は下段のサンプル採水口からの
採水を重点的に行うモニタリング方法も可能となり、操
作の簡易化をはかることが可能となる。
【0019】
【実施例】以下本発明にかかる固定床活性炭処理塔にお
ける粒状活性炭の供給引抜方法の一実施例を詳述する。
本実施例では先ず固定床活性炭処理塔における活性炭の
機能に関する知見を得るために、(1)活性炭の吸着特
性実験(2)生物活性炭処理実験とを行った。
【0020】(1)活性炭の吸着特性実験 活性炭の吸着特性を調べるため、フミン酸及び腐葉土抽
出水中の有機汚濁物質を被吸着物質とし、石炭系活性炭
Aとヤシ殻系活性炭Bとの2種類の等温吸着線を求め、
それぞれの吸着特性を比較した。
【0021】フミン酸溶液は、粉末フミン酸1gを1N
・NaOH100mlで溶解後、0.45μmメンブラ
ンフィルタを用いてss成分を取り除いたものを原液と
し、試験時に0.1N・H2SO4でpH7.0±0.2
に調整し、精製水で希釈濃度に調製した。腐葉土抽出水
は、2リットルの腐葉土を脱塩素水で1時間煮沸し、放
冷後、ふるいで濾して20リットルに調製した。この液
を凝集沈澱処理し、0.45μmのメンブランフィルタ
で濾過した濾液を腐葉土抽出原液とした。尚、腐葉土抽
出原液の水質は、腐葉土抽出水を50倍程度に濃縮調整
したものに相当する。又、活性炭の粉砕方法はJIS
1474−1975に準じて実施した。
【0022】吸着試験は、粉砕した活性炭を各々0.1
〜5.0g、0.02〜1.0gの各5種類の範囲で秤
量し、これをフミン酸溶液及び腐葉土抽出水100ml
を入れた200mlバイアル瓶に添加して窒素ガスで空
気をパージした後、恒温振とう器により20℃で24時
間吸着平衡に達するまで振とうした。振とう終了後、
0.45メンブランフィルタで活性炭を除去し、濾液の
色度,CODCr(化学的酸素要求量),DOC(溶解性
有機炭素),E260(測定波長260nmにおける試
料水の吸光度),CODCrとE260から換算したTH
MFP(トリハロメタン生成能)の5指標で等温吸着線
を求めて、活性炭及び原液の違いによる吸着特性を検討
した。その結果を図5に示す。
【0023】図5は、縦軸を単位活性炭当たりの吸着量
Q(mg/g−AC)とし、横軸をCe/Ci(Ci:
初期又は流入濃度,Ce:平衡又は流出濃度)として、
フロインリッヒ式を変形したQ=k’(Ce/Ci)
1/nを求めた。ここでk’は活性炭の吸着能を示し、傾
き1/nは吸着しやすさを示しており、従ってこの傾き
1/nが小さいほど低濃度から高濃度領域まで良好に吸
着されることになる。尚、上記E260は、水中の有機
物成分の測定指標として通常利用されている。
【0024】図5に示されているように、吸着能は石炭
系活性炭Aの方がヤシ殻系活性炭Bよりも高く、色度と
THMFP推算値を除く2指標は、傾き1/nが0.9
〜1.4程度を示すが、色度,E260とTHMFP換
算値の傾きは1/nは0.6〜0.7と低濃度から高濃
度まで幅広い濃度範囲で吸着されやすいことが判明し
た。DOC,CODCrの2指標は、高濃度領域で吸着さ
れやすい特性を示すが、低濃度領域では吸着されにくい
傾向を示した。特に色度が最も吸着されやすく、吸着容
量も多いが、活性炭除去対象物であるTHMFPは逆に
最も低い値となった。
【0025】(2)生物活性炭処理実験 図2に示す高度浄水処理実験装置と、表1に示す仕様及
び処理条件に基づいて生物活性炭処理実験を行った。
【0026】
【表1】
【0027】図2中の1は原水、2はオゾン接触槽であ
り、該オゾン接触槽2の内方底部に配置された散気管2
aから図外のオゾン発生機で得られたオゾンガスO3
放散される。3はヤシ殻系活性炭が充填された固定床活
性炭処理塔、4と5は石炭系活性炭が充填された固定床
活性炭処理塔である。従って本実験では原水1の処理と
して、オゾン処理+ヤシ殻系活性炭処理、オゾン処
理+石炭系活性炭処理、石炭系活性炭単独処理の3系
列の実験を実施した。本実験で使用した原水1は、浄水
場における凝集沈澱処理水を想定して、前記腐葉度から
抽出した人工沈澱水を用いた。
【0028】腐葉土抽出水は、2リットルの腐葉土を脱
塩素水で1時間煮沸し、放冷後、ふるいで濾して20リ
ットルに調製した液を注入率50mg/lの凝集剤で凝
集沈澱処理し、0.45μmのメンブランフィルタで濾
過した濾液を腐葉土抽出原液とした。又、活性炭の粉砕
方法はJIS 1474−1975に準じて行い、吸着
試験は、粉砕した活性炭を0.02〜1.0gの範囲で
秤量し、これを腐葉土抽出水100mlを入れた200
mlバイアル瓶に添加して窒素ガスで空気をパージした
後、恒温振とう器により20℃で24時間吸着平衡に達
するまで振とうした。振とう終了後、0.45メンブラ
ンフィルタで活性炭を除去し、濾液の色度,CODCr
DOC,E260,CODCrとE260から換算したT
HMFPの5指標で等温吸着線を求めて、各活性炭の違
いによる吸着特性を検討した。
【0029】各活性炭処理塔内の原水流下方向における
アンモニア性窒素(NH4−N),E260,DOCの
吸着分布を、オゾン処理を行わない石炭系活性炭処理塔
5による単独処理によって測定した。本実験の測定方法
は、NH4−Nがイオンクロマトグラフで、その他の水
質分析は85年度版上水試験法に準じた。
【0030】図4は通水開始から440日目と700日
目の測定結果を示しており、縦軸は活性炭処理層の深さ
方向における採水点の滞留時間と活性炭処理層全体の滞
留時間との比(t/θ)をとり、横軸は各指標の流入濃
度に対する流出濃度の比Ce/Ci(Ci:流入濃度,
Ce:流出濃度)とした。
【0031】活性炭の上端から流下方向のt/θが0.
2までの440日目と700日目のNH4−NのCe/
Ci比は、それぞれ0.1,0.25で流下方向のt/
θが0.2〜1.0までの範囲のCe/Ciはほとんど
平衡状態であった。
【0032】又、アンモニア性窒素(NH4−N)は活
性炭表層部で75%以上除去されており、従ってこのア
ンモニア性窒素を除去する硝化菌が活性炭表層部に多く
存在しているものと推測される。
【0033】E260の440日目,700日目の変化
を比較すると、t/θが0.2で、Ce/Ci比が0.
6前後あったが、440日目では深層になるほど除去さ
れている。一方、700日目ではt/θ=0.6を境に
440日目とは逆に再溶出する傾向を示した。これに比
べてDOCは上端部から流下方向のt/θが0から1.
0までのCe/Ci比は0.55とNH4−N,E26
0よりも低く、更に0次元的に除去されていることが判
明した。
【0034】従ってE260は、傾き1/nが0.71
9と広い濃度範囲で吸着されやすいにも拘わらず、表層
部でかなり除去されていることから、アンモニア性窒素
と同様に生物相による除去効果が大きいものと推測され
る。更に比較的生物相の少ない深層部では700日程度
で活性炭の吸着能が低下しており、破過に近いことがわ
かる。
【0035】図3は固定床活性炭処理塔10における生
物活性炭処理層11と活性炭処理層12の吸着除去特性
をモデル化した概要図であり、この活性炭処理塔10で
吸着除去される有機物量Xは以下のように示される。
【0036】X=A+B ここでA:活性炭による吸着量 B:生物による吸着量 上記のモデル図から理解されるように、生物活性炭処理
層11では、主として図中の除去量Bで示したように、
生物による有機物及びアンモニア性窒素の除去が行われ
ており、その他の生物難分解性有機物等は、活性炭吸着
量Aで示したように主として活性炭で吸着されている。
逆に活性炭処理層12では、Bで示す生物による有機物
とアンモニア性窒素の除去量は少なく、Aで示した活性
炭による吸着量が大きくなっている。そのため、活性炭
処理層12では、生物活性炭処理層11に比べて、活性
炭吸着量Aが活性炭飽和吸着量Wに達するまでの時間が
早くなる。従ってこのような固定床活性炭処理塔10で
は、早く活性炭飽和吸着量Wに達した活性炭処理層12
内の活性炭,換言すれば吸着能が低下した活性炭だけを
引抜いて、新炭と交換すれば良いことが理解される。
【0037】そこで本実施例では、上記の知見に基づい
て、図1に示したように固定床活性炭処理塔10の深さ
方向に複数段のサンプル採水口13,14,15,16
を設けて、各サンプル採水口13,14,15,16か
らフィルタF1,F2,F3,F4とバルブV1,V2
3,V4とポンプP1及び切換バルブV5を介して、各サ
ンプルを別々に吸光光度計17に導くようにしてある。
【0038】18は活性炭被処理水貯留槽,19は活性
炭処理水貯留槽であり、この活性炭被処理水貯留槽18
からフィルタF5,バルブV6,ポンプP2及び前記切換
バルブV5を介して吸光光度計17に被処理水を導くと
ともに、活性炭処理水貯留槽19からフィルタF6,バ
ルブV7,ポンプP3及び前記切換バルブV5を介して吸
光光度計17に処理水を導くように構成してある。
【0039】上記の実施例では、固定床活性炭処理塔1
0にサンプル採水口を4個設けた例を示したが、採水口
の個数は上記に限定されるものではなく、必要に応じて
適宜な個数を選択することができる。
【0040】かかる構成に基づく活性炭の引抜きと供給
の実際例を以下に説明する。先ず基本的な操作として、
活性炭処理塔10の流下状態に影響を与えないように、
バルブV1,V2,V3,V4の中から一つのバルブの
みを開いてポンプP1を起動し、切換バルブV5を介して
吸光光度計17にサンプルを導き、吸光光度(E26
0)を測定する。そしてバルブV1,V2,V3,V4
を順次切り換えながら測定を継続することにより、活性
炭処理塔10の深さ方向の活性炭の状態を確認する。
【0041】このようにしてE260の測定結果から活
性炭の劣化が確認された場合には、一旦活性炭処理を停
止し、引抜きを容易にするため、予め貯留しておいた活
性炭処理水を逆流洗浄ポンプ等を利用して処理塔10内
に流入させ、この処理水によって活性炭を150%程度
に膨張させる。そして活性炭処理塔10の下部から劣化
した活性炭層を引抜用ポンプP4を用いて所定量引抜い
て、処理塔10の下部から湿潤状態の新炭20を活性炭
供給用ポンプP5、又は図示しない逆洗用ポンプを利用
して引抜いた分だけの活性炭を供給する。尚、活性炭供
給用ポンプP6を利用して処理塔10の上部から活性炭
20を供給することもできる。
【0042】次にエアーによる洗浄と逆流洗浄を行い、
新炭20の微粉炭抜きと活性炭逆流洗浄を行った後、活
性炭処理塔10の運転を再開する。
【0043】次に活性炭処理塔10としての水質モニタ
リングに基づく実施態様例を以下に説明する。先ず固定
床活性炭処理塔10の汚濁物質の吸着能を確認するた
め、切換バルブV5をポンプP2側へ切り換えて、活性炭
被処理水貯留槽18からフィルタF5,バルブV6,ポン
プP2及び前記切換バルブV5を介して吸光光度計17に
被処理水を導いてE260を測定する。次に切換バルブ
5をポンプP3側へ切り換えて、活性炭処理水貯留槽1
9からフィルタF6,バルブV7,ポンプP3及び前記切
換バルブV5を介して吸光光度計17に処理された水を
導いて同様にE260を測定する。
【0044】上記の測定結果から固定床活性炭処理塔1
0自体の吸着能を判断することが可能であり、この吸着
能を定期的にモニタリングして該吸着能が低下した場合
には、活性炭処理塔10内に充填された活性炭の少なく
とも一部が劣化したものと判断して、前記した基本的操
作態様に基づいて活性炭処理塔10の深さ方向の活性炭
の状態を確認し、劣化した活性炭を引抜くとともにこの
引抜量に相当する新炭を供給する。
【0045】更に他のモニタリング例として、活性炭処
理塔10への通水開始直後はサンプル採水口13,14
からの採水を重点的に行い、通水開始後数ケ月はサンプ
ル採水口14,15からの採水を、又、長期間経過後
(例えば1年以上)は、サンプル採水口15,16から
の採水を重点的に行うような実施態様とすることも出来
る。この実施態様は、活性炭処理塔10に対する通水時
間と活性炭の劣化との相関に関する知見から導き出され
たモニタリング方法であり、この方法は常時吸光光度を
測定しなくても良いため、操作が簡易化されるという利
点がある。
【0046】
【発明の効果】以上詳細に説明したように、本発明にか
かる固定床活性炭処理塔における粒状活性炭の供給引抜
方法によれば、以下に記す各種効果が得られる。即ち、
固定床活性炭処理塔における汚濁物質吸着能が低下した
際に、活性炭処理塔内の深さ方向におけるどの部分の活
性炭が劣化したかを感知して、劣化した活性炭のみを選
んで引抜いて新炭を補充するいう作業を実施することが
できる。従って処理塔内に充填されている活性炭全部を
交換する必要がなく、しかも活性炭が定常状態に達する
までの時間が短縮されて、運転上の支障が生じることが
ないという効果をもたらす。
【0047】更に新炭の供給時に、生物分解性有機物に
起因する活性炭処理層の処理負荷の増大をなくし、被吸
着物質の破過を防止するとともに、高度浄水処理装置に
おける活性炭処理作用が一層高められるという大きな効
果が得られる。
【図面の簡単な説明】
【図1】本発明を適用した固定床活性炭処理塔における
粒状活性炭の引抜及び供給方法の基本的実施例を示す概
要図。
【図2】本発明を適用した高度浄水処理実験装置の概要
図。
【図3】固定床活性炭処理塔における生物活性炭処理層
と活性炭処理層の吸着除去特性をモデル化した概要図。
【図4】活性炭処理塔内流下方向の経時的な各種測定結
果を示すグラフ。
【図5】活性炭処理における各有機物指標の等温吸着線
を示すグラフ。
【符号の説明】
1…原水 2…オゾン接触槽 3,4,5…活性炭処理塔 10…固定床活性炭処理塔 11…生物活性炭処理層 12…活性炭処理層 13,14,15,16…サンプル採水口 17…吸光光度計 18…活性炭被処理水貯留槽 19…活性炭処理水貯留槽 20…新炭
フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C02F 1/28 B01D 29/38

Claims (3)

    (57)【特許請求の範囲】
  1. 【請求項1】 粒状活性炭が充填された処理塔に原水を
    流入して、活性炭の持つ吸着能を利用して原水中の汚濁
    物質を吸着除去するようにした高度浄水処理における固
    定床活性炭処理塔において、 上記固定床活性炭処理塔の深さ方向に複数段のサンプル
    採水口を設け、各サンプル採水口から採取した水を別々
    に吸光光度計に導いて吸光光度を測定し、この測定結果
    から活性炭の劣化が確認された際に、引抜用ポンプによ
    り該活性炭処理塔から劣化した活性炭を所定量引抜い
    て、供給用ポンプにより引き抜いた分だけの新炭を供給
    することを特徴とする、固定床活性炭処理塔における粒
    状活性炭の引抜及び供給方法。
  2. 【請求項2】 粒状活性炭が充填された処理塔に原水を
    流入して、活性炭の持つ吸着能を利用して原水中の汚濁
    物質を吸着除去するようにした高度浄水処理における固
    定床活性炭処理塔において、 上記固定床活性炭処理塔の深さ方向に複数段のサンプル
    採水口を設け、各サンプル採水口から採取した水を別々
    に吸光光度計に導いて吸光光度を測定する一方、活性炭
    処理塔に流入する被処理水と、活性炭処理塔から流出す
    る処理水を別々に前記吸光光度計に導いて吸光光度を測
    定し、この測定結果から固定床活性炭処理塔の全体的な
    吸着能をモニタリングして、該処理塔の吸着能が低下し
    た際に前記各サンプル採水口における測定結果に基づい
    て、劣化が確認された活性炭を引抜用ポンプにより所定
    量引抜き、供給用ポンプにより引き抜いた分だけの新炭
    を供給することを特徴とする、固定床活性炭処理塔にお
    ける粒状活性炭の引抜及び供給方法。
  3. 【請求項3】 活性炭処理塔に対する通水時間と、活性
    炭の劣化との相関に基づいて、活性炭処理塔への通水開
    始直後は上段のサンプル採水口からの採水を重点的に行
    い、通水開始後数ケ月は中段のサンプル採水口からの採
    水を、更に長期間経過後は、下段のサンプル採水口から
    の採水を重点的に行うようにした請求項1,2記載の固
    定床活性炭処理塔における粒状活性炭の引抜及び供給方
    法。
JP04095711A 1992-04-16 1992-04-16 固定床活性炭処理塔における粒状活性炭の引抜及び供給方法 Expired - Fee Related JP3139123B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04095711A JP3139123B2 (ja) 1992-04-16 1992-04-16 固定床活性炭処理塔における粒状活性炭の引抜及び供給方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04095711A JP3139123B2 (ja) 1992-04-16 1992-04-16 固定床活性炭処理塔における粒状活性炭の引抜及び供給方法

Publications (2)

Publication Number Publication Date
JPH05293461A JPH05293461A (ja) 1993-11-09
JP3139123B2 true JP3139123B2 (ja) 2001-02-26

Family

ID=14145082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04095711A Expired - Fee Related JP3139123B2 (ja) 1992-04-16 1992-04-16 固定床活性炭処理塔における粒状活性炭の引抜及び供給方法

Country Status (1)

Country Link
JP (1) JP3139123B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4814619B2 (ja) * 2005-11-11 2011-11-16 株式会社広洋技研 活性炭吸着装置
FR3114093A1 (fr) * 2020-09-17 2022-03-18 Suez Groupe Procédé de traitement d’une eau avec renouvellement de l’adsorbant à un âge intermédiaire ciblé
FR3114094B1 (fr) * 2020-09-17 2023-01-20 Suez Groupe Procede et installation de traitement de fluide

Also Published As

Publication number Publication date
JPH05293461A (ja) 1993-11-09

Similar Documents

Publication Publication Date Title
Seo et al. Sorption characteristics of biological powdered activated carbon in BPAC-MF (biological powdered activated carbon-microfiltration) system for refractory organic removal
KR100741019B1 (ko) 습지와 접촉산화여과설비를 병합한 습지병합형 수처리장치및 이를 이용한 수처리방법
Ando et al. Removal of musty-odorous compounds in water and retained in algal cells through water purification processes
Nishijima et al. The performance of an ozonation-biological activated carbon process under long term operation
KR100624556B1 (ko) 모듈형 습지기반설비와 모듈형 접촉산화·여과설비를 병합한 하천수, 호소수, 또는 유출수 정화방법 및 장치
Hattori Water treatment systems and technology for the removal of odor compounds
CN111056700A (zh) 用于微污染水体修复的新型复合湿地***
Dahab et al. Nitrate removal from water supplies using biodenitrification and GAC-sand filter systems
JP3139123B2 (ja) 固定床活性炭処理塔における粒状活性炭の引抜及び供給方法
Wang et al. Development of attapulgite composite ceramsite/quartz sand double-layer biofilter for micropolluted drinking source water purification
Nishijima et al. Particle separation as a pretreatment of an advanced drinking water treatment process by ozonation and biological activated carbon
Nikoonahad et al. Evaluation of a novel integrated membrane biological aerated filter for water reclamation: A practical experience
NO130002B (ja)
Thiel et al. Activated carbon vs anthracite as primary dual media filters–a pilot plant study
KR102293189B1 (ko) 연속식 활성탄 여과 및 재생 방법
CN212833079U (zh) 一种用于废水处理用的装置
JP3461514B2 (ja) 高度水処理システムおよび高度水処理システムの立ち上げ方法
Wechsler Reverse osmosis on secondary sewage effluent: the effect of recovery
JP4302411B2 (ja) 海水及び汽水の浄化方法とその装置
KR100647752B1 (ko) 이단 이층 복합여과장치
JP2805418B2 (ja) 有機性汚水の浄化処理方法
KR200359694Y1 (ko) 모듈형 습지기반설비와 모듈형 접촉산화·여과설비를 병합한 하천수, 호소수, 또는 유출수 정화장치
JPH0592194A (ja) 汚水処理方法
JPH07124555A (ja) 水の浄水活性化方法および浄水活性化装置
KR20020045329A (ko) 막 결합형 정수처리장치

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081215

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091215

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101215

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111215

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees