JP3138215B2 - Circuit board base material and prepreg and printed circuit board using the same - Google Patents

Circuit board base material and prepreg and printed circuit board using the same

Info

Publication number
JP3138215B2
JP3138215B2 JP19032696A JP19032696A JP3138215B2 JP 3138215 B2 JP3138215 B2 JP 3138215B2 JP 19032696 A JP19032696 A JP 19032696A JP 19032696 A JP19032696 A JP 19032696A JP 3138215 B2 JP3138215 B2 JP 3138215B2
Authority
JP
Japan
Prior art keywords
circuit board
substrate
resin
nonwoven fabric
prepreg
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP19032696A
Other languages
Japanese (ja)
Other versions
JPH1037054A (en
Inventor
環生 小島
誠一 中谷
徹 長島
定光 村山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Teijin Ltd
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Teijin Ltd
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Teijin Ltd, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP19032696A priority Critical patent/JP3138215B2/en
Publication of JPH1037054A publication Critical patent/JPH1037054A/en
Application granted granted Critical
Publication of JP3138215B2 publication Critical patent/JP3138215B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Nonwoven Fabrics (AREA)
  • Reinforced Plastic Materials (AREA)
  • Artificial Filaments (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【発明の属する技術分野】本発明は、ソリ、ネジレ等の
変形がなく、LSIや受動部品などの電子部品を搭載
し、それらを相互に電気的に接続するための電気配線層
を持つプリント回路基板と、これに用いられる有機質不
織布を用いた回路基板用基材及びプリプレグに関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a printed circuit having an electronic component such as an LSI or a passive component mounted thereon without deformation such as warping and twisting and having an electric wiring layer for electrically connecting the components to each other. The present invention relates to a substrate, a circuit board substrate and a prepreg using an organic nonwoven fabric used for the substrate.

【従来の技術】近年、電子機器は小型軽量化は云うに及
ばず、一層の高機能化が求められている。従って、かか
る電子回路の構成部品である半導体やプリント配線板も
より高密度、高機能なものが要求されている。たとえ
ば、半導体では集積度の増大と高機能化のために狭ピッ
チ化、多ピン化がますます進展しており、端子ピッチは
現在では0.3mmピッチまで狭くなっている。そし
て、これ以上狭ピッチ化、多ピン化が進展すると、従来
の半田を用いた実装方法では実装が困難になるので、今
後はパッケージを用いることなく、半導体を基板に直接
実装するCOB(Chipon Board、チップオンボード)技
術(ワイヤーボンディング実装、フリップチップ実装な
どが代表的な技術)が重要と考えられ、近年COB技術
の開発が各方面で検討されるようになってきている。一
方、実装部品の高密度実装を可能ならしめるプリント配
線板としては、ガラス−エポキシ基板が最も一般的に知
られている。これは、ガラス織布に耐熱性のエポキシ樹
脂を含浸させたものを絶縁基板材として用いて構成され
たものである。このガラス−エポキシ基板は、現在では
民生用にも広く利用されている。しかしながら、前記し
たような今後の更なる高密度化の要求に対しては十分で
あるとはいえない。これは以下の理由による。ガラス−
エポキシ基板上に半導体を直接実装する場合、ガラス−
エポキシ基板は半導体であるシリコンの熱膨張に比べ約
3倍以上大きい。このため熱衝撃などの信頼性試験にお
いて、半導体ICとの電気的接続部分の接続信頼性を確
保することが困難となる。また、同様に半導体の直接実
装において、回路基板の表面平滑性も重要な要素となっ
てきている。これは、ガラス−エポキシ基板に使用され
るガラスが織布で構成されるため、ガラス織布の網目が
段差となり半導体実装時に接続部分の不具合いとして現
われるためである。また、段差のため、ファインな電極
パターンの形成には問題となり、今後のさらなる微細パ
ターン化に大きな障害となる。このような問題点は一般
の両面基板にかかわらず、ガラス−エポキシによる多層
基板、ひいては織布を回路基板の基材として用いた回路
基板においても同様である。そこで、このような課題に
対し、高密度実装を可能ならしめる新規な構成のプリン
ト回路基板として、不織布を用いた回路基板が提案され
ている。不織布とは、繊維を一定長にカットした短繊維
を、パルプ状の繊維もしくはバインダーとともに抄造
し、カレンダー処理して得られるもので、一般紙と同じ
方法で作製されるものである。このようにして作製され
た不織布にエポキシ樹脂などの熱硬化性樹脂を含浸した
プリプレグを使用してプリント回路基板が得られる。特
に紙不織布にフェノールを含浸したもの、ガラス不織布
にエポキシ樹脂を含浸したもの、全芳香族ポリアミド
(アラミド)不織布にエポキシ樹脂を含浸したもの等が
提案されている。このような不織布を回路基板の基材と
して使用したプリント回路基板は、表面平滑性に優れて
いる一方、紙フェノール基板では耐熱性が問題であり、
ガラス不織布エポキシ基板では熱膨張係数がシリコン半
導体のそれに比べ大きいなどの課題を有している。しか
し、アラミド不織布とエポキシ樹脂よりなる回路基板
は、熱膨張係数がシリコンに近く、高い熱衝撃信頼性が
確保できることから、将来の高密度な配線や部品実装を
行う上で最も有利なものであるといえる。この全芳香族
ポリアミド繊維不織布を補強材とする銅張積層基板を作
る試みが提案されている(例えば特開昭60−5293
7号公報、特開昭61−160500号公報、特開昭6
2−261190号公報、特開昭62−273792号
公報、特開昭62−274688号公報、特開昭62−
274689号公報等)。これらの基板は、前記の通り
低膨張、低誘電率、軽量であるといった特徴を生かして
民生用電子機器をはじめ、産業用や軍需用などの用途に
検討されている。
2. Description of the Related Art In recent years, electronic devices have not only been reduced in size and weight, but also required to have higher functions. Therefore, semiconductors and printed wiring boards which are components of such electronic circuits are required to have higher density and higher performance. For example, in semiconductors, the pitch and the number of pins are increasing more and more in order to increase the degree of integration and increase the functionality, and the terminal pitch is now narrower to 0.3 mm. If the pitch becomes narrower and the number of pins further increases, mounting using conventional soldering methods will become difficult. In the future, COB (Chipon Board) technology will be used to directly mount semiconductors on substrates without using packages. , Chip-on-board) technology (representative technologies such as wire bonding mounting and flip chip mounting) are considered important, and in recent years, development of COB technology has been considered in various fields. On the other hand, a glass-epoxy substrate is most commonly known as a printed wiring board that enables high-density mounting of mounted components. This is configured by using a glass woven fabric impregnated with a heat-resistant epoxy resin as an insulating substrate material. This glass-epoxy substrate is now widely used for consumer use. However, it cannot be said that the above-mentioned demand for further higher density is sufficient. This is for the following reason. Glass
When mounting a semiconductor directly on an epoxy substrate, the glass
The epoxy substrate is about three times larger than the thermal expansion of silicon, which is a semiconductor. Therefore, in a reliability test such as a thermal shock, it is difficult to ensure the connection reliability of the electrical connection portion with the semiconductor IC. Similarly, in the direct mounting of a semiconductor, the surface smoothness of a circuit board has also become an important factor. This is because the glass used for the glass-epoxy substrate is made of a woven fabric, so that the mesh of the glass woven fabric becomes a step and appears as a defect in a connection portion when mounting a semiconductor. In addition, the steps cause a problem in forming a fine electrode pattern, which is a great obstacle to further fine patterning in the future. Such a problem is the same not only in a general double-sided board but also in a multilayer board made of glass-epoxy, and also in a circuit board using a woven fabric as a base material of the circuit board. In order to solve such a problem, a circuit board using a nonwoven fabric has been proposed as a printed circuit board having a novel configuration enabling high-density mounting. The non-woven fabric is obtained by forming short fibers obtained by cutting fibers into a certain length together with pulp-like fibers or a binder and subjecting them to a calendering process, and is produced in the same manner as ordinary paper. A printed circuit board can be obtained by using a prepreg obtained by impregnating a thermosetting resin such as an epoxy resin into the nonwoven fabric produced as described above. Particularly, a paper nonwoven fabric impregnated with phenol, a glass nonwoven fabric impregnated with an epoxy resin, and a wholly aromatic polyamide (aramid) nonwoven fabric impregnated with an epoxy resin have been proposed. A printed circuit board using such a nonwoven fabric as a substrate of a circuit board has excellent surface smoothness, while a paper phenol board has a problem with heat resistance.
The glass nonwoven epoxy substrate has a problem that the thermal expansion coefficient is larger than that of the silicon semiconductor. However, a circuit board made of aramid nonwoven fabric and epoxy resin is the most advantageous for high-density wiring and component mounting in the future because its thermal expansion coefficient is close to that of silicon and high thermal shock reliability can be secured. It can be said that. Attempts have been made to produce a copper-clad laminated substrate using this wholly aromatic polyamide fiber nonwoven fabric as a reinforcing material (for example, Japanese Patent Application Laid-Open No. 60-5293).
No. 7, JP-A-61-160500, JP-A-61-160500
JP-A-2-261190, JP-A-62-273792, JP-A-62-274688, and JP-A-62-274.
274689, etc.). These substrates are being studied for applications such as consumer electronic devices, industrial use, and military use, taking advantage of the features of low expansion, low dielectric constant, and light weight as described above.

【発明が解決しようとする課題】しかしながら上記の従
来の構成では、有機質のみならず不織布を基材とする基
板材料は、一般的に基板そりが大きいとされている。こ
れは基材である不織布が、短く裁断された繊維を紙のよ
うに抄造して得られるため、繊維の向き(繊維配向)を
コントロールすることが困難となり、部分的に不揃いな
繊維配向となりやすいからである。また、繊維同士を結
着させるバインダとして、抄造時に水分散型エポキシ樹
脂を用いた不織布では、基板の積層時の加熱加圧でバイ
ンダとしてのエポキシ樹脂が粘性を示すため、繊維同士
を安定した状態で結着する機能を果たさなくなり、大き
な平面方向の寸法変化を起こす。その結果、部分的な寸
法変化や繊維配向によって基材の物性、即ち熱膨張係数
や弾性率などの異方性を生じることとなり、おのおの異
方性をもった基板材料を積層するような多層回路基板で
は、基板そり、ねじれとして表われるのである。このた
め現在、不織布だけによるプリント配線板は、まれであ
り一部の層に織布を併用している場合が多い。また、有
機質の不織布からなる基板材料を用いるため、基板材料
と銅箔との密着力が悪く、プリント配線板形成後に、こ
れに部品を半田付けにより実装した際、この実装強度を
高く保つことができないという課題がある。これはガラ
ス織布を補強材として用いた基板材料では、基板材料と
銅箔の間に含浸樹脂(熱硬化樹脂)のみからなる層が存
在するのに対し、有機質の不織布を基材として用いた基
板材料では、基板材料と銅箔の間に不織布の繊維が存在
することとなり、含浸樹脂(熱硬化樹脂)の存在する割
合が低くなってしまうためである。なお、この基板材料
と銅箔との間に存在する不織布の繊維は、基板材料を熱
プレスにより硬化したときに、基板材料と銅箔との間に
基板材料の硬化凝縮に寄与しない不織布の繊維が介入す
ることによるものである。このような不具合は、不織布
基材を作製した際、一部の繊維が毛羽立っている繊維同
士を有効に結着させることが困難なためと考えられる。
本発明は、前記従来の問題点を解消するためになされた
ものであり、基板と金属配線が強固に接着し、かつ基板
のそり及びねじれの少ない信頼性の高い高密度実装用プ
リント回路基板用基材とプリプレグ及びそれを用いたプ
リント回路基板を提供することを目的とする。
However, in the above-mentioned conventional structure, it is generally said that the substrate material not only made of an organic material but also made of a nonwoven fabric has a large substrate warpage. This is because the nonwoven fabric, which is the base material, is obtained by paper-making short cut fibers like paper, making it difficult to control the direction of fibers (fiber orientation), and it is easy to have partially irregular fiber orientation. Because. In addition, in the case of a nonwoven fabric using a water-dispersed epoxy resin during papermaking as a binder for binding the fibers, the epoxy resin as a binder exhibits viscosity when heated and pressed at the time of laminating the substrates. The function of binding is not fulfilled, and a large dimensional change occurs in the plane direction. As a result, physical properties of the base material, that is, anisotropy such as thermal expansion coefficient and elastic modulus, are generated due to partial dimensional change and fiber orientation, and a multilayer circuit in which substrate materials each having anisotropy are laminated. On the substrate, it appears as substrate warpage or twist. For this reason, printed wiring boards using only nonwoven fabrics are rare at present, and woven fabrics are often used in some layers. In addition, since a substrate material made of an organic non-woven fabric is used, the adhesion between the substrate material and the copper foil is poor. When a component is mounted on the printed wiring board by soldering, the mounting strength can be kept high. There is a problem that cannot be done. This is because in a substrate material using a glass woven fabric as a reinforcing material, a layer consisting only of an impregnating resin (thermosetting resin) exists between the substrate material and the copper foil, whereas an organic nonwoven fabric was used as a base material. This is because, in the substrate material, nonwoven fabric fibers exist between the substrate material and the copper foil, and the proportion of the impregnated resin (thermosetting resin) is reduced. The non-woven fibers present between the substrate material and the copper foil are non-woven fibers that do not contribute to the hardening and condensation of the substrate material between the substrate material and the copper foil when the substrate material is cured by hot pressing. Is due to intervention. It is considered that such a problem is caused when it is difficult to effectively bind fibers with some fibers fluffed when a nonwoven fabric substrate is produced.
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned conventional problems, and has been made for a high-density mounting printed circuit board having high reliability, in which a board and a metal wiring are firmly adhered, and the board has little warp and twist. An object of the present invention is to provide a base material, a prepreg, and a printed circuit board using the same.

【課題を解決するための手段】前記目的を達成するた
め、本発明の回路基板用基材は、繊維長が1〜10mm
の範囲の全芳香族ポリアミド及びポリパラフェニレンベ
ンゾビスオキサゾールから選ばれる少なくとも1つの可
塑性を示さない短繊維と、フッ素樹脂及びポリフェニレ
ンオキサイド樹脂から選ばれる少なくとも一つの可塑性
を示すパルプ状短繊維とを含む抄造不織布から形成さ
れ、 前記可塑性を示さない短繊維は、前記可塑性を示す
パルプ状短繊維により接着されているという構成を備え
たものである。このようにすることにより、基板のそり
及びねじれの少ない信頼性の高い高密度実装用プリント
回路基板用基材を実現できる。前記本発明の回路基板用
基材においては、全芳香族ポリアミド及びポリパラフェ
ニレンベンゾビスオキサゾール(以下PBO)から選ば
れる少なくとも1つの可塑性を示さない短繊維は、前記
可塑性を示すパルプ状短繊維により接着されている。こ
こで、接着とはホットメルト等を含む。また前記本発明
の回路基板用基材においては、フッ素樹脂が、ポリ4フ
ッ化エチレン(以下PTFE)であることが好ましい。
また前記本発明の回路基板用基材においては、同一の加
熱加圧条件下で可塑性を示す繊維の配合比率が全不織布
量に対して5重量%以上90重量%以下であることが好
ましい。また前記本発明の回路基板用基材においては、
同一の加熱加圧条件下で、可塑性を示さない短繊維
(A)と、可塑性を示す繊維(B)が、重量比でA:B
=10:90〜95:5の範囲であることが好ましい。
また前記本発明の回路基板用基材においては、同一の加
熱加圧条件下が、温度:170〜300℃、線圧力:1
0〜500kg/cmの範囲であることが好ましい。ま
た前記本発明の回路基板用基材においては、不織布に、
さらにバインダ成分として水分散型エポキシ樹脂を添加
したことが好ましい。次に本発明のプリプレグは、前記
本発明の回路基板用基材に樹脂ワニスを含浸し乾燥した
ものである。前記プリプレグにおいては、樹脂ワニス
が、エポキシ樹脂、ポリイミド樹脂、フェノール樹脂、
フッ素樹脂及びイソシアネート樹脂から選ばれる少なく
とも一つのワニスであることが好ましい。次に本発明の
プリント回路基板は、前記のプリプレグにより作製され
たものである。前記した本発明の回路基板用基材の構成
によれば、同一の加熱加圧条件下で、可塑性を示さない
短繊維同士をより強固に結着され、毛羽立ちのない構造
を持つことにより、金属箔配線パターン層が基板中の同
一の加熱加圧条件下で、可塑性を示さない短繊維に影響
されずに強固に密着され、しかも金属箔配線パターン層
と熱可塑性繊維とが加熱により融着し、より機械的に安
定な密着が得られることとなり、信頼性の高いプリント
回路基板を実現できる。また加熱加圧によるカレンダー
処理により、より強固な繊維同士の結着が得られること
で、不織布面内の弾性率の異方性が解消され、基板そ
り、ねじれの少ない基板が実現できる。前記構成の好ま
しい例として、可塑性を示さない短繊維に全芳香族ポリ
アミド(アラミド)を使用することで、耐熱性がよく、
基板としての熱膨張係数を小さくすることができる。前
記構成の好ましい例として、可塑性を示す繊維が、フッ
素樹脂、PPO樹脂のうち少なくとも1種以上を選択す
ることで、任意の温度でカレンダー処理が行え、かつ寸
法変化が高温まで安定なプリント回路基板が得られ、さ
らに誘電率が小さいプリント回路基板が得られる。前記
構成の好ましい例として、熱硬化性樹脂がエポキシ樹
脂、ポリイミド樹脂、フェノール樹脂、フッ素樹脂及び
イソシアネート樹脂から選ばれる少なくとも一つである
と、耐熱面から実用性に優れたものとなる。前記におい
てプリプレグとは、基材に含浸した樹脂が、半硬化樹脂
(Bステージ状態)も含むものであり、本材料を銅箔な
どの金属箔で挟んで、熱プレスにより加熱加圧すること
で、含浸樹脂を硬化させ金属箔との接着を行うもので、
さらに表面の金属箔を選択的にエッチングすることで、
両面の回路基板を得ることができる。同様に、すでにパ
ターニングされた回路基板と前記プリプレグを組み合わ
せて熱プレスにより多層回路基板を得ることもできる。
また、含浸する熱硬化性樹脂の硬化開始温度は、多官能
性低分子化合物または初期縮合反応中間体に対する触媒
(硬化材、反応促進剤)の種類または含有量により適宜
変更することができる。また含浸樹脂には、本発明の目
的を逸脱しない範囲で、アルミナ、シリカなど無機フィ
ラーを添加することが可能である。これにより、回路基
板としての熱膨張係数、熱伝導性、誘電率の制御が可能
となる。また前記構成において、熱可塑性を示す繊維を
フィブリル化したパルプ状繊維を用いることにより、製
紙困難な短繊維でも抄造が可能となり、さらに同一の加
熱加圧条件下で、可塑性を示さない短繊維の結着度を向
上させることができる。ここでいうパルプとは、製紙産
業における木材などから作られるセルロース繊維ではな
く、高耐熱の熱可塑性繊維を叩解してフィブリル化した
形状のパルプのことを示す。一般にパルプとよばれる形
状の繊維を作製する方法として、上記叩解して得る方法
と、溶液中に溶解させた樹脂を直接フィルム状の微粒子
にする方法とがあり、両者とも添加することで、短繊維
だけでは得られない繊維の絡み合いが期待でき、抄造時
の紙(不織布)の強度が確保できため、基板そり、ねじ
れの小さい、高信頼性のプリント回路基板が得られる。
またそれら繊維同士に加えバインダとしての水分散型の
エポキシ樹脂を添加することで、より強固な不織布を得
ることも可能である。
In order to achieve the above object, the substrate for a circuit board of the present invention has a fiber length of 1 to 10 mm.
Aromatic polyamides and polyparaphenylenes in the range
At least one member selected from benzobisoxazole
Short fibers that do not show plasticity, fluororesin and polyphenylene
At least one plasticity selected from oxide resins
Formed from a papermaking nonwoven fabric containing pulp-like short fibers exhibiting
And the short fibers that do not exhibit the plasticity exhibit the plasticity.
It is provided with a configuration in which it is bonded by pulp-like short fibers . By doing so, a highly reliable substrate for a printed circuit board for high-density mounting with less warping and twisting of the board can be realized. In the substrate for a circuit board of the present invention, a wholly aromatic polyamide and a polyparaffin are used.
Selected from Nylene Benzobisoxazole (PBO)
The at least one non-plastic short fiber is
Bonded by pulp-like short fibers showing plasticity . Here, the adhesion includes hot melt and the like. Further, in the circuit board base material of the present invention, the fluororesin is preferably polytetrafluoroethylene (hereinafter, PTFE).
In addition, in the substrate for a circuit board of the present invention, it is preferable that the blending ratio of the fibers exhibiting plasticity under the same heating and pressing conditions is 5% by weight or more and 90% by weight or less based on the total nonwoven fabric amount. In the circuit board substrate of the present invention,
Under the same heating and pressing conditions, the short fibers (A) exhibiting no plasticity and the fibers (B) exhibiting plasticity are expressed by a weight ratio of A: B.
= 10: 90 to 95: 5.
Further, in the substrate for a circuit board of the present invention, under the same heating and pressing conditions, the temperature: 170 to 300 ° C., the linear pressure: 1
It is preferably in the range of 0 to 500 kg / cm. Further, in the circuit board substrate of the present invention, the nonwoven fabric,
Further, it is preferable to add a water-dispersed epoxy resin as a binder component. Next, the prepreg of the present invention is obtained by impregnating the substrate for a circuit board of the present invention with a resin varnish and drying. In the prepreg, the resin varnish is an epoxy resin, a polyimide resin, a phenol resin,
It is preferably at least one varnish selected from a fluororesin and an isocyanate resin. Next, a printed circuit board of the present invention is manufactured by using the prepreg. According to the configuration of the circuit board substrate of the present invention described above, under the same heating and pressing conditions, short fibers that do not exhibit plasticity are more firmly bound to each other, and have a structure without fuzz, thereby reducing metal Under the same heating and pressing conditions in the substrate, the foil wiring pattern layer is firmly adhered without being affected by short fibers that do not show plasticity, and the metal foil wiring pattern layer and the thermoplastic fiber are fused by heating. As a result, more mechanically stable adhesion can be obtained, and a highly reliable printed circuit board can be realized. In addition, by calendering by heating and pressing, stronger bonding between the fibers is obtained, whereby the anisotropy of the elastic modulus in the nonwoven fabric surface is eliminated, and a substrate with less substrate warpage and twist can be realized. As a preferred example of the configuration, by using wholly aromatic polyamide (aramid) for short fibers that do not show plasticity , heat resistance is good,
The coefficient of thermal expansion as a substrate can be reduced. Preferred examples of the structure, fibers showing the plasticity, fluororesin, by selecting at least one or more of the PPO resins, calendered at any temperature is performed, and stable printed circuit dimensional change to a high temperature A substrate is obtained, and a printed circuit board having a low dielectric constant is obtained. As a preferred example of the configuration, when the thermosetting resin is at least one selected from an epoxy resin, a polyimide resin, a phenol resin, a fluororesin, and an isocyanate resin, the heat resistance is excellent in practicality. In the above, the prepreg means that the resin impregnated in the base material also includes a semi-cured resin (B-stage state). The material is sandwiched between metal foils such as a copper foil and heated and pressed by a hot press. It cures the impregnated resin and bonds it to the metal foil.
Furthermore, by selectively etching the metal foil on the surface,
A two-sided circuit board can be obtained. Similarly, a multilayer circuit board can be obtained by hot pressing by combining the prepreg with a circuit board already patterned.
The curing start temperature of the thermosetting resin to be impregnated can be appropriately changed depending on the type or content of the catalyst (curing material, reaction accelerator) for the polyfunctional low molecular compound or the initial condensation reaction intermediate. In addition, an inorganic filler such as alumina and silica can be added to the impregnated resin without departing from the object of the present invention. As a result, it is possible to control the coefficient of thermal expansion, thermal conductivity, and dielectric constant of the circuit board. Further, in the above-mentioned configuration, by using pulp-like fibers obtained by fibrillating fibers showing thermoplasticity, it is possible to make paper even with short fibers that are difficult to make paper, and under the same heating and pressing conditions, short fibers that do not show plasticity can be formed. The degree of binding can be improved. The term "pulp" as used herein refers to pulp having a shape obtained by beating fibrils by beating high heat-resistant thermoplastic fibers, not cellulose fibers made from wood or the like in the papermaking industry. As a method for producing fibers having a shape generally called pulp, there are a method of beating the above and a method of directly converting a resin dissolved in a solution into fine particles in a film form. Fiber entanglement, which cannot be obtained with fibers alone, can be expected, and the strength of paper (nonwoven fabric) during papermaking can be ensured, so that a highly reliable printed circuit board with small board warpage and twist can be obtained.
Further, by adding a water-dispersible epoxy resin as a binder in addition to the fibers, a stronger nonwoven fabric can be obtained.

【発明の実施の形態】図1は、本発明を両面プリント回
路基板へ応用した一実施の形態を示す断面図、図2は、
多層プリント回路基板へ応用した一実施の形態を示す断
面図である。図1に示すように、本実施の形態の両面プ
リント回路基板は、同一の加熱加圧条件下で、可塑性を
示さない短繊維と、可塑性を示す繊維からなる不織布
と、含浸樹脂の混在した層101と含浸樹脂層102か
らなる絶縁基板103の厚さ方向に貫通孔104が形成
され、前記貫通孔104に両面の電気的導通を得るため
の導電性金属メッキ層105を有し、前記絶縁基板の両
面に金属配線パターン106が構成される。以下、本実
施の形態の回路基板基材とそれを用いたプリプレグを作
製し、図1に示した両面プリント回路基板を作製して評
価を行った。 (1)不織布基材の作製 適度な繊維径に紡糸された同一の加熱加圧条件下で、可
塑性を示さない短繊維(繊度:0.3デニール〜5デニ
ール)を3mmから10mm程度の長さにカットしたも
のと、同様に作製した熱可塑性樹脂短繊維をさらに叩解
し、フィブリル化したパルプとを任意の配合比で水に分
散させ、周知の抄紙技術で、抄造した。前記抄造後の不
織布は乾燥され、さらに一対の金属ロールを有するカレ
ンダー装置で、抄紙後、温度:200℃〜300℃の範
囲、線圧力:200kg/cm、速度:4m/分の条件
でカレンダ処理を行った。パルプ状繊維を用いること
で、短繊維だけでは得られない繊維の絡み合いが期待で
き、抄造時の紙(不織布)の強度が確保できる。またカ
レンダー処理により、熱可塑性樹脂を融着(ホットメル
ト接着)させ、不織布としてさらに強度、弾性率を高め
ることができる。 (2)プリプレグの作製(樹脂ワニス含浸) 前記基材不織布に樹脂ワニスを含浸する。樹脂含浸ワニ
スは、熱硬化樹脂の場合、樹脂成分主剤と硬化剤、さら
に触媒などを溶剤に溶解混合し、適度に粘度調整したも
のが使用される。含浸方法としては、前記不織布を連続
的に前記樹脂ワニスに浸漬し、溶剤を乾燥させる塗工機
により作製した。このように樹脂ワニスを含浸し、乾燥
したものがプリプレグである。 (3)回路基板作製(積層、回路形成) 樹脂ワニス含浸終了後、上記プリプレグの両面に厚さ3
5μmの電解銅箔を重ね、熱圧着して銅張り積層板を形
成した。熱圧着は圧力20〜50kg/cm2、温度は
170〜260℃の範囲で60分間の条件で行った。こ
のとき積層温度は、含浸した樹脂の種類や硬化温度の違
いに応じて変更する。このようにして作製された銅張り
積層板の表面銅箔を常法により回路パターン形成した。
具体的方法は、前記の銅張り積層板の表面にドライフィ
ルムレジストをラミネートし、所望の回路パターンを形
成するためのマスクフィルムと重ね、紫外線を照射して
露光した。次に現像工程により未照射部分だけドライフ
ィルムレジストを除去した。さらに塩化銅溶液により、
表面に出た銅箔をエッチングした。最後に余分なドライ
フィルムレジストをアルカリ溶液により除去し洗浄し
た。以上のようにして配線パターンが形成され回路基板
となる。なお、両面銅箔間を電気的に接続する場合は、
配線パターンの形成工程の前に、ドリルやレーザーなど
により穴加工を行い、前記穴内壁を含む全面に銅メッキ
を施した後、配線パターンの形成を行うのが常法であ
る。またドリルやレーザー加工された穴に導電性ペース
トを充填し、両面の電気導通を図る方法もまた有効で、
この方法では表面電極に穴がない平滑な回路基板が得ら
れる。 (4)評価方法 以上のようにして作製されたプリント回路基板に対し不
織布の引っ張り強度、含浸性、動的粘弾特性さらに回路
基板としてのソリ量、絶縁信頼性さらに接着強度(銅箔
のピール強度)、誘電特性の評価を行った。測定方法は
以下に示す。 (a)不織布基材の引っ張り強度 カレンダー後の不織布を、抄造方向と垂直方向から引っ
張り試験機を用いて引っ張り、各々の破壊に至る強度を
測定しその平均値を求めた。幅20mm長さ100mm
に切断した不織布で評価し、単位幅当たりの強度で表わ
す。平均値が1.5Kg/cm以上あれば、抄造後のカ
レンダー装置など連続で実施することができ、それ以下
であれば、カレンダー装置、塗工機などで不織布が切れ
使用できない。 (b)動的粘弾性率 熱プレス後の銅張積層板両面の銅箔を除去した硬化基板
を3mm幅に切断し、動的粘弾性率測定装置(11H
z、3℃/minの条件)で、20〜300℃間の貯蔵
弾性率(E’)を測定し、積層温度に近い200℃での
貯蔵弾性率で表わす。200℃で150Kg/mm2 以
下であれば、積層工程で寸法変化が大きく、基板そりに
影響を及ぼす。できうれば200Kg/mm2 以上が望
ましい。 (c)含浸性 不織布基材に樹脂ワニスを含浸する際のワニスの染み込
み易さを評価する方法で、ヒマシ油に不織布を漬し表面
まで浸透してくるまでの時間を計測する。室温で約15
秒以下であれば工業的に塗工機で含浸可能である。実際
の含浸樹脂ワニスを使用しないでヒマシ油を使うのは、
樹脂溶剤の沸点が低く蒸発により測定誤差を生じるため
である。 (d)ソリ量(mm) 前記プリプレグを3枚重ね、熱プレス後の20cm□サ
イズの両面銅張り積層板の銅箔を除去した硬化基板を定
盤の上におき、硬化基板の4隅で持ち上がり量のいちば
ん大きいところを反り量として測定した。 (e)接着強度(kg/cm) 熱プレス後の銅張積層板を1cm幅に切断後、引っ張り
試験機で基板表面の銅箔を垂直方向に引っ張り試験機で
引っ張り基板上の銅箔接着強度とした。 (f)誘電特性 熱プレス後の銅張積層板両面の銅箔を部分的除去し、1
0mm角の対向電極とし、周波数1MHzでその静電容量
と誘電損を計測した。誘電率は静電容量と電極面積、電
極間距離から計算で求めた。
1 is a sectional view showing an embodiment in which the present invention is applied to a double-sided printed circuit board, and FIG.
FIG. 3 is a cross-sectional view showing an embodiment applied to a multilayer printed circuit board. As shown in FIG. 1, a double-sided printed circuit board according to the present embodiment has a mixed layer of a short fiber that does not show plasticity, a nonwoven fabric made of fibers that show plasticity, and an impregnated resin under the same heating and pressing conditions. A through-hole 104 is formed in a thickness direction of an insulating substrate 103 including an insulating resin layer 101 and an impregnated resin layer 102, and the through-hole 104 has a conductive metal plating layer 105 for obtaining electrical conduction between both surfaces. Metal wiring patterns 106 are formed on both sides of the substrate. Hereinafter, the circuit board substrate of the present embodiment and a prepreg using the same were produced, and the double-sided printed circuit board shown in FIG. 1 was produced and evaluated. (1) Preparation of Nonwoven Fabric Substrate Under the same heating and pressing conditions spun to an appropriate fiber diameter, short fibers that do not exhibit plasticity (fineness: 0.3 to 5 denier) have a length of about 3 mm to 10 mm. The pulp was further beaten to obtain a fibril pulp, and the fibrillated pulp was dispersed in water at an arbitrary mixing ratio, followed by papermaking by a known papermaking technique. After the papermaking, the nonwoven fabric is dried, and calendered with a calender having a pair of metal rolls, after papermaking, at a temperature of 200 ° C. to 300 ° C., a linear pressure of 200 kg / cm, and a speed of 4 m / min. Was done. By using pulp-like fibers, entanglement of fibers that cannot be obtained by short fibers alone can be expected, and the strength of paper (nonwoven fabric) during papermaking can be secured. Further, the thermoplastic resin is fused (hot-melt bonded) by the calendering treatment, so that the strength and the elastic modulus of the nonwoven fabric can be further increased. (2) Preparation of prepreg (impregnation with resin varnish) The base nonwoven fabric is impregnated with a resin varnish. As the resin-impregnated varnish, in the case of a thermosetting resin, a resin component main component, a curing agent, a catalyst, and the like are dissolved and mixed in a solvent, and the viscosity is appropriately adjusted. As the impregnation method, the nonwoven fabric was continuously immersed in the resin varnish, and produced by a coating machine for drying the solvent. The prepreg is impregnated with the resin varnish and dried as described above. (3) Fabrication of circuit board (lamination, circuit formation) After completion of resin varnish impregnation, a thickness of 3
A 5 μm electrolytic copper foil was overlaid and thermocompression bonded to form a copper-clad laminate. The thermocompression bonding was performed at a pressure of 20 to 50 kg / cm 2 and a temperature of 170 to 260 ° C. for 60 minutes. At this time, the lamination temperature is changed according to the type of the impregnated resin and the difference in the curing temperature. The surface copper foil of the copper-clad laminate thus produced was formed into a circuit pattern by a conventional method.
As a specific method, a dry film resist was laminated on the surface of the above-mentioned copper-clad laminate, overlapped with a mask film for forming a desired circuit pattern, and exposed to ultraviolet light. Next, the dry film resist was removed only in the unirradiated portion by a developing process. In addition, with a copper chloride solution,
The copper foil on the surface was etched. Finally, excess dry film resist was removed with an alkaline solution and washed. The wiring pattern is formed as described above to form a circuit board. In addition, when electrically connecting the double-sided copper foil,
Prior to the wiring pattern forming step, it is a common method to drill a hole with a drill or a laser, apply copper plating to the entire surface including the inner wall of the hole, and then form the wiring pattern. It is also effective to fill the drilled or laser-processed hole with conductive paste to achieve electrical conduction on both sides.
According to this method, a smooth circuit board having no holes in the surface electrode can be obtained. (4) Evaluation method Tensile strength, impregnation, dynamic viscoelasticity, the amount of warpage as a circuit board, insulation reliability, and adhesive strength (peel of copper foil) for the printed circuit board manufactured as described above Strength) and dielectric properties were evaluated. The measuring method is described below. (A) Tensile strength of nonwoven fabric substrate The nonwoven fabric after calendering was pulled from a direction perpendicular to the papermaking direction using a tensile tester, and the strength of each of the nonwoven fabrics to breakage was measured, and the average value was determined. Width 20mm Length 100mm
And evaluated by the strength per unit width. If the average value is 1.5 kg / cm or more, the nonwoven fabric can be continuously used with a calender after papermaking or the like. (B) Dynamic viscoelasticity The cured substrate from which the copper foil on both sides of the copper-clad laminate after hot pressing was removed was cut into a width of 3 mm, and a dynamic viscoelasticity measuring device (11H
z, 3 ° C./min), the storage elastic modulus (E ′) between 20 ° C. and 300 ° C. is measured and expressed as the storage elastic modulus at 200 ° C. close to the lamination temperature. If it is less than 150 kg / mm @ 2 at 200 DEG C., the dimensional change is large in the laminating step, which affects the warpage of the substrate. If possible, 200 kg / mm 2 or more is desirable. (C) Impregnation A method of evaluating the ease of varnish penetration when impregnating a resin varnish into a nonwoven fabric substrate, and measuring the time required for the nonwoven fabric to be immersed in castor oil and penetrating to the surface. About 15 at room temperature
If it is less than seconds, it can be impregnated industrially with a coating machine. Using castor oil without using the actual impregnated resin varnish is
This is because the boiling point of the resin solvent is low and a measurement error occurs due to evaporation. (D) Amount of warpage (mm) The three prepregs were stacked, and the cured substrate from which the copper foil of the double-sided copper-clad laminate of 20 cm square size after hot pressing was removed was placed on a surface plate. The largest lift was measured as the amount of warpage. (E) Adhesive strength (kg / cm) After cutting the copper-clad laminate after hot pressing to a width of 1 cm, the copper foil on the substrate surface was pulled vertically by a tensile tester using a tensile tester, and the copper foil adhesive strength on the substrate was pulled. And (F) Dielectric properties The copper foil on both sides of the copper-clad laminate after hot pressing was partially removed,
A 0 mm square counter electrode was used, and its capacitance and dielectric loss were measured at a frequency of 1 MHz. The dielectric constant was calculated from the capacitance, the electrode area, and the distance between the electrodes.

【実施例】(共通例) 同一の加熱加圧条件下で、可塑性を示さない短繊維とし
各実施例に示す短繊維と、可塑性を示すパルプ状短繊
維を所定量計り取り、坪量(目付)が70グラム/m2
となるよう抄造した。さらに前記カレンダー装置で24
0℃の温度でカレンダーし不織布を得た。そして、塗工
機を用いて、以下の組成のエポキシ樹脂組成物を含浸し
た。 臭素化ビスフェノールA型エポキシ樹脂 70.0重量部 (臭素量;23重量%,エポキシ当量;270) ノボラック型フェノール樹脂 30.0重量部 (水酸基当量;120) カルボニルジイミダゾール 0.1重量部 以上のようにして作製したものプリプレグとし、回路基
板を作製した。 (実施例1) 可塑性を示す繊維をポリフェニレンオキサイド(PP
O)繊維に代えた以外は共通例と同様にしてカレンダ処
理、および同じエポキシ樹脂を含浸しプリプレグを作製
した。なおPPO樹脂繊維は、芳香族ポリエーテル樹脂
のポリフェニレンオキサイドをスチレン系樹脂によって
改質したものを約2μm径、繊維長4m mにカットした
チョップ状の繊維を用いた。 (実施例) 実施例は、可塑性を示す繊維をPTFE繊維(セント
ラル硝子社製、セフラルソフトG150)に代えた以外
は実施例1と同様にしてカレンダ処理、および同じエポ
キシ樹脂を含浸しプリプレグを作製した。繊維化は、P
TFEペレットを射出成形機で押し出して作製し、12
μm径、繊維長4mmにカットしたチョップ状の繊維と
したものを用いた。以上の実施例1〜の条件を表1に
示し、表2にはその評価結果を示す。
[Examples] ( Common example ) Under the same heating and pressurizing conditions, short fibers having no plasticity are shown as short fibers shown in each example, and pulp-like short fibers having plasticity are shown.
Weigh a predetermined amount of fiber, and have a basis weight of 70 g / m2
The paper was made so that Further, 24
The nonwoven fabric was calendered at a temperature of 0 ° C. Then, an epoxy resin composition having the following composition was impregnated using a coating machine. 70.0 parts by weight of brominated bisphenol A type epoxy resin (bromine content; 23% by weight, epoxy equivalent: 270) Novolak type phenolic resin 30.0 parts by weight (hydroxyl equivalent: 120) carbonyl diimidazole 0.1 part by weight or more A circuit board was prepared using the prepreg prepared as described above. (Example 1) Polyphenylene oxide (PP)
O) A prepreg was prepared by calendering and impregnating with the same epoxy resin in the same manner as in the common example except that the fiber was replaced. As the PPO resin fiber, chopped fiber obtained by modifying polyphenylene oxide of an aromatic polyether resin with a styrene-based resin and cutting the fiber to a diameter of about 2 μm and a fiber length of 4 mm was used. (Example 2 ) In Example 2 , a prepreg was prepared by calendering and impregnating with the same epoxy resin in the same manner as in Example 1 except that the PTFE fiber (Sephralsoft G150, manufactured by Central Glass Co., Ltd.) was used instead of the fiber showing plasticity. Produced. Fiberization is P
TFE pellets were extruded with an injection molding machine to produce
A chop-shaped fiber cut to a diameter of 4 μm and a fiber length of 4 mm was used. Table 1 shows the conditions of Examples 1 and 2 above, and Table 2 shows the evaluation results.

【表1】 [Table 1]

【表2】 表1〜2から明らかな通り、不織布の接着剤として働く
熱可塑性繊維と動的粘弾性率のあいだには明らかな相関
があり、可塑性を示す繊維を結着剤として用いた不織布
は良好な基材として機能していることがわかる。また引
っ張り強度や含浸性は比較例に比べ、若干悪いが、実用
的には問題とならない。むしろ基板としての性能評価の
結果、基板そり、接着強度、そして誘電特性では明らか
に効果がある。これは、弾性率が大きく、熱的に安定で
あるため寸法的にも変化が少ないないことを示してい
る。また、プリプレグや積層板の製造時のプロセス中に
不均一な機械的変動がないことを示している。また銅箔
との接着強度も改善されているのは、前述の通り可塑性
を示す繊維が結着剤となり、アラミドやPBOの結合を
良好にするとともに、銅箔との接着にも寄与していると
考えられる。この様にして作製された両面プリント配線
板について各種の信頼性評価を行った結果、オイルディ
ップ試験、半田フロー試験、半田リフロー試験のいずれ
においても良好な結果が得られた。 (比較例1) 熱硬化製樹脂繊維として全芳香族ポリアミド繊維(帝人
製テクノーラ、1.5デニール、繊維長3mm)に水系
エポキシ樹脂バインダーを15重量%添加した構成の不
織布を作製した以外は実施例1と同様にしてカレンダ処
理、プリプレグ及び銅張り積層板を形成した。硬化後の
水系エポキシ樹脂のガラス転移点(Tg)温度は120
℃であった。以上の比較例1の条件を表3に示し、表4
にはその評価結果を示す。
[Table 2] As is clear from Tables 1 and 2, there is a clear correlation between the thermoplastic fiber acting as an adhesive for the nonwoven fabric and the dynamic viscoelastic modulus, and the nonwoven fabric using fibers showing plasticity as a binder has a good base. It can be seen that it functions as a material. Further, the tensile strength and impregnating property are slightly worse than those of the comparative example, but do not cause any problem in practical use. Rather, as a result of the evaluation of the performance of the substrate, the substrate warpage, adhesive strength, and dielectric properties are clearly effective. This indicates that the elastic modulus is large and thermally stable, so there is not much change in dimensions. It also shows that there is no non-uniform mechanical fluctuation during the process of manufacturing prepregs and laminates. In addition, the reason why the adhesive strength with the copper foil is also improved is that, as described above, the fibers exhibiting plasticity serve as a binder, improve the binding of aramid and PBO, and also contribute to the adhesion with the copper foil. it is conceivable that. As a result of performing various reliability evaluations on the double-sided printed wiring board manufactured in this manner, good results were obtained in any of the oil dip test, the solder flow test, and the solder reflow test. (Comparative Example 1) A non-woven fabric having a configuration in which 15 wt% of an aqueous epoxy resin binder was added to a wholly aromatic polyamide fiber (Tecjin Technora, 1.5 denier, fiber length 3 mm) as a thermosetting resin fiber was prepared. A calendar treatment, a prepreg, and a copper-clad laminate were formed in the same manner as in Example 1. The glass transition point (Tg) temperature of the aqueous epoxy resin after curing is 120.
° C. Table 3 shows the conditions of Comparative Example 1 described above.
Shows the evaluation results.

【表3】 [Table 3]

【表4】 (実施例) 次に多層プリント回路基板を作製した実施例を説明す
る。以下、図2に基づいて製造工程を説明する。まず、
記の通り両面プリント回路基板(I)を作製した。次
にこの両面プリント配線板(I)とは別に、図2(a)
の様にプリプレグ201に離型フィルム202を両面に
貼り合せた。離型フィルムはポリエチレンテレフタレー
ト(12μm厚み)を使用した。次に図2(b)は、前
記離型フィルムを貼ったプリプレグ202に炭酸ガスレ
ーザーで穴203を加工したものである。さらに図2
(c)の様に銅粉とエポキシ樹脂、硬化剤よりなる導電
性ペースト204で前記加工穴203に充填した。得ら
れたものから離型フィルム202を剥離したものを2種
類準備した。次に、図2(d1),(d2)に示すよう
に、両面プリント回路基板(I)の上下に前記プリプレ
グ(d1),(d2)をそれぞれ位置合わせして配し、さ
らにその上下に銅箔205をそれぞれ重ね合わせた。次
に図2(II)に示すように、前記工程で得られた位置合
わせした積層体を加熱加圧して両面プリント回路基板と
銅箔205を、プリプレグ(d1)および(d2)を介し
て接着した。このとき両面基板(I)に開けた貫通穴1
04中に、前記プリプレグ中の含浸樹脂が流入し完全に
穴が塞がっていた。次に図2(III)に示すように、銅
箔205を両面それぞれ通常のパターン形成方法により
エッチングして回路パターン206を形成した。これに
より4層の多層プリント回路基板を得ることができた。
なお、以上説明した工程は、4層プリント配線板を得る
工程であるが、さらに高多層にするには、図2(I)の
両面プリント回路基板を4層プリント回路基板に置き換
えて、図2(I)〜(III)及び(a)〜(d1),(d
2)の工程を繰り返して積層すれば、6層基板が得られ
る。以上のように、本発明の不織布基材とプリプレグお
よびプリント回路基板は、基板そり、耐久性および誘電
特性に優れた信頼性の高いプリント回路基板を実現でき
る。
[Table 4] (Example 3) explaining an embodiment of manufacturing a multilayer printed circuit board to the next. Hereinafter, the manufacturing process will be described with reference to FIG. First,
Was prepared as double-sided printed circuit board before the SL (I). Next, separately from the double-sided printed wiring board (I), FIG.
In-flops prepreg 201 as of the release film 202 on both sides
It was stuck. As the release film, polyethylene terephthalate (12 μm thickness) was used. Next, FIG. 2B shows a prepreg 202 on which the release film is pasted, in which a hole 203 is processed by a carbon dioxide laser. Further FIG.
As shown in (c), the processing hole 203 was filled with a conductive paste 204 composed of a copper powder, an epoxy resin, and a curing agent. Two types of films obtained by peeling the release film 202 from the obtained films were prepared. Next, as shown in FIGS. 2 (d1) and 2 (d2), the prepregs (d1) and (d2) are arranged on the upper and lower sides of the double-sided printed circuit board (I), respectively. The foils 205 were overlaid. Next, as shown in FIG. 2 (II), the aligned laminate obtained in the above step is heated and pressed to bond the double-sided printed circuit board and the copper foil 205 via the prepregs (d1) and (d2). did. At this time, the through hole 1 opened in the double-sided substrate (I)
In 04, the impregnated resin in the prepreg flowed in and the hole was completely closed. Next, as shown in FIG. 2 (III), the copper foil 205 was etched on both sides by a normal pattern forming method to form a circuit pattern 206. As a result, a multilayer printed circuit board having four layers was obtained.
The above-described process is a process for obtaining a four-layer printed wiring board. In order to further increase the number of layers, the double-sided printed circuit board in FIG. (I) to (III) and (a) to (d1), (d
By repeating the step 2) and laminating, a six-layer substrate is obtained. As described above, the nonwoven fabric substrate, the prepreg, and the printed circuit board of the present invention can realize a highly reliable printed circuit board excellent in board warpage, durability, and dielectric characteristics.

【発明の効果】以上説明した通り、本発明にかかる不織
布基材とそれによるプリプレグ、さらにそのプリプレグ
より作製されたプリント回路基板によれば、不織布基材
として同一の加熱加圧条件下で、可塑性を示さない短繊
維と可塑性を示す繊維からなり、同一の加熱加圧条件下
で、可塑性を示さない短繊維同士を可塑性を示す繊維で
接着した構造である不織布で構成されることで同一の加
熱加圧条件下で、可塑性を示さない短繊維同士をより強
固に結着し、毛羽立ちのない構造を持つことになり、基
板中の熱可塑性樹脂繊維が加熱により融着し、より機械
的に安定な密着が得られる。これにより、信頼性の高い
プリント回路基板を実現できる。また加熱加圧によるカ
レンダー処理により、より強固な繊維同士の結着が得ら
れることで、不織布面内の弾性率の異方性が解消され、
基板そり、ねじれの少ない基板が実現できる。また、本
不織布、および、プリプレグを使用することで、表面平
滑性に優れ、かつ誘電特性の良好な信頼性の高いプリン
ト回路基板および多層プリント回路基板を製造できる。
As described above, according to the nonwoven fabric substrate of the present invention, the prepreg using the nonwoven fabric substrate, and the printed circuit board produced from the prepreg, the plasticity of the nonwoven fabric substrate under the same heating and pressing conditions can be improved. The same heating is achieved by using a non-woven fabric that is composed of short fibers that do not exhibit plasticity and fibers that exhibit plasticity, and is formed by bonding short fibers that do not exhibit plasticity with fibers that exhibit plasticity under the same heating and pressing conditions. Under pressurized conditions, short fibers that do not show plasticity are more firmly bound together and have a structure without fluff, and the thermoplastic resin fibers in the substrate are fused by heating and are more mechanically stable. Good adhesion is obtained. Thereby, a highly reliable printed circuit board can be realized. In addition, by the calendering treatment by heating and pressing, stronger bonding between the fibers is obtained, and the anisotropy of the elastic modulus in the nonwoven fabric surface is eliminated,
Substrate warpage and a substrate with little twist can be realized. Further, by using the present nonwoven fabric and the prepreg, a highly reliable printed circuit board and a multilayer printed circuit board having excellent surface smoothness and good dielectric properties can be manufactured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の一実施の形態における両面プリント
回路基板を示す断面図
FIG. 1 is a sectional view showing a double-sided printed circuit board according to an embodiment of the present invention.

【図2】 (I)〜(III)及び(a)〜(d1),(d
2)は本発明の一実施の形態における多層プリント基板
の製造工程を示す工程断面図
FIG. 2 (I) to (III) and (a) to (d1), (d)
2) is a process sectional view showing the manufacturing process of the multilayer printed circuit board in one embodiment of the present invention.

【符号の説明】[Explanation of symbols]

101 不織布と含浸樹脂との混合層 102 含浸樹脂層 103 絶縁基板 104 貫通孔 105 導電性金属メッキ層 106 金属配線パターン 201 プリプレグ 202 離型フィルム 203 穴 204 導電性ペースト 205 銅箔 206 銅箔による配線パターン Reference Signs List 101 Mixed layer of nonwoven fabric and impregnated resin 102 Impregnated resin layer 103 Insulating substrate 104 Through hole 105 Conductive metal plating layer 106 Metal wiring pattern 201 Pre-preg 202 Release film 203 Hole 204 Conductive paste 205 Copper foil 206 Wiring pattern using copper foil

フロントページの続き (72)発明者 長島 徹 大阪府大阪市中央区南本町1丁目6番7 号 帝人株式会社 本社内 (72)発明者 村山 定光 大阪府茨木市耳原3丁目4番1号 帝人 株式会社 大阪研究センター内 (56)参考文献 特開 昭61−167070(JP,A) 特開 昭60−71754(JP,A) 特開 昭60−99056(JP,A) 特開 平2−69530(JP,A) 特開 平1−40649(JP,A) 特開 昭47−3090(JP,A) 特開 昭51−109371(JP,A) 特公 昭52−27189(JP,B2) (58)調査した分野(Int.Cl.7,DB名) D04H 1/00 - 18/00 B29B 11/16 B29B 15/08 - 15/14 C08J 5/04 - 5/10 C08J 5/24 Continued on the front page (72) Inventor Toru Nagashima 1-6-7 Minamihonmachi, Chuo-ku, Osaka City, Osaka Teijin Limited Headquarters (72) Inventor Sadamitsu Murayama 3-4-1 Mihara, Ibaraki-shi, Osaka Teijin Shares (56) References JP-A-61-167070 (JP, A) JP-A-60-71754 (JP, A) JP-A-60-99056 (JP, A) JP-A-2-69530 (JP) JP, A) JP-A-1-40649 (JP, A) JP-A-47-3090 (JP, A) JP-A-51-109371 (JP, A) JP-B-52-27189 (JP, B2) (58) ) Surveyed field (Int.Cl. 7 , DB name) D04H 1/00-18/00 B29B 11/16 B29B 15/08-15/14 C08J 5/04-5/10 C08J 5/24

Claims (9)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 繊維長が1〜10mmの範囲の全芳香族
ポリアミド及びポリパラフェニレンベンゾビスオキサゾ
ールから選ばれる少なくとも1つの可塑性を示さない短
繊維と、フッ素樹脂及びポリフェニレンオキサイド樹脂
から選ばれる少なくとも一つの可塑性を示すパルプ状短
繊維とを含む抄造不織布から形成され、 前記可塑性を示さない短繊維は、前記可塑性を示すパル
プ状短繊維により接着されている 回路基板用基材。
1. A wholly aromatic fiber having a fiber length of 1 to 10 mm.
Polyamide and polyparaphenylene benzobisoxazo
At least one non-plastic material selected from the group consisting of
Fiber, fluororesin and polyphenylene oxide resin
Pulp-like short plastics exhibiting at least one plasticity selected from
Short fibers that are formed from a paper-made nonwoven fabric containing
Substrate for circuit boards bonded by short fibers .
【請求項2】 フッ素樹脂が、ポリ4フッ化エチレンで
ある請求項に記載の回路基板用基材。
2. The circuit board substrate according to claim 1 , wherein the fluororesin is polytetrafluoroethylene.
【請求項3】 可塑性を示すパルプ状短繊維の配合比率
が全不織布量に対して5重量%以上90重量%以下であ
る請求項に記載の回路基板用基材。
3. The substrate for a circuit board according to claim 1 , wherein the compounding ratio of the pulp-like short fibers exhibiting plasticity is 5% by weight or more and 90% by weight or less based on the total nonwoven fabric.
【請求項4】 可塑性を示さない短繊維(A)と、可塑
性を示すパルプ状短繊維(B)が、重量比でA:B=1
0:90〜95:5の範囲である請求項に記載の回路
基板用基材。
4. A short fiber (A) showing no plasticity,
Pulp-like short fibers (B) exhibiting properties are A: B = 1 by weight ratio.
The substrate for a circuit board according to claim 1 , wherein the ratio is in the range of 0:90 to 95: 5.
【請求項5】 接着時の加熱加圧条件下が、温度:17
0〜300℃、線圧力:10〜500kg/cmの範囲
である請求項に記載の回路基板用基材。
5. The condition of heating and pressurizing at the time of bonding is as follows: temperature: 17
The circuit board substrate according to claim 1 , wherein the substrate has a temperature of 0 to 300C and a linear pressure of 10 to 500 kg / cm.
【請求項6】 不織布に、さらにバインダ成分として水
分散型エポキシ樹脂を添加した請求項に記載の回路基
板用基材。
6. The circuit board substrate according to claim 1 , wherein a water-dispersible epoxy resin is further added as a binder component to the nonwoven fabric.
【請求項7】 請求項1に記載の回路基板用基材に樹脂
ワニスを含浸し乾燥したプリプレグ。
7. A prepreg obtained by impregnating the substrate for circuit boards according to claim 1 with a resin varnish and drying.
【請求項8】 樹脂ワニスが、エポキシ樹脂、ポリイミ
ド樹脂、フェノール樹脂、フッ素樹脂及びイソシアネー
ト樹脂から選ばれる少なくとも一つのワニスである請求
7に記載のプリプレグ。
8. The prepreg according to claim 7, wherein the resin varnish is at least one varnish selected from an epoxy resin, a polyimide resin, a phenol resin, a fluororesin, and an isocyanate resin.
【請求項9】 請求項7に記載のプリプレグにより作製
されたプリント回路基板。
9. A printed circuit board produced by the prepreg according to claim 7 .
JP19032696A 1996-07-19 1996-07-19 Circuit board base material and prepreg and printed circuit board using the same Expired - Fee Related JP3138215B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19032696A JP3138215B2 (en) 1996-07-19 1996-07-19 Circuit board base material and prepreg and printed circuit board using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19032696A JP3138215B2 (en) 1996-07-19 1996-07-19 Circuit board base material and prepreg and printed circuit board using the same

Publications (2)

Publication Number Publication Date
JPH1037054A JPH1037054A (en) 1998-02-10
JP3138215B2 true JP3138215B2 (en) 2001-02-26

Family

ID=16256329

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19032696A Expired - Fee Related JP3138215B2 (en) 1996-07-19 1996-07-19 Circuit board base material and prepreg and printed circuit board using the same

Country Status (1)

Country Link
JP (1) JP3138215B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002124763A (en) 2000-10-16 2002-04-26 Matsushita Electric Ind Co Ltd Circuit forming board, production method and materials therefor
US7015159B2 (en) * 2001-07-24 2006-03-21 E. I. Du Pont De Nemours And Company Nonwoven material for low friction bearing surfaces
EP1394857A3 (en) 2002-08-28 2004-04-07 Matsushita Electric Industrial Co., Ltd. Semiconductor device
JP2006229028A (en) * 2005-02-18 2006-08-31 Tomoegawa Paper Co Ltd Copper-plated board for printed board and its manufacturing method
JP6094680B2 (en) * 2013-08-29 2017-03-15 株式会社村田製作所 Manufacturing method of component-integrated sheet, manufacturing method of resin multilayer substrate incorporating electronic component, and resin multilayer substrate
KR101466539B1 (en) 2013-09-10 2014-11-27 후지코교 가부시기가이샤 Fishing line guide and fishing rod including the same
JP6402005B2 (en) * 2014-11-04 2018-10-10 太陽ホールディングス株式会社 Resin-containing sheet, and structure and wiring board using the same
JP7323353B2 (en) * 2019-06-28 2023-08-08 日本バイリーン株式会社 Fiber assembly, manufacturing method thereof, and composite comprising said fiber assembly
WO2023136139A1 (en) * 2022-01-17 2023-07-20 東洋紡エムシー株式会社 Nonwoven fabric containing polyphenylene ether fiber and reinforcing fiber, molded body containing polyphenylene ether and reinforcing fiber, and methods for manufacturing same

Also Published As

Publication number Publication date
JPH1037054A (en) 1998-02-10

Similar Documents

Publication Publication Date Title
JP3197213B2 (en) Printed wiring board and method of manufacturing the same
US6242078B1 (en) High density printed circuit substrate and method of fabrication
US6673190B2 (en) Lasable bond-ply materials for high density printed wiring boards
TW545092B (en) Prepreg and circuit board and method for manufacturing the same
JP2587596B2 (en) Circuit board connecting material and method for manufacturing multilayer circuit board using the same
JP2007266606A (en) Fluoropolymer insulating composition for circuit board, and circuit board including same
JP3138215B2 (en) Circuit board base material and prepreg and printed circuit board using the same
JP2000141522A (en) Laminate base and its manufacture
JP3869559B2 (en) Non-woven fabric for electrical insulation, prepreg and laminate
US20040170795A1 (en) Lasable bond-ply materials for high density printed wiring boards
TW517504B (en) Circuit board and a method of manufacturing the same
US20030045164A1 (en) Non-woven fabric material and prepreg, and circuit board using the same
JP2001185853A (en) Base board for circuit board and printed circuit board using the same
KR20020061616A (en) Nonwoven fabric for electrical insulation, prepreg and laminate
JPH08316598A (en) Printed wiring board and production thereof
JP4070193B2 (en) Wiring board and electronic component mounting structure
JP2006348225A (en) Composite, prepreg, metallic foil clad laminate and printed wiring substrate using the same, and method for manufacturing printed wiring substrate
JP3588888B2 (en) Method for manufacturing multilayer printed wiring board
JP3961252B2 (en) Non-woven fabric for electrical insulation, prepreg and laminate
JP3541766B2 (en) Prepreg and laminate
JP3883727B2 (en) Aramid fiber base insulation board and printed wiring board
JP2002348754A (en) Glass cloth, prepreg, laminated sheet, and printed wiring board
JP2000174438A (en) Manufacture of prepreg and manufacture of multilayer printed wiring board
JPH11163527A (en) Manufacture of multilayer wiring board
JP2004179011A (en) Insulating film and multilayer wiring board using this

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20091208

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091208

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20101208

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111208

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111208

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121208

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees