JP3132087B2 - Method for growing oxide single crystal - Google Patents

Method for growing oxide single crystal

Info

Publication number
JP3132087B2
JP3132087B2 JP03256236A JP25623691A JP3132087B2 JP 3132087 B2 JP3132087 B2 JP 3132087B2 JP 03256236 A JP03256236 A JP 03256236A JP 25623691 A JP25623691 A JP 25623691A JP 3132087 B2 JP3132087 B2 JP 3132087B2
Authority
JP
Japan
Prior art keywords
crucible
electrode
single crystal
metal container
melt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03256236A
Other languages
Japanese (ja)
Other versions
JPH0597573A (en
Inventor
久夫 黒沢
康平 伊藤
正純 佐藤
徹 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP03256236A priority Critical patent/JP3132087B2/en
Publication of JPH0597573A publication Critical patent/JPH0597573A/en
Application granted granted Critical
Publication of JP3132087B2 publication Critical patent/JP3132087B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、酸素中あるいは大気雰
囲気中において、金属ルツボ等の金属容器に保持された
融液から育成される酸化物単結晶の育成方法に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for growing an oxide single crystal grown from a melt held in a metal container such as a metal crucible in oxygen or an air atmosphere.

【0002】[0002]

【従来の技術】酸化物単結晶の代表的な育成方法とし
て、チョクラルスキー(CZ)法、フラックス(Flux)
法、あるいはブリッジマン法等が知られているが、磁気
バブルメモリ、マイクロ波素子、磁気光学素子などの用
途に有用とされる酸化物ガ−ネット単結晶膜の育成に
は、液相エピタキシャル(LPE)法が用いられている。
上記で述べた育成方法においては、いずれの方法におい
ても原料融液を保持する容器が必要となるが、酸化物単
結晶を育成する場合の容器の材質には貴金属を用いるこ
とが一般的である。これは上記条件が高温度下でかつ酸
化雰囲気であるため、高融点でかつ耐食性に優れる材質
が要求されるためである。
2. Description of the Related Art As typical growth methods for oxide single crystals, Czochralski (CZ) method, flux (Flux)
The method or the Bridgman method is known.However, liquid-phase epitaxial (the liquid phase epitaxial method) is used for growing oxide garnet single crystal films that are useful for applications such as magnetic bubble memories, microwave devices, and magneto-optical devices. LPE) method is used.
In the growing method described above, a container for holding the raw material melt is required in any method, but it is general to use a noble metal as the material of the container when growing an oxide single crystal. . This is because a material having a high melting point and excellent corrosion resistance is required because the above conditions are at a high temperature and an oxidizing atmosphere.

【0003】[0003]

【発明が解決しようとする課題】しかし、マイクロ波素
子、ならびに磁気光学素子を用途として酸化物ガ−ネッ
ト単結晶膜をLPE法を用いて育成した場合、容器とし
て使用したPtルツボのメルトに接触した部分が、メル
ト中に溶融することが分かった。磁気光学素子の場合、
メルト中に溶融したPtが膜中に混入すると光吸収が増
大することが知られている(「日本応用磁気学会」,V
OL.10,No.2,(1986)P.161参
照)。また、Ptは膜欠陥の一因となり(「J,Mag
n,Soc,Jpn」VOL.11,SI(1987)
P.347)、欠陥部は、光学特性が劣化することが知
られている(「日本応用磁気学会」,VOL.10,N
o.2,(1986)P.147参照)。一方、Br法
を用いてフェライト単結晶を育成した場合においても容
器としたPt−Rh合金製ルツボが溶融し、このPtが
結晶中に混入したことから育成歩留りが大きく減少し
た。したがって、Ptルツボ(あるいはPt主体の合金)
の溶融は、極めて重大な問題である。
However, when an oxide garnet single crystal film is grown by the LPE method for use with a microwave element and a magneto-optical element, it contacts the melt of the Pt crucible used as a container. The melted portion was found to melt in the melt. In the case of a magneto-optical element,
It is known that light absorption increases when Pt melted in the melt enters the film ("Japan Society of Applied Magnetics", V
OL. 10, No. 2, (1986) p. 161). Also, Pt contributes to film defects (“J, Mag”
n, Soc, Jpn "VOL. 11, SI (1987)
P. 347), it is known that the optical properties of the defective part are deteriorated (“Japan Society of Applied Magnetics”, VOL. 10, N
o. 2, (1986) p. 147). On the other hand, even when the ferrite single crystal was grown using the Br method, the Pt-Rh alloy crucible used as the container was melted, and the Pt was mixed into the crystal, so that the growth yield was greatly reduced. Therefore, Pt crucible (or Pt-based alloy)
Is a very serious problem.

【0004】[0004]

【課題を解決するための手段】本発明は、金属ルツボ等
の金属容器に充填した酸化物原料を加熱溶融した溶融液
から単結晶を固化成長させる酸化物単結晶の育成方法に
おいて、前記金属容器と異なる材質の電極を前記溶融液
に接触または浸漬し、前記金属容器と前記電極との間の
電位差から、前記金属容器と前記電極間に発生する熱起
電力に相当する電位差を差し引いた電圧を略ゼロに保つ
ことを特徴とする酸化物単結晶の育成方法である。
SUMMARY OF THE INVENTION The present invention relates to a method for growing an oxide single crystal by solidifying and growing a single crystal from a melt obtained by heating and melting an oxide material filled in a metal container such as a metal crucible. An electrode of a different material is contacted or immersed in the melt, and a voltage obtained by subtracting a potential difference corresponding to a thermoelectromotive force generated between the metal container and the electrode from a potential difference between the metal container and the electrode. This is a method for growing an oxide single crystal, which is characterized by being maintained at substantially zero.

【0005】本発明者等は、電極の材質を金属性ルツボ
と同一とし、電極を溶融液に浸漬し、該ルツボと電極間
の電位差を概略ゼロに保つことを先に提案(特願平?)し
たが、電極の材質が該ルツボと異なる場合は、ルツボと
電極間に熱起電力が発生しやすい。例えば、新JIS規
格によるRタイプの熱電対は、13.0%Rh−bal
Pt材と100%Pt材の組み合わせであるが、この熱
電対の約800℃における規準熱起電力は、約7.9m
vである。したがって、本熱電対の各々の材料を、電極
ならびにルツボ材とした場合、両者間に熱起電力が発生
しやすいことは容易に類推可能である。但し、熱電対と
して用いる場合は、接触抵抗を除去するため測温部は充
分に接触させるか、あるいは溶接するのが一般的であ
る。本発明における電極とルツボの位置関係は、電極及
びルツボの形状、あるいは結晶の種類等により種々変化
するが、接触することは好ましくない。したがって、本
発明における電極とルツボ間に発生する熱起電力は、熱
電対として構成した場合よりもはるかに小さい。しか
し、融液中の電位差があまり大きくない場合は、熱起電
力の影響は無視できない。ビスマス置換ガ−ネット膜育
成用の融液中の電位差を種々温度について測定した結果
を表1に示したが、約800℃における電位差は約2m
v程度である。
The present inventors have previously proposed that the material of the electrode be the same as that of a metallic crucible, that the electrode be immersed in a molten liquid, and that the potential difference between the crucible and the electrode be kept substantially zero (Japanese Patent Application No. Hei 10-260,075). However, when the material of the electrode is different from that of the crucible, a thermoelectromotive force is easily generated between the crucible and the electrode. For example, an R-type thermocouple according to the new JIS standard is 13.0% Rh-bal.
It is a combination of a Pt material and a 100% Pt material. The reference thermoelectromotive force at about 800 ° C. of this thermocouple is about 7.9 m.
v. Therefore, when each material of the thermocouple is an electrode and a crucible material, it can be easily analogized that a thermoelectromotive force is easily generated between the two. However, when it is used as a thermocouple, it is general that the temperature measuring section is sufficiently contacted or welded to remove contact resistance. The positional relationship between the electrode and the crucible in the present invention changes variously depending on the shape of the electrode and the crucible, the type of crystal, and the like, but it is not preferable to make contact. Therefore, the thermoelectromotive force generated between the electrode and the crucible according to the present invention is much smaller than when the thermocouple is configured as a thermocouple. However, when the potential difference in the melt is not so large, the influence of the thermoelectromotive force cannot be ignored. The results of measuring the potential difference in the melt for growing the bismuth-substituted garnet film at various temperatures are shown in Table 1. The potential difference at about 800 ° C. was about 2 m.
v.

【表1】 前述のRタイプの熱電対の800℃における熱起電力
は、約7.9mvであるため、電位差よりも起電力の方
がはるかに大きい。なお、表1に示した電位差は、融液
中に挿入した電極を測定器の正の端子に、ルツボ側を負
の端子に各々接続して測定した。
[Table 1] Since the thermoelectromotive force at 800 ° C. of the R-type thermocouple is about 7.9 mv, the electromotive force is much larger than the potential difference. The potential difference shown in Table 1 was measured by connecting the electrode inserted into the melt to the positive terminal of the measuring instrument and connecting the crucible side to the negative terminal.

【0006】以上の観点から、本発明は、前述の構成を
特徴としている。なお、本発明で実施した回路の一例を
図1に示す。
In view of the above, the present invention is characterized by the above-described configuration. FIG. 1 shows an example of a circuit implemented in the present invention.

【0007】[0007]

【実施例】以下、本発明を実施例に従い説明する。 (実施例1)磁気光学素子を用途とした原料成分とし
て、Bi23、Tb47、Gd23、Fe23、Pb
O、及びB23を総量で約500g秤量・混合し、約1
00ccのPtルツボに充填した。そのルツボを大気中
の育成炉内に設置し、約1100℃で均一化した後約7
90℃に降温保持した。その融液中に13%Rh−ba
lPt合金の電極を挿入してその電極とルツボ間の電位
差を測定しながら、その時の電位差から熱起電力を差し
引いた電位差が零になるように電圧を制御して、約36
hr保持した。その後、ルツボの溶融量を測定した結
果、約0.12gの減少であった。
The present invention will be described below with reference to examples. (Example 1) Bi 2 O 3 , Tb 4 O 7 , Gd 2 O 3 , Fe 2 O 3 , Pb
O and B 2 O 3 are weighed and mixed in a total amount of about 500 g,
Filled into a 00 cc Pt crucible. The crucible is placed in a growth furnace in the atmosphere, homogenized at about 1100 ° C.,
The temperature was kept at 90 ° C. 13% Rh-ba in the melt
While inserting the electrode of the lPt alloy and measuring the potential difference between the electrode and the crucible, the voltage is controlled so that the potential difference obtained by subtracting the thermoelectromotive force from the potential difference at that time becomes zero, and about 36
hr. Thereafter, as a result of measuring the melting amount of the crucible, it was found to be about 0.12 g.

【0008】(実施例2)磁気光学素子を用途とした原
料成分として、Bi23、Tb47、Gd23、Fe2
3、PbO、及びB23を総量で約3200g秤量・
混合し、約700ccのPtルツボに充填した。そのル
ツボを大気中の育成炉内に設置し、約1100℃で均一
化した後約790℃に降温保持した。その融液中に13
%Rh−balPt合金の電極を挿入してその電極とル
ツボ間の電位差を測定しながら、その時の電位差から熱
起電力を差し引いた電位差が零になるように電圧を制御
して、約36hr膜育成した。膜厚約490μmの膜表
面を50〜1000倍の光学顕微鏡を用いて観察した結
果、欠陥密度が約2ケ/cm2であった。
(Embodiment 2) Bi 2 O 3 , Tb 4 O 7 , Gd 2 O 3 , Fe 2
O 3 , PbO and B 2 O 3 are weighed in a total amount of about 3200 g.
The mixture was mixed and filled into a Pt crucible of about 700 cc. The crucible was placed in a growth furnace in the atmosphere, and was homogenized at about 1100 ° C., and then kept at a temperature of about 790 ° C. 13 in the melt
% Rh-balPt alloy electrode is inserted, and while measuring the potential difference between the electrode and the crucible, the voltage is controlled so that the potential difference obtained by subtracting the thermoelectromotive force from the potential difference at that time becomes zero, and the film is grown for about 36 hours. did. As a result of observing the surface of the film with a thickness of about 490 μm using an optical microscope of 50 to 1000 times, the defect density was about 2 / cm 2 .

【0009】(比較例1)磁気光学素子を用途とした原
料成分として、Bi23、Tb47、Gd23、Fe2
3、PbO、及びB23を総量で約500g秤量・混
合し、約100ccのPtルツボに充填した。そのルツ
ボを大気中の育成炉内に設置し、約1100℃で均一化
した後約790℃に降温し、約36hr保持した。その
後、ルツボの溶融量を測定した結果、約1.52gの減
少であった。
(Comparative Example 1) Bi 2 O 3 , Tb 4 O 7 , Gd 2 O 3 , Fe 2
O 3 , PbO, and B 2 O 3 were weighed and mixed in a total amount of about 500 g, and filled in a Pt crucible of about 100 cc. The crucible was placed in a growth furnace in the atmosphere, and was homogenized at about 1100 ° C., and then cooled to about 790 ° C. and maintained at about 36 hours. Thereafter, the melting amount of the crucible was measured and found to be about 1.52 g.

【0010】(比較例2)磁気光学素子を用途とした原
料成分として、Bi23、Tb47、Gd23、Fe2
3、PbO、及びB23を総量で約3200g秤量・
混合し、約700ccのPtルツボに充填した。そのル
ツボを大気中の育成炉内に設置し、約1100℃で均一
化した後約790℃で約36hr膜育成した。膜厚約4
90μmの膜表面を50〜1000倍の光学顕微鏡を用
いて観察した結果、欠陥密度が約860ケ/cm2であ
った。
(Comparative Example 2) Bi 2 O 3 , Tb 4 O 7 , Gd 2 O 3 , Fe 2
O 3 , PbO and B 2 O 3 are weighed in a total amount of about 3200 g.
The mixture was mixed and filled into a Pt crucible of about 700 cc. The crucible was set in a growth furnace in the atmosphere, and was homogenized at about 1100 ° C., and then grown at about 790 ° C. for about 36 hours. About 4 film thickness
As a result of observing the surface of the 90-μm film using a 50- to 1000-fold optical microscope, the defect density was about 860 / cm 2 .

【0011】[0011]

【発明の効果】本発明により、Ptルツボの溶融が顕著
に抑制されるため、膜中へのPt混入が減少して光吸収
が低減する、融液中の浮遊Ptが減少してPtを核とし
た膜欠陥が低減する、またルツボ寿命が伸びる、等磁気
光学特性の向上、素子歩留りの向上、更に原価低減に大
きく寄与することから実用的価値は極めて大きい。
According to the present invention, the melting of the Pt crucible is remarkably suppressed, so that the mixing of Pt into the film is reduced and the light absorption is reduced. The floating Pt in the melt is reduced and Pt is nucleated. The practical value is extremely large because it greatly contributes to the improvement of magneto-optical properties, the improvement of element yield, and the cost reduction, such as the reduction of film defects and the extension of crucible life.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の電圧制御に関わる回路の一実施例を示
す図である。
FIG. 1 is a diagram showing one embodiment of a circuit related to voltage control of the present invention.

【符号の説明】[Explanation of symbols]

1 ルツボ 2 電極 3 融液 4 オペアンプ 1 Crucible 2 Electrode 3 Melt 4 Operational amplifier

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭53−113780(JP,A) 特開 平4−132697(JP,A) (58)調査した分野(Int.Cl.7,DB名) C30B 1/00 - 35/00 JICSTファイル(JOIS)────────────────────────────────────────────────── (5) References JP-A-53-113780 (JP, A) JP-A-4-132697 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C30B 1/00-35/00 JICST file (JOIS)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】金属容器に充填した酸化物原料を加熱溶融
した溶融液から単結晶を固化成長させる酸化物単結晶の
育成方法において、前記金属容器と異なる材質の電極を
前記溶融液に接触または浸漬し、前記金属容器と前記電
極との間の電位差から、前記金属容器と前記電極間に発
生する熱起電力に相当する電位差を差し引いた電圧を略
ゼロに保つことを特徴とする酸化物単結晶の育成方法。
1. A method for growing an oxide single crystal in which a single crystal is solidified and grown from a melt obtained by heating and melting an oxide raw material filled in a metal container, wherein an electrode made of a material different from that of the metal container is brought into contact with the melt. Immersing, and keeping a voltage substantially equal to zero by subtracting a potential difference corresponding to a thermo-electromotive force generated between the metal container and the electrode from a potential difference between the metal container and the electrode. How to grow crystals.
【請求項2】前記金属容器が金属ルツボである請求項1
に記載の酸化物単結晶の育成方法。
2. The metal container according to claim 1, wherein said metal container is a metal crucible.
2. The method for growing an oxide single crystal according to item 1.
JP03256236A 1991-10-03 1991-10-03 Method for growing oxide single crystal Expired - Fee Related JP3132087B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03256236A JP3132087B2 (en) 1991-10-03 1991-10-03 Method for growing oxide single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03256236A JP3132087B2 (en) 1991-10-03 1991-10-03 Method for growing oxide single crystal

Publications (2)

Publication Number Publication Date
JPH0597573A JPH0597573A (en) 1993-04-20
JP3132087B2 true JP3132087B2 (en) 2001-02-05

Family

ID=17289829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03256236A Expired - Fee Related JP3132087B2 (en) 1991-10-03 1991-10-03 Method for growing oxide single crystal

Country Status (1)

Country Link
JP (1) JP3132087B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6849121B1 (en) * 2001-04-24 2005-02-01 The United States Of America As Represented By The Secretary Of The Air Force Growth of uniform crystals

Also Published As

Publication number Publication date
JPH0597573A (en) 1993-04-20

Similar Documents

Publication Publication Date Title
Rothwarf et al. Electrical Resistivity and X‐Ray Diffraction Study of the Beta AgCd‐AuCd System
US3723599A (en) Technique for growth of single crystal gallium garnet
JP3132087B2 (en) Method for growing oxide single crystal
Rudness et al. Growth of single crystals of incongruently melting yttrium iron garnet by flame fusion process
Hewitt et al. Technique for controlling the properties of magnetic garnet films
US4379853A (en) Magnetic device having a monocrystalline garnet substrate bearing a magnetic layer
JP3132094B2 (en) Single crystal manufacturing method and single crystal manufacturing apparatus
Elwell et al. The flux system BaO/Bi2O3/B2O3
JPH0585886A (en) Production of oxide single crystal and apparatus for producing the same
Tolksdorf Growth and properties of garnet films for storage application
US4400445A (en) Liquid phase epitaxial growth of garnet films
JPS60134404A (en) Magnetooptical material
JPH04132697A (en) Production of magneto-optical element
Doidge et al. Anomalous superconducting surface nucleation fields
Rooijmans Crystals for magnetic applications
Imai et al. Growth of potassium tantalate niobate single crystal fibers by the laser-heated pedestal growth method assisted by a crystal cooling technique
US4292119A (en) Growth of single-crystal 2PbO.Fe2 O3
JP4464177B2 (en) Magneto-optical medium and manufacturing method thereof
Bonner et al. Bubble properties of garnet films prepared from molybdate fluxes
JP3806966B2 (en) Method for producing magnetic garnet single crystal
Davies et al. The stability of the supersaturated state in isothermal fluxed melts used for magnetic garnet LPE
JPH0793212B2 (en) Oxide garnet single crystal
JPS627634A (en) Magneto-optic garnet
Kobayashi et al. Crystal growth of Mn-Zn ferrite by the traveling solvent zone melting method
Davies Controlled growth of magnetic oxide layers by liquid phase epitaxy

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees