JP3130643B2 - Surface treatment method for pitch-based carbon fiber - Google Patents

Surface treatment method for pitch-based carbon fiber

Info

Publication number
JP3130643B2
JP3130643B2 JP04129903A JP12990392A JP3130643B2 JP 3130643 B2 JP3130643 B2 JP 3130643B2 JP 04129903 A JP04129903 A JP 04129903A JP 12990392 A JP12990392 A JP 12990392A JP 3130643 B2 JP3130643 B2 JP 3130643B2
Authority
JP
Japan
Prior art keywords
carbon fiber
pitch
fiber
surface treatment
surface area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP04129903A
Other languages
Japanese (ja)
Other versions
JPH05302263A (en
Inventor
豊 荒井
邦夫 三浦
博夫 久保川
紀夫 富岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Nippon Steel Corp
Nippon Steel Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp, Nippon Steel Chemical Co Ltd filed Critical Nippon Steel Corp
Priority to JP04129903A priority Critical patent/JP3130643B2/en
Publication of JPH05302263A publication Critical patent/JPH05302263A/en
Application granted granted Critical
Publication of JP3130643B2 publication Critical patent/JP3130643B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、炭素繊維強化複合材の
製造においてマトリックス樹脂との接着性を改善するた
めの高弾性炭素繊維の表面処理方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surface treatment method for highly elastic carbon fibers for improving the adhesion to a matrix resin in the production of a carbon fiber reinforced composite material.

【0002】[0002]

【従来の技術】炭素繊維を補強繊維とする複合材料は、
軽量でかつ強度、弾性率に優れているため、スポーツ、
レジャー用品の構成部品として、あるいは宇宙航空機用
機材等として幅広い分野にわたって各種の用途開発が進
められている。
2. Description of the Related Art Composite materials using carbon fibers as reinforcing fibers are:
Because it is lightweight and has excellent strength and elastic modulus, sports,
Various applications are being developed over a wide range of fields, such as as components of leisure goods or as aircraft aircraft materials.

【0003】炭素繊維とマトリックス樹脂との接着性を
改良するために、炭素繊維の表面を酸化することが行わ
れており、その中でも炭素繊維を陽極として電解酸化処
理する方法は、反応制御が容易でかつ操作性に優れるた
めに、最も実用的な表面処理方法とされている。
[0003] In order to improve the adhesion between the carbon fiber and the matrix resin, the surface of the carbon fiber is oxidized. Among them, the method of performing electrolytic oxidation treatment using the carbon fiber as an anode makes it easy to control the reaction. It is considered to be the most practical surface treatment method because of its excellent operability.

【0004】炭素繊維の電解酸化処理方法として種々の
検討が行われてきている。例えば、米国特許4,40
1,533号は、硫酸水溶液中で特定の範囲の電流、電
圧、処理時間で、炭素繊維を陽極として電解酸化処理す
る方法を開示している。
[0004] Various studies have been made as a method for electrolytic oxidation treatment of carbon fibers. For example, US Pat.
No. 1,533 discloses a method of performing electrolytic oxidation treatment in a sulfuric acid aqueous solution at a specific range of current, voltage and treatment time using carbon fiber as an anode.

【0005】また、米国特許第4,600,572号
は、硝酸中で炭素繊維を電解酸化し、さらに不活性化処
理を行うことによって炭素繊維の強度を高め、繊維と樹
脂の接着性のよい炭素繊維を製造できることを開示して
いる。
Further, US Pat. No. 4,600,572 discloses that carbon fibers are electrolytically oxidized in nitric acid, and further subjected to an inactivation treatment to increase the strength of the carbon fibers and to improve the adhesiveness between the fibers and the resin. It discloses that carbon fibers can be produced.

【0006】炭素繊維の高性能化の要望は年々強くなっ
ており、より高強度、高弾性率のものが求められてい
る。特に弾性率が50t/mm2以上においてもコンポ
ジット性能の良好な炭素繊維が求められている。
The demand for higher performance of carbon fibers is increasing year by year, and higher strength and higher elastic modulus are required. In particular, carbon fibers having good composite performance even when the elastic modulus is 50 t / mm 2 or more are required.

【0007】これら、高弾性率化に対応して炭素繊維の
表面は不活性化の方向に進み、従来の炭素繊維の表面処
理方法では反応性が低いために、接着力の向上がもたさ
れなかったり、あるいは過度の表面処理を行わざるを得
ないために繊維の引張強度が低下するという問題があっ
た。
[0007] In response to the increase in the modulus of elasticity, the surface of the carbon fiber proceeds in the direction of inactivation, and the conventional carbon fiber surface treatment method has low reactivity, so that the adhesion is improved. However, there is a problem that the tensile strength of the fiber is reduced due to the lack of the surface treatment or the excessive surface treatment.

【0008】このため、特に高弾性炭素繊維用の表面処
理方法として、例えば特開平1―92470号公報は中
性塩電解液と炭酸アンモニウム塩あるいは無機アルカリ
電解液による2段の電解処理方法を開示している。
For this reason, as a surface treatment method particularly for highly elastic carbon fibers, for example, JP-A-1-92470 discloses a two-stage electrolytic treatment method using a neutral salt electrolyte and an ammonium carbonate or inorganic alkali electrolyte. are doing.

【0009】また、特開平2―269867号公報は多
段の非接触通電による電解酸化法を開示している。
Japanese Patent Application Laid-Open No. 2-269867 discloses an electrolytic oxidation method using a multi-stage non-contact energization.

【0010】しかしながら、ピッチ系炭素繊維でとりわ
け引張弾性率が50t/mm2以上の炭素繊維と樹脂と
の接着力を確保するには、電解酸化処理をより進める必
要があり、従来、開示されている表面処理方法では炭素
繊維の引張強度低下は避けられないか、あるいは非常に
煩雑な表面処理工程を必要とした。
However, in order to secure the adhesive force between the carbon fiber having a tensile modulus of 50 t / mm 2 or more and the resin, particularly the pitch-based carbon fiber, it is necessary to further advance the electrolytic oxidation treatment. Some surface treatment methods inevitably reduce the tensile strength of carbon fibers or require very complicated surface treatment steps.

【0011】[0011]

【発明が解決しようとする課題】本発明の目的は、かか
る従来技術の問題点を解消し、弾性率が50tf/m2
以上のピッチ系高弾性炭素繊維においても、繊維の強度
低下を生じることなく、樹脂との接着力を高めることの
できる表面処理方法を提供するものである。
SUMMARY OF THE INVENTION An object of the present invention is to solve the problems of the prior art and to provide an elastic modulus of 50 tf / m 2.
It is also an object of the present invention to provide a surface treatment method capable of increasing the adhesive force with a resin without lowering the strength of the pitch-based high-elasticity carbon fibers.

【0012】[0012]

【課題を解決するための手段】本発明は、引張弾性率5
0tf/mm2以上のピッチ系炭素繊維を電解質溶液中
にて該炭素繊維を陽極とし電解酸化表面処理を行うにあ
たって、該炭素繊維の活性表面積率を1.5%以上とし
た繊維に、炭素繊維表面積1m2あたり15〜100ク
ーロンの電気量で電解酸化表面処理を行うことにより、
炭素繊維表面におけるO/(O+C)の値を6〜11%
とすることを特徴とするピッチ系炭素繊維の表面処理を
行う方法である。
According to the present invention, a tensile modulus of elasticity of 5 is provided.
In performing an electrolytic oxidation surface treatment using a pitch-based carbon fiber of 0 tf / mm 2 or more in an electrolyte solution using the carbon fiber as an anode, a carbon fiber having an active surface area ratio of 1.5% or more, by performing electrolytic oxidation surface treatment with an electrical quantity of surface area 1 m 2 per 15 to 100 coulombs,
The value of O / (O + C) on the carbon fiber surface is 6 to 11%
This is a method for performing a surface treatment on pitch-based carbon fibers.

【0013】ピッチ系炭素繊維で引張弾性率が50t/
mm2以上のものは繊維表面が不活性であり、この繊維
を表面処理して繊維と樹脂との結合力を高めるためには
表面に酸素を導入することが不可欠であるが、接着力が
充分に高まるまで酸素を導入すると、局部的に反応が進
行し炭素繊維の強度が下がるという問題がある。
A pitch-based carbon fiber having a tensile modulus of elasticity of 50 t /
In the case of those with a diameter of 2 mm or more, the surface of the fiber is inactive, and it is indispensable to introduce oxygen into the surface to surface-treat the fiber and increase the bonding force between the fiber and the resin, but the adhesive force is sufficient. When oxygen is introduced until the temperature rises, there is a problem that the reaction progresses locally and the strength of the carbon fiber decreases.

【0014】そこで本発明者らは高弾性率でかつ表面酸
素の取り込みが容易な繊維について検討を行い、本発明
を完成するに至った。
The present inventors have studied fibers having a high modulus of elasticity and easy to take in surface oxygen, and have completed the present invention.

【0015】以下、本発明の内容を詳細に説明する。Hereinafter, the contents of the present invention will be described in detail.

【0016】本発明の炭素繊維の出発原料であるピッチ
は、コールタール、コールタールピッチ等の石炭系ピッ
チ、石炭液化ピッチ、エチレンタールピッチ、流動接触
触媒分解残査油から得られるデカントオイルピッチ等の
石油系ピッチ、あるいはナフタレン等から触媒などを用
いて作られる合成ピッチ等、各種のピッチを用いること
ができる。
The pitch which is the starting material of the carbon fiber of the present invention is coal-based pitch such as coal tar, coal tar pitch, coal liquefied pitch, ethylene tar pitch, decant oil pitch obtained from fluidized catalytic cracking residual oil, etc. Various pitches can be used, such as a petroleum pitch or a synthetic pitch made from naphthalene or the like using a catalyst or the like.

【0017】本発明の炭素繊維に使用されるメソフェー
ズピッチは、前記のピッチを従来公知の方法でメソフェ
ーズを発生させたものである。
The mesophase pitch used in the carbon fiber of the present invention is obtained by generating a mesophase from the above-mentioned pitch by a conventionally known method.

【0018】メソフェーズピッチは、紡糸した際のピッ
チ繊維の配向性が高いものが望ましく、このためメソフ
ェーズ含有量は40%以上、より好ましくは70%以上
含有するものがよい。
The mesophase pitch preferably has a high orientation of the pitch fibers when spun. Therefore, the mesophase content is preferably 40% or more, more preferably 70% or more.

【0019】また、本発明で用いるメソフェーズピッチ
は、軟化点が200〜400℃、より好ましくは250
〜350℃のものがよい。
The mesophase pitch used in the present invention has a softening point of 200 to 400 ° C., more preferably 250.
~ 350 ° C is preferred.

【0020】前記メソフェーズピッチをこれまで知られ
ている方法にて溶融紡糸を行うことによりピッチ繊維が
得られる。
By subjecting the mesophase pitch to melt spinning by a conventionally known method, a pitch fiber can be obtained.

【0021】つぎにピッチ繊維は、少なくとも酸素と二
酸化窒素を含む酸化性ガス雰囲気下でピッチの軟化点温
度以下から、酸化を開始し310℃を超える温度まで引
続き酸化を行う。
Next, the pitch fibers are oxidized in a oxidizing gas atmosphere containing at least oxygen and nitrogen dioxide from a temperature lower than the softening point of the pitch to a temperature exceeding 310 ° C. and subsequently oxidized.

【0022】このときに、得られる酸化繊維全体の元素
分析結果から得られる酸素と炭素の原子比O/Cが0.
15以上で、窒素と炭素の原子比N/Cが0.014以
上で、かつXPS(光電子分光解析装置)で測定される
繊維表面のO/Cが0.22以上で、N/Cが0.05
以上であることが重要であり、これにより得られる炭素
繊維の活性表面積を好ましい値とする。
At this time, the atomic ratio O / C of oxygen and carbon obtained from the elemental analysis results of the whole oxidized fiber obtained is 0.1.
15 or more, the atomic ratio N / C of nitrogen to carbon is 0.014 or more, the O / C of the fiber surface measured by XPS (photoelectron spectroscopy analyzer) is 0.22 or more, and the N / C is 0 or more. .05
It is important that the above is satisfied, and the active surface area of the carbon fiber obtained thereby is a preferable value.

【0023】この酸化繊維を不活性雰囲気中で炭化、黒
鉛化することにより、弾性率が50tf/mm2以上で
かつ活性表面積率が1.5%以上、好ましくは1.5〜
6.0%である炭素繊維を初めて得ることができる。
The oxidized fiber is carbonized and graphitized in an inert atmosphere to have an elastic modulus of 50 tf / mm 2 or more and an active surface area of 1.5% or more, preferably 1.5 to 1.5%.
For the first time, 6.0% of carbon fibers can be obtained.

【0024】通常、公知の方法で単に得られる炭素繊維
では活性表面積率は1%程度であり、本発明の方法には
適さない。
Usually, a carbon fiber obtained simply by a known method has an active surface area ratio of about 1%, which is not suitable for the method of the present invention.

【0025】活性表面積率を好ましい値に調整した炭素
繊維を従来公知の方法で電解質溶液中にて該炭素繊維を
陽極とし電解酸化表面処理を行う。
The carbon fiber whose active surface area ratio is adjusted to a preferable value is subjected to electrolytic oxidation surface treatment in an electrolyte solution by using the carbon fiber as an anode in a conventionally known method.

【0026】このときの電解液は特に制限されるもので
はないが、硫酸、硝酸等の酸性電解液、あるいは水酸化
ナトリウム溶液などのアルカリ電解液などいずれでもよ
い。
The electrolytic solution at this time is not particularly limited, but may be an acidic electrolytic solution such as sulfuric acid or nitric acid, or an alkaline electrolytic solution such as a sodium hydroxide solution.

【0027】炭素繊維表面積1m2あたり15〜100
クーロンの電気量、好ましくは15〜50クーロンで電
解酸化表面処理を行うことにより、XPSで測定される
繊維表面のO/(O+C)が6〜11%、好ましくは7
〜10%の繊維とすることで引張強度の低下を生じるこ
となく樹脂との接着力を高めることが可能となる。
15 to 100 per m 2 of carbon fiber surface area
By performing the electrolytic oxidation surface treatment with an electric quantity of coulomb, preferably 15 to 50 coulombs, the O / (O + C) of the fiber surface measured by XPS is 6 to 11%, preferably 7
By using 10% to 10% of the fibers, it becomes possible to increase the adhesive force with the resin without lowering the tensile strength.

【0028】なお、ここで活性表面積率とは、炭素繊維
を950℃で10-3torr以下の圧力で12時間脱ガ
スを行った後に、温度300℃、圧力5torrで酸素
ガスを24時間吸着させた際の酸素の吸着量から酸素1
分子当りの吸着面積を0.146nm2として求めた炭
素繊維1g当りの活性表面積をASAとし、炭素繊維1
g当りの表面積をSaとしたときに次式によって与えら
れる数値である。
The term "active surface area ratio" as used herein means that after degassing carbon fibers at 950 ° C. at a pressure of 10 −3 torr or less for 12 hours, oxygen gas is adsorbed at a temperature of 300 ° C. and a pressure of 5 torr for 24 hours. Oxygen 1
The active surface area per gram of carbon fiber determined assuming the adsorption area per molecule as 0.146 nm 2 is defined as ASA, and the carbon fiber 1
This is a numerical value given by the following equation when the surface area per g is Sa.

【0029】[0029]

【数1】活性表面積率=(ASA/Sa)×100%## EQU1 ## Active surface area ratio = (ASA / Sa) × 100%

【0030】なお炭素繊維の表面積Saは炭素繊維の密
度ρ、糸目付けW、単糸数Nを用いて
The surface area Sa of the carbon fiber is calculated using the density ρ of the carbon fiber, the basis weight W, and the number N of single yarns.

【0031】[0031]

【数2】 (Equation 2)

【0032】として表面積を求めた。The surface area was determined as

【0033】引張弾性率が50tf/mm2以上でかつ
活性表面積率が1.5%未満では充分な接着力を得るま
で電解酸化処理を行うと引張強度の著しい低下が生じ
る。
When the tensile modulus is 50 tf / mm 2 or more and the active surface area ratio is less than 1.5%, when the electrolytic oxidation treatment is performed until a sufficient adhesive strength is obtained, the tensile strength is remarkably reduced.

【0034】また炭素繊維表面積1m2あたり15クー
ロン未満の以下の電気量、あるいは炭素繊維表面におけ
るO/(O+C)の値が6%未満では充分な接着力が得
らない。
If the amount of electricity is less than 15 coulombs per 1 m 2 of carbon fiber surface area, or if the value of O / (O + C) on the carbon fiber surface is less than 6%, sufficient adhesive strength cannot be obtained.

【0035】逆に炭素繊維表面積1m2あたり100ク
ーロンを超える電気量、あるいは炭素繊維表面における
O/(O+C)の値が11%超では炭素繊維の引張強度
の低下が生じる。
Conversely, if the amount of electricity exceeds 100 coulombs per m 2 of carbon fiber surface area, or if the value of O / (O + C) on the carbon fiber surface exceeds 11%, the tensile strength of the carbon fiber will decrease.

【0036】[0036]

【作用】ピッチ系高弾性炭素繊維は繊維表面の黒鉛結晶
が発達し、酸化等の化学反応性は著しく低下することが
知られている。
It is known that the pitch-based highly elastic carbon fiber develops graphite crystals on the fiber surface and significantly reduces chemical reactivity such as oxidation.

【0037】一方樹脂との接着力を向上させるには、炭
素繊維表面を酸化することにより官能基を導入すること
が必要である。
On the other hand, in order to improve the adhesive strength with the resin, it is necessary to introduce a functional group by oxidizing the carbon fiber surface.

【0038】図1には引張弾性率が60tf/mm2
ピッチ系炭素繊維のXPSから求めたO/(O+C)と
樹脂との接着力を示す指標の一つである層間破壊強度
(ILSS)との関係を示した。
FIG. 1 shows the interlaminar fracture strength (ILSS) which is one of the indexes indicating the adhesive strength between O / (O + C) and the resin obtained from XPS of a pitch-based carbon fiber having a tensile modulus of 60 tf / mm 2. The relationship was shown.

【0039】図2には引張弾性率が60tf/mm2
ある炭素繊維の硫酸電解液中における炭素繊維表面積当
りの電解量とXPSから求めたO/(O+C)の関係を
示した。
FIG. 2 shows the relationship between the amount of electrolysis of carbon fiber having a tensile modulus of 60 tf / mm 2 in the sulfuric acid electrolytic solution per carbon fiber surface area and O / (O + C) obtained from XPS.

【0040】図1に示されるようにO/(O+C)の値
が6%以上でILSSの値はほぼ満足される値8kgf
/mm2が得られる。
As shown in FIG. 1, when the value of O / (O + C) is 6% or more, the value of ILSS is almost a satisfactory value of 8 kgf.
/ Mm 2 .

【0041】一方、図2で示すように本発明の方法では
同じ電解酸化量でも従来方法に比べ繊維表面のO/(O
+C)の値を高くすることができる。
On the other hand, as shown in FIG. 2, in the method of the present invention, the O / (O
+ C) can be increased.

【0042】つまり、少ない電解酸化量で充分なILS
S値を満足するO/(O+C)値を確保されることが、
本発明の主要な効果であるといえる。
That is, a sufficient amount of ILS can be obtained with a small amount of electrolytic oxidation.
The O / (O + C) value satisfying the S value is secured.
This can be said to be the main effect of the present invention.

【0043】引張弾性率が50tf/mm2以上のピッ
チ系炭素繊維で電解酸化量を増やしていくと繊維表面の
黒鉛結晶構造を破壊したり、局部的に酸化が進行したり
するために、強電解酸化量では繊維の引張強度が著しく
低下する。
When the amount of electrolytic oxidation is increased with a pitch-based carbon fiber having a tensile modulus of 50 tf / mm 2 or more, the graphite crystal structure on the fiber surface is destroyed, or oxidation proceeds locally. The amount of electrolytic oxidation significantly lowers the tensile strength of the fiber.

【0044】従来、この機構のために樹脂との接着力を
満足する表面処理を行うことにより、繊維自体の引張強
度の低下は避けられないものであった。
Conventionally, a reduction in the tensile strength of the fiber itself has been unavoidable by performing a surface treatment that satisfies the adhesive force with the resin for this mechanism.

【0045】しかしながら本発明の方法では低電解酸化
量で充分な樹脂との接着力が得られるために、図3に示
すように引張強度の低下がない状態で充分なILLS値
を得ることが可能となる。
However, in the method of the present invention, since a sufficient adhesive force with a resin can be obtained with a low electrolytic oxidation amount, a sufficient ILLS value can be obtained without a decrease in tensile strength as shown in FIG. Becomes

【0046】[0046]

【実施例】以下、さらに本発明を明確にするために、実
施例ならびに比較例を用いて説明する。
EXAMPLES The present invention will be described below with reference to Examples and Comparative Examples to further clarify the present invention.

【0047】なお、本発明において、ピッチ系炭素繊維
および原料ピッチの特性を表わすのに用いた諸物性値は
以下の定義によった。
In the present invention, various physical property values used to represent the characteristics of the pitch-based carbon fiber and the raw material pitch are defined as follows.

【0048】(1)軟化点 軟化点は、フローテスターを用いてハーゲン・ポアズイ
ユ式から算出される見掛けの粘度が20000ポイズと
なる温度である。
(1) Softening Point The softening point is the temperature at which the apparent viscosity calculated from the Hagen-Poiseuille equation using a flow tester reaches 20,000 poise.

【0049】(2)密度 密度は23℃の値であり、密度が0.01刻みとなるよ
う調整された塩化亜鉛水溶液、あるいはブロモホルム、
エタノール混合溶液を用いて、長さ1mmに切った繊維
の浮沈状態より求めた。
(2) Density The density is a value of 23 ° C., and an aqueous zinc chloride solution or a bromoform, the density of which is adjusted to 0.01 increments,
It was determined from the floating state of the fiber cut to a length of 1 mm using an ethanol mixed solution.

【0050】(3)元素分析によるO/C、N/C 繊維を長さ1mm程度に切断した後、窒素中100℃で
1hr乾燥した後、デシケータ中で保存したサンプルを
炭素、水素、窒素に関してCHNコーダーを用いて、酸
素については酸素微量定量分析装置で各元素の重量分率
を求め、これより原子比を求めた。
(3) O / C and N / C by Elemental Analysis After cutting the fiber to a length of about 1 mm, drying it in nitrogen at 100 ° C. for 1 hour, and storing the sample in a desiccator with respect to carbon, hydrogen and nitrogen. With respect to oxygen using a CHN coder, the weight fraction of each element was determined by an oxygen trace quantitative analyzer, and the atomic ratio was determined from this.

【0051】 (4)XPSによるO/C、N/C、O/(O+C) 島津製作所製ESCA750を用い、MgKα線をX線
源とし、真空度2×10-7torr以下、X線出力8k
v、30mAの条件で、繊維を一方向に揃えたサンプル
を調整し測定を行った。
(4) O / C, N / C, O / (O + C) by XPS Using ESCA750 manufactured by Shimadzu Corporation, using MgKα radiation as an X-ray source, a degree of vacuum of 2 × 10 −7 torr or less, and an X-ray output of 8 k
Under conditions of v and 30 mA, a sample in which fibers were aligned in one direction was adjusted and measured.

【0052】繊維表面の元素量はC1s、O1s、N1
sとの相対感度を1:2.9:1.5として補正したピ
ーク面積からO/C、N/C、O/(O+C)を算出し
た。
The element amounts on the fiber surface are C1s, O1s, N1
O / C, N / C, and O / (O + C) were calculated from the peak areas corrected with the relative sensitivity to s being 1: 2.9: 1.5.

【0053】(5)引張強度、引張弾性率 引張強度、引張弾性率はJIS―R―7601(198
6年)に示された方法に準じて測定した。
(5) Tensile strength and tensile elastic modulus The tensile strength and tensile elastic modulus were measured according to JIS-R-7601 (198).
6 years).

【0054】(6)活性表面積(ASA) 炭素繊維を950℃で10-3torr以下の圧力で12
時間脱ガスを行った後に、温度300℃、圧力5tor
rで酸素ガスを導入し24時間吸着させた際の酸素の吸
着量から酸素1分子当りの吸着面積を0.146nm2
として、炭素繊維1g当りの活性表面積(ASA)を求
めた。
(6) Active Surface Area (ASA) Carbon fibers are heated at 950 ° C. under a pressure of 10 −3 torr or less.
After degassing for an hour, the temperature is 300 ° C and the pressure is 5 torr.
From the amount of oxygen adsorbed when oxygen gas was introduced at r and adsorbed for 24 hours, the adsorption area per oxygen molecule was 0.146 nm 2
Was used to determine the active surface area (ASA) per 1 g of carbon fiber.

【0055】なお、酸素吸着量は日本ベル製BELSO
RP―36を用いた。
The oxygen adsorption amount was measured by BELSO manufactured by Nippon Bell.
RP-36 was used.

【0056】(7)層間剪断強度(ILSS) ASTM D2344―76に準じたショートビーム法
による。なお、剪断破壊を生じずに曲げ破壊を起こした
ものもILSS値とした。
(7) Interlaminar shear strength (ILSS) A short beam method according to ASTM D2344-76. In addition, those which caused bending fracture without shear fracture were also regarded as ILSS values.

【0057】[0057]

【実施例1〜5、比較例1】原料としてキノリン不溶分
を除去した軟化点80℃のコールタールピッチを、触媒
を用い直接水素化を行った。
EXAMPLES 1-5, COMPARATIVE EXAMPLE 1 Coal tar pitch having a softening point of 80 ° C. from which quinoline insolubles had been removed was directly hydrogenated using a catalyst as a raw material.

【0058】この水素化処理ピッチを常圧下480℃で
熱処理した後、低沸点分を除きメソフェースピッチを得
た。このピッチは軟化点が300℃、メソフエーズ含有
量が90%であった。
After the hydrogenated pitch was heat-treated at 480 ° C. under normal pressure, a mesoface pitch was obtained except for a low boiling point component. This pitch had a softening point of 300 ° C. and a mesophase content of 90%.

【0059】このピッチを用いて従来公知の方法で、キ
ャピラリー径0.14mm、ノズルホール数3000の
ノズルパックを有する紡糸機を用いて、メソフェーズピ
ッチの粘度800ポイズで糸径13μmのピッチ繊維を
得た。
A pitch fiber having a mesophase pitch viscosity of 800 poise and a yarn diameter of 13 μm is obtained by a conventionally known method using this pitch and a spinning machine having a nozzle pack having a capillary diameter of 0.14 mm and the number of nozzle holes is 3000. Was.

【0060】このピッチ繊維を二酸化窒素ガスを5体積
%、酸素ガス10体積%、水蒸気5体積%、残部が窒素
である酸化ガス雰囲気中で150℃から315℃まで1
℃/minで昇温し、そのまま315℃に30分保持し
て不融化繊維を得た。
The pitch fibers were heated from 150 ° C. to 315 ° C. in an oxidizing gas atmosphere containing 5% by volume of nitrogen dioxide gas, 10% by volume of oxygen gas, 5% by volume of steam, and the balance being nitrogen.
The temperature was raised at a rate of ° C / min, and the temperature was maintained at 315 ° C for 30 minutes to obtain infusible fibers.

【0061】この不融化繊維の元素分析からO/C=
0.192、N/C=0.015であった。またXPS
から求めた繊維表面の性状は、O/C=0.266、N
/C=0.055であった。
From the elemental analysis of the infusible fiber, the O / C =
0.192, N / C = 0.015. Also XPS
The properties of the fiber surface determined from were O / C = 0.266, N
/C=0.055.

【0062】この不融化繊維を窒素ガス雰囲気下で30
0℃から5℃/minの昇温速度で390℃まで昇温す
ることによって低温炭化を行い、その後さらに窒素雰囲
気下で昇温速度20℃/minで900℃まで昇温し9
00℃に15分保持して予備炭化繊維を得た。
The infusibilized fiber was placed in a nitrogen gas atmosphere for 30 minutes.
Low-temperature carbonization is performed by raising the temperature from 0 ° C. to 390 ° C. at a rate of 5 ° C./min, and then further raising the temperature to 900 ° C. at a rate of 20 ° C./min in a nitrogen atmosphere.
It was kept at 00 ° C. for 15 minutes to obtain a preliminary carbonized fiber.

【0063】この予備炭化繊維をアルゴンガス雰囲気中
で昇温し、そのまま2300℃に15分保持して炭素繊
維を得た。
The preliminary carbonized fiber was heated in an argon gas atmosphere, and kept at 2300 ° C. for 15 minutes to obtain a carbon fiber.

【0064】得られた炭素繊維の弾性率は60tf/m
2、引張強度が樹脂含浸ストランド法で370kg/
mm2、単糸法で352kgf/mm2であった。
The elastic modulus of the obtained carbon fiber is 60 tf / m
m 2 , tensile strength of 370 kg /
mm 2 and 352 kgf / mm 2 by the single yarn method.

【0065】炭素繊維の密度が2.12g/cm3、糸
目付けは0.450g/m、単糸数3000本であり、
表面積Saを算出したところ0.1987m2/gであ
った。
The density of the carbon fiber was 2.12 g / cm 3 , the basis weight was 0.450 g / m, and the number of single yarns was 3000.
The calculated surface area Sa was 0.1987 m 2 / g.

【0066】また、活性表面積ASAは0.0044m
2/gであり、活性表面積率は2.2%であった(比較
例1)。
The active surface area ASA is 0.0044 m
2 / g, and the active surface area ratio was 2.2% (Comparative Example 1).

【0067】この炭素繊維を濃度5%の硫酸水溶液を満
たした電解処理槽を糸速1m/minで連続的に走行さ
せるとともに該処理槽の直前に配置した金属製ローラー
を介して該炭素繊維に陽電圧を印加し、処理液中に配置
した白金製の陰極との間に電流を流し、第1表に示す電
解酸化量で処理した(実施例1〜5)。
The carbon fiber was continuously run at a yarn speed of 1 m / min through an electrolytic treatment tank filled with a 5% sulfuric acid aqueous solution, and was passed through a metal roller disposed immediately before the treatment tank. A positive voltage was applied, a current was passed between the cathode and a platinum cathode disposed in the treatment liquid, and treatment was performed with the electrolytic oxidation amount shown in Table 1 (Examples 1 to 5).

【0068】得られた炭素繊維について、XPSによる
O/(O+C)の測定、樹脂含浸ストランド法および単
糸法による引張強度の測定、およびILSSの測定を行
った。結果を第1表に示す。
With respect to the obtained carbon fiber, measurement of O / (O + C) by XPS, measurement of tensile strength by a resin impregnated strand method and a single yarn method, and measurement of ILSS were performed. The results are shown in Table 1.

【0069】[0069]

【比較例2〜6】実施例で得られたピッチ繊維を二酸化
窒素ガスを5体積%、酸素ガス10体積%、残部が窒素
である酸化ガス雰囲気中で150℃から300℃まで1
℃/minで昇温し、そのまま300℃に30分保持し
て不融化繊維を得た。
COMPARATIVE EXAMPLES 2-6 The pitch fibers obtained in the examples were heated at 150 ° C. to 300 ° C. in an oxidizing gas atmosphere containing 5% by volume of nitrogen dioxide gas, 10% by volume of oxygen gas, and the balance being nitrogen.
The temperature was raised at a rate of 300C / min, and the temperature was maintained at 300C for 30 minutes to obtain an infusible fiber.

【0070】この不融化繊維の元素分析からO/C=
0.12、N/C=0.013であった。
From the elemental analysis of the infusible fiber, the O / C =
0.12, N / C = 0.013.

【0071】またXPSから求めた繊維表面の性状はO
/C=0.200、N/C=0.045であった。
The properties of the fiber surface determined by XPS were O
/C=0.200 and N / C = 0.045.

【0072】この不融化繊維を窒素ガス雰囲気下で30
0℃から5℃/minの昇温速度で390℃まで昇温す
ることによって低温炭化を行いその後、さらに窒素雰囲
気下で昇温速度20℃/minで900℃まで昇温し9
00℃に15分保持して予備炭化繊維を得た。
This infusibilized fiber was treated under nitrogen gas atmosphere for 30 minutes.
Low-temperature carbonization is performed by raising the temperature from 0 ° C. to 390 ° C. at a rate of 5 ° C./min, and then further raising the temperature to 900 ° C. at a rate of 20 ° C./min in a nitrogen atmosphere.
It was kept at 00 ° C. for 15 minutes to obtain a preliminary carbonized fiber.

【0073】この予備炭化繊維をアルゴンガス雰囲気中
で昇温し、そのまま2300℃に15分保持して炭素繊
維を得た。
The preliminary carbonized fiber was heated in an argon gas atmosphere and kept at 2300 ° C. for 15 minutes to obtain a carbon fiber.

【0074】得られた炭素繊維の弾性率は60tf/m
2、引張強度が樹脂含浸ストランド法で360kg/
mm2、単糸法で345kgf/mm2であった。
The elastic modulus of the obtained carbon fiber is 60 tf / m
m 2 , tensile strength is 360 kg /
mm 2 and 345 kgf / mm 2 by the single yarn method.

【0075】炭素繊維の密度が2.12g/cm3、糸
目付けは0.450g/m、単糸数3000本であり、
表面積Saを算出したところ0.1987m2/gであ
った。
The density of the carbon fiber was 2.12 g / cm 3 , the basis weight was 0.450 g / m, and the number of single yarns was 3000.
The calculated surface area Sa was 0.1987 m 2 / g.

【0076】また、活性表面積ASAは0.0020m
2/gであり、活性表面積率は1.0%であった。この
繊維を実施例と同様に電解酸化処理を行った結果を第1
表に示す。
The active surface area ASA is 0.0020 m
2 / g, and the active surface area ratio was 1.0%. The result of electrolytic oxidation treatment of this fiber in the same manner as in the example
It is shown in the table.

【0077】[0077]

【表1】 [Table 1]

【0078】[0078]

【発明の効果】本発明によれば引張弾性率が50tf/
mm2以上のピッチ系炭素繊維においても低電解酸化量
で充分な樹脂との接着力が得られるために、引張強度の
低下がない状態で表面処理を行なうことが可能となり
る。これにより、高弾性率で高強度な複合材料を製造す
ることができる。
According to the present invention, the tensile modulus of elasticity is 50 tf /
Even with a pitch-based carbon fiber of mm 2 or more, a sufficient amount of adhesive force with a resin can be obtained with a low electrolytic oxidation amount, so that surface treatment can be performed without a decrease in tensile strength. This makes it possible to produce a high-modulus, high-strength composite material.

【図面の簡単な説明】[Brief description of the drawings]

【図1】炭素繊維のXPSから求められたO/(O+
C)と層間破壊強度ILLS値との関係を示した図であ
る。
FIG. 1 shows O / (O +) determined from XPS of carbon fiber.
FIG. 4 is a diagram showing a relationship between C) and an interlayer breakdown strength ILLS value.

【図2】炭素繊維1m2あたりの電解酸化量(クーロ
ン)と炭素繊維のXPSから求められたO/(O+C)
との関係を示した図である。
FIG. 2 O / (O + C) obtained from the amount of electrolytic oxidation (coulomb) per 1 m 2 of carbon fiber and XPS of carbon fiber
FIG.

【図3】ILLS値と炭素繊維の単糸引張強度を示した
図である。
FIG. 3 is a diagram showing an ILLS value and a tensile strength of a single fiber of carbon fiber.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 久保川 博夫 川崎市中原区井田1618番地 新日本製鐵 株式会社 先端技術研究所内 (72)発明者 富岡 紀夫 川崎市中原区井田1618番地 新日本製鐵 株式会社 先端技術研究所内 (56)参考文献 特開 平2−269867(JP,A) 特開 平4−57973(JP,A) 特開 昭63−292364(JP,A) 特開 平1−201524(JP,A) (58)調査した分野(Int.Cl.7,DB名) D06M 10/00 ──────────────────────────────────────────────────の Continuing from the front page (72) Inventor Hiroo Kubogawa 1618 Ida, Nakahara-ku, Kawasaki City Nippon Steel Corporation Advanced Technology Laboratory (72) Inventor Norio Tomioka 1618 Ida, Nakahara-ku, Kawasaki Nippon Steel Corporation (56) References JP-A-2-269867 (JP, A) JP-A-4-57973 (JP, A) JP-A-63-292364 (JP, A) JP-A-1-201524 ( JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) D06M 10/00

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 引張弾性率50tf/mm2 以上のピッ
チ系炭素繊維を、電解質溶液中にて該炭素繊維を陽極と
し電解酸化表面処理を行うにあたって、該炭素繊維の活
性表面積率を1.5%以上とした繊維に、炭素繊維表面
積1m2あたり15〜100クーロンの電気量で電解酸
化表面処理を行うことにより、炭素繊維表面におけるO
/(O+C)の値を6〜11%とすることを特徴とする
ピッチ系炭素繊維の表面処理方法。
1. A tensile modulus of elasticity of 50 tf / mmTwo More than
Carbon fiber in an electrolyte solution and the carbon fiber as an anode.
In performing electrolytic oxidation surface treatment, the activity of the carbon fiber
Carbon fiber surface to fibers with a surface area ratio of 1.5% or more
Product 1mTwoElectrolytic acid with electricity amount of 15-100 coulombs per
By performing the surface treatment, the O 2
/ (O + C) is 6-11%.
Surface treatment method for pitch-based carbon fiber.
JP04129903A 1992-04-24 1992-04-24 Surface treatment method for pitch-based carbon fiber Expired - Lifetime JP3130643B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04129903A JP3130643B2 (en) 1992-04-24 1992-04-24 Surface treatment method for pitch-based carbon fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04129903A JP3130643B2 (en) 1992-04-24 1992-04-24 Surface treatment method for pitch-based carbon fiber

Publications (2)

Publication Number Publication Date
JPH05302263A JPH05302263A (en) 1993-11-16
JP3130643B2 true JP3130643B2 (en) 2001-01-31

Family

ID=15021242

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04129903A Expired - Lifetime JP3130643B2 (en) 1992-04-24 1992-04-24 Surface treatment method for pitch-based carbon fiber

Country Status (1)

Country Link
JP (1) JP3130643B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104928805A (en) * 2015-06-02 2015-09-23 中复神鹰碳纤维有限责任公司 High-interfacial-performance carbon fiber with smooth surface and preparation process of high-interfacial-performance carbon fiber
JP6948490B1 (en) * 2020-03-03 2021-10-13 帝人株式会社 Pitch-based ultrafine carbon fibers and pitch-based ultrafine carbon fiber dispersions
TWI767796B (en) * 2021-07-22 2022-06-11 臺灣塑膠工業股份有限公司 Manufacturing method of carbon fiber and carbon fiber composite bottle

Also Published As

Publication number Publication date
JPH05302263A (en) 1993-11-16

Similar Documents

Publication Publication Date Title
US3671411A (en) Treatment of carbon or graphite fibers and yarns for use in fiber reinforced composites
EP0295635A2 (en) A preform wire for a carbon fiber reinforced aluminum composite material and a method for manufacturing the same
US4839006A (en) Surface treatment process for carbon fibers
JP3130643B2 (en) Surface treatment method for pitch-based carbon fiber
US3972984A (en) Process for the preparation of carbon fiber
US4975263A (en) Process for producing mesophase pitch-based carbon fibers
JP2615268B2 (en) Carbon yarn and method for producing the same
US4385043A (en) Method of carbonizing polyacrylonitrile fibers
KR910008192A (en) High-strength high-strength pitch carbon fiber and its manufacturing method
US4603157A (en) Intermediate for composite material
JP4726102B2 (en) Carbon fiber and method for producing the same
JPH0314624A (en) Production of carbon yarn
JP2546809B2 (en) Carbon fiber composite material
JPH0665858A (en) Production of surface-modified carbon fiber
JPH0813255A (en) Carbon fiber having ultra-high modulus of elasticity and high strength and its production
JPS60252718A (en) Intermediate of high-performance composite material
JP2961274B2 (en) High modulus pitch-based carbon fiber and method for producing the same
EP0141978B1 (en) Method of making silicon carbide fibres and fibrous products
JP2930166B2 (en) Carbon fiber production method
JPH0116927B2 (en)
JP3125062B2 (en) Carbon fiber production method
JP5621253B2 (en) Carbon fiber bundle and method for producing the same
JPS63145421A (en) Infusiblizing method of pitch based fiber
JPH0335406B2 (en)
JPH0860447A (en) Production of pitch-based carbon yarn

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20001107

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071117

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081117

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091117

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091117

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101117

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111117

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121117

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121117

Year of fee payment: 12