JP3130619B2 - Optical element molding method - Google Patents

Optical element molding method

Info

Publication number
JP3130619B2
JP3130619B2 JP03352274A JP35227491A JP3130619B2 JP 3130619 B2 JP3130619 B2 JP 3130619B2 JP 03352274 A JP03352274 A JP 03352274A JP 35227491 A JP35227491 A JP 35227491A JP 3130619 B2 JP3130619 B2 JP 3130619B2
Authority
JP
Japan
Prior art keywords
curvature
glass material
shape
radius
molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03352274A
Other languages
Japanese (ja)
Other versions
JPH05163030A (en
Inventor
正 西口
茂也 菅田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optic Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optic Co Ltd filed Critical Olympus Optic Co Ltd
Priority to JP03352274A priority Critical patent/JP3130619B2/en
Publication of JPH05163030A publication Critical patent/JPH05163030A/en
Application granted granted Critical
Publication of JP3130619B2 publication Critical patent/JP3130619B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/06Construction of plunger or mould
    • C03B11/08Construction of plunger or mould for making solid articles, e.g. lenses

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、光学素子の成形方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming an optical element.

【0002】[0002]

【従来の技術】既知のように、光学素子の成形方法とし
て、ガラス素材を成形可能な状態に加熱軟化し、この加
熱軟化されたガラス素材を上下成形型間に搬入して押圧
成形する方法が知られている。
2. Description of the Related Art As a known method of forming an optical element, a method is known in which a glass material is heated and softened so as to be moldable, and the heated and softened glass material is carried between upper and lower molds and pressed and formed. Are known.

【0003】また、かかる成形方法として先に本出願人
が提案した特開平2−51432号公報記載の発明があ
る。当該発明は、加熱軟化処理されたガラス素材が自重
により大きく変形するという点に着目し、押圧成形直前
のガラス素材の形状が所望のレンズ形状に対して近似し
た形状となるように、ガラス素材の形状を概略寸法に設
定し、その設定値が所望の形状に対してどの位の誤差か
を実測することによって、その誤差分を概略寸法にフィ
ードバックし、ガラス素材の近似寸法を決定するという
ものである。
Further, as such a molding method, there is an invention described in Japanese Patent Application Laid-Open No. 2-51432 previously proposed by the present applicant. The present invention focuses on the fact that the glass material subjected to the heat softening is greatly deformed by its own weight, and the shape of the glass material immediately before press molding becomes a shape approximate to a desired lens shape. By setting the shape to approximate dimensions and actually measuring how much the set value is relative to the desired shape, the error is fed back to the approximate dimensions to determine the approximate dimensions of the glass material. is there.

【0004】上記方法によれば、押圧成形直前のガラス
素材の形状を、ガラス素材の自重を考慮した形状に近似
させたので、成形条件の負荷の低減化ができ、良好な形
状の成形品の製出が図れる。
According to the above method, the shape of the glass material immediately before the pressing is approximated to the shape in consideration of the own weight of the glass material, so that the load of the molding conditions can be reduced, and a molded product having a good shape can be obtained. Production can be achieved.

【0005】[0005]

【発明が解決しようとする課題】しかるに、前記特開平
2−51432号公報記載の発明においては、加熱軟化
後の形状が所望の光学素子に対して近似した形状となる
ように、実験的に自重量を考慮した寸法に近似させては
いたが、曲率面の中心部とその外周面で自重によるうね
り変形を起こすことは考慮されていなかった。
However, in the invention described in Japanese Patent Application Laid-Open No. 2-51432, the shape after heating and softening is experimentally set to be close to the desired optical element. Although the dimensions were approximated in consideration of the weight, no consideration was given to the occurrence of undulation deformation due to the weight of the center portion of the curvature surface and the outer peripheral surface thereof.

【0006】従って、押圧成形直前のガラス素材形状が
レンズの完成品に対してはずれた寸法、すなわち近似レ
ベルが低い形状となってしまうという問題点があった。
そのため、所望する良好なレンズ完成品を得ようとする
と成形型に高負荷がかかってしまい、寿命の低下の原因
となっていた。
Accordingly, there has been a problem that the glass material shape immediately before the press molding is out of the dimension of the finished lens, that is, a shape having a low approximation level.
For this reason, a high load is applied to the molding die in order to obtain a desired good finished lens, which causes a reduction in life.

【0007】因って、本発明は上記従来技術の問題点に
鑑みてなされたもので、成形型に搬送中またはそれ以前
に、加熱軟化されたガラス素材の自重によりガラス素材
がうねり変形することを考慮し、押圧成形直前に所望す
るレンズ完成品と同レベルの近似した形状となるよう
に、うねり変形を見込んだ形状に近似しようとするもの
で、その目的とするところは成形型の負荷の低減および
寿命の低下を防止するとともに、良好なレンズ完成品を
製出しうる光学素子の成形方法を提供することにある。
Therefore, the present invention has been made in view of the above-mentioned problems of the prior art, and the glass material swells and deforms due to the weight of the heat-softened glass material during or before transport to the forming die. In consideration of the above, it is intended to approximate the shape that allows for undulation deformation so that the shape will be the same level as the desired finished lens product immediately before press molding, and the purpose is to reduce the load on the mold. It is an object of the present invention to provide a method of forming an optical element which can prevent the reduction and the reduction of the life and can produce a good finished lens.

【0008】[0008]

【課題を解決するための手段および作用】本発明は、加
熱軟化後の形状が所望の光学素子形状に対して近似形状
となる様に形成したガラス素材を押圧成形する光学素子
の成形方法において、加熱軟化後のガラス素材の面形状
を第1の曲率面とその外周の第2の曲率面との2曲面形
状に形成するとともに、一方の面のそれぞれの曲率面の
曲率半径が第1の曲率面>第2の曲率面とし、他方の面
のそれぞれの曲率面の曲率半径が第1の曲率面<第2の
曲率面となる様に形成したガラス素材を用いて成形する
方法である。
SUMMARY OF THE INVENTION The present invention relates to a method for forming an optical element by pressing a glass material formed so that the shape after heating and softening is approximate to the desired optical element shape. The surface shape of the glass material after the heat softening is formed into a two-curved surface shape of a first curvature surface and a second curvature surface on the outer periphery thereof, and the curvature radius of each curvature surface of one surface is set to the first curvature. This is a method of molding using a glass material formed such that the surface> the second curvature surface and the radius of curvature of each curvature surface of the other surface satisfies the first curvature surface <the second curvature surface.

【0009】また、前記第1の曲率面と第2の曲率面と
の境に形成される変曲線が加熱軟化されたガラス素材外
径の略1/4であるガラス素材を用いる方法である。
[0009] Further, there is provided a method of using a glass material in which the inflection curve formed at the boundary between the first curvature surface and the second curvature surface is approximately 1/4 of the outer diameter of the heat-softened glass material.

【0010】本発明では、押圧成形直前のガラス素材の
形状を所望の完成品と同レベルの近似した形状にしてか
ら押圧成形しようとするものである。
In the present invention, the shape of the glass material immediately before the pressing is formed into a shape similar to that of the desired finished product and then the pressing is performed.

【0011】[0011]

【実施例】以下、本発明に係る光学素子の成形方法の実
施例について図面を参照しながら詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the method for forming an optical element according to the present invention will be described below in detail with reference to the drawings.

【0012】[0012]

【実施例1】図1〜図8は本実施例を示し、図1は装置
の概略構成図、図2はグラフ、図3はガラス素材の側面
図、図4はグラフ、図5は干渉縞、図6はPV値のグラ
フ、図7は干渉縞、図8はPV値のグラフである。
1 to 8 show this embodiment, FIG. 1 is a schematic diagram of the apparatus, FIG. 2 is a graph, FIG. 3 is a side view of a glass material, FIG. 4 is a graph, and FIG. 6 is a graph of PV values, FIG. 7 is a graph of interference fringes, and FIG. 8 is a graph of PV values.

【0013】1は本実施例で用いる成形装置である。2
で示すのは被成形体であるガラス素材で、本実施例にお
いては一面側2aが球面、他面側2bが非球面である両
凸レンズを成形する場合のガラス素材を示している。ガ
ラス素材2は搬送治具3,搬送アーム4を介して搬送自
在の構成となっている。5,6で示すのは、所定の成形
面5a,6aを有する一対の成形型で、この一対の成形
型5,6の前方位置にはヒータ7を有する加熱炉8が配
備されている。
Reference numeral 1 denotes a molding apparatus used in this embodiment. 2
Denotes a glass material as a molded object. In this embodiment, a glass material for forming a biconvex lens having a spherical surface on one surface 2a and an aspheric surface on the other surface 2b is shown. The glass material 2 is configured to be able to be freely transferred via the transfer jig 3 and the transfer arm 4. Reference numerals 5 and 6 denote a pair of molding dies having predetermined molding surfaces 5a and 6a, and a heating furnace 8 having a heater 7 is provided in front of the pair of molding dies 5 and 6.

【0014】以上の構成から成る成形装置1を用いて、
本実施例では硝種BaSF2を用い、球面側曲率半径R
=38mm,非球面側近似球面曲率半径R=29mm,
有効口径(ED)=14mmの両凸レンズを成形した。
本実施例においては、まず押圧成形に最も適した形状、
すなわち所望の光学素子形状にガラス素材2を近似させ
るため、ガラス素材2を両凸2段R面形状に加工形成す
るための工程について説明する。
Using the molding apparatus 1 having the above configuration,
In this embodiment, the glass type BaSF2 is used, and the spherical surface side radius of curvature R
= 38 mm, aspherical side approximate spherical curvature radius R = 29 mm,
A biconvex lens having an effective aperture (ED) of 14 mm was molded.
In this embodiment, first, the most suitable shape for press molding,
That is, a process for processing and forming the glass material 2 into a biconvex two-step R surface shape in order to approximate the glass material 2 to a desired optical element shape will be described.

【0015】研削加工にて一面側の曲率半径R=38m
m,他面側の曲率半径R=29mm,外径寸法φ=1
6.5mmの両凸レンズ(両面共球面)を研削加工す
る。次に、この両凸レンズよりなるガラス素材2を、前
記他面側を上面にした状態で搬送治具3上に載置し、こ
のガラス素材2を載置した搬送治具3を搬送アーム4に
て支持して加熱装置8内に搬送する。加熱装置8内の温
度は730℃に設定してある。加熱装置8内に搬入した
ガラス素材2を2分間加熱し、その後加熱装置8から取
り出して冷却する。そして、冷却後のガラス素材2を微
小形状測定機にて形状測定する。このときの測定結果を
図2に示す。
The radius of curvature R on one side by grinding is R = 38 m
m, radius of curvature of the other surface R = 29 mm, outer diameter φ = 1
A 6.5 mm biconvex lens (both surfaces are spherical) is ground. Next, the glass material 2 made of the biconvex lens is placed on the transport jig 3 with the other surface side facing upward, and the transport jig 3 on which the glass material 2 is placed is placed on the transport arm 4. And transported into the heating device 8. The temperature in the heating device 8 is set to 730 ° C. The glass material 2 carried into the heating device 8 is heated for 2 minutes, and then taken out of the heating device 8 and cooled. Then, the shape of the cooled glass material 2 is measured by a minute shape measuring machine. The measurement result at this time is shown in FIG.

【0016】図2のグラフは、横軸に中心からのレンズ
径方向の位置を、縦軸にレンズ設計値に対するズレ量を
取ったもので、一面側(曲率半径38mm側)のグラフ
を実線にて、他面側(曲率半径29mm側)のグラフを
破線にて示してある。図2のグラフから判断できるよう
に、ガラス素材2は加熱,軟化処理により一面側は中心
10μm,外周20μm程度の形状変化を生じ、また、
他面側は中心20μm,外周40μm程度の形状変化が
生じている。本実施例においては、他面側を上面にして
加熱,軟化処理したので一面側は曲率半径の小さくなる
方向に、他面側は曲率半径の大きくなる方向にズレを生
じることとなる。
In the graph of FIG. 2, the horizontal axis shows the position in the lens radial direction from the center, and the vertical axis shows the amount of deviation from the lens design value. The graph on one side (the radius of curvature of 38 mm) is shown by a solid line. The graph on the other surface side (curvature radius 29 mm side) is shown by a broken line. As can be determined from the graph of FIG. 2, the glass material 2 undergoes a shape change of about 10 μm in the center and about 20 μm in the outer circumference on one side due to heating and softening treatment.
On the other surface side, a shape change of about 20 μm in the center and about 40 μm in the outer circumference is generated. In this embodiment, since the heating and softening treatment is performed with the other surface side as the upper surface, the one surface side shifts in the direction of decreasing the radius of curvature, and the other surface side shifts in the direction of increasing the radius of curvature.

【0017】以上の測定結果から加熱軟化処理時におけ
るガラス素材2の形状変化(レンズ設計値とのズレ量)
が判るのでこのズレ量をガラス素材2の形状にフィード
バックしてガラス素材2を加工する。すなわち、図2の
グラフから図3に示す様に、ガラス素材2を研削加工す
る際、一面側は、曲率半径R=38mmのレンズ設計に
対して中心10μm,外周20μmの形状変化を見込
み、中心から外径DのD/4で変曲線をもつ曲率半径R
1 =37mmの第1の曲率面と、該第1の曲率面の外周
面が曲率半径R2 =40mmの第2の曲率面との2曲面
形状となる様に設定して加工する。また、他面側は、曲
率半径R=29mmのレンズ設計近似球面に対して中心
20μm,外周40μmの形状変化を見込み、同様の変
曲線にて中心曲率半径R1 =27mmの第1の曲率面
と、その外周面が曲率半径R2 =25mmの第2の曲率
面との2曲面形状となる様に設定して加工する。外径寸
法φはφ=16.5mmに設定する。
From the above measurement results, a change in the shape of the glass material 2 during the heat softening treatment (the amount of deviation from the lens design value).
Therefore, the deviation amount is fed back to the shape of the glass material 2 to process the glass material 2. That is, as shown in FIG. 3 from the graph of FIG. 2, when the glass material 2 is ground, a shape change of 10 μm at the center and 20 μm at the outer periphery is expected on one surface side with respect to the lens design having a radius of curvature R = 38 mm. Radius of curvature R having an inflection curve at D / 4 of outer diameter D from
The processing is performed by setting the first curvature surface of 1 = 37 mm and the outer peripheral surface of the first curvature surface to have a two-curved surface shape of a second curvature surface having a radius of curvature R 2 = 40 mm. On the other surface side, a shape change of 20 μm in center and 40 μm in outer circumference is expected with respect to a lens design approximation spherical surface having a radius of curvature R = 29 mm, and a first curvature surface having a center radius of curvature R 1 = 27 mm by a similar curve. And the outer peripheral surface is set so as to have a two-curved surface shape including a second curvature surface having a curvature radius R 2 = 25 mm. The outer diameter dimension φ is set to φ = 16.5 mm.

【0018】上記のように、加熱軟化時の形状変化を見
込んで2曲面形状となるように研削加工したガラス素材
(両凸レンズ)2を他面側を上にした状態で搬送治具3
上に載せ、搬送アーム4を介して加熱装置8内に搬送す
る。加熱装置8は730℃に設定してあり、この加熱装
置8内にガラス素材2を2分間加熱する。その後、加熱
装置8から取り出して冷却する。そして冷却後のガラス
素材2を微小形状測定機にて形状測定する。このときの
測定結果を図4に示す。
As described above, the glass jig (biconvex lens) 2 which has been ground so as to have a two-curved surface shape in anticipation of the shape change during heating and softening, has the other surface side up, and the conveying jig 3
It is placed on the upper side and transported into the heating device 8 via the transport arm 4. The heating device 8 is set at 730 ° C., and heats the glass material 2 in the heating device 8 for 2 minutes. Then, it is taken out of the heating device 8 and cooled. Then, the shape of the cooled glass material 2 is measured by a minute shape measuring device. FIG. 4 shows the measurement results at this time.

【0019】図4における横軸と縦軸並びにグラフ図は
前記図2と同様に設定した。図4からも明らかなよう
に、加熱軟化処理によるレンズ設計値に対するズレ量
は、一面側は1μm程度であり、他面側は0.7μm程
度である。従って、形状変化を見込んで2曲面形状とな
るように加工形成したガラス素材2を加熱軟化した際に
は、ほぼレンズ設計値曲率半径Rに近似した形状のガラ
ス素材2となる。本実施例では、上記レンズ設計値曲率
半径に近似した2曲面形状のガラス素材2を前述の条件
下にて加熱軟化した後、転移点温度付近に加熱されてい
る一対の上下成形型5,6間に搬入して押圧成形するも
のである。
The horizontal and vertical axes and the graph in FIG. 4 are set in the same manner as in FIG. As is clear from FIG. 4, the deviation from the lens design value due to the heat softening treatment is about 1 μm on one side and about 0.7 μm on the other side. Therefore, when the glass material 2 processed and formed into a two-curved surface shape in consideration of the shape change is heated and softened, the glass material 2 has a shape substantially similar to the lens design value radius of curvature R. In this embodiment, a pair of upper and lower molding dies 5, 6 heated near the transition point temperature after heating and softening a glass material 2 having a two-curved surface shape approximate to the lens design value radius of curvature under the above-described conditions. It is carried in and press-molded.

【0020】上記本実施例の方法により押圧成形した両
凸レンズにおける球面側の干渉縞と、非球面形状測定機
により測定した非球面側の測定結果をそれぞれ図5およ
び図6に示す。非球面側のPV(形状からのズレの最大
値)はPV=0.09μmであった。ここで、本実施例
の効果を明確にするために、自重によるうねり変形を考
慮しない前記従来技術の方法(特開平2−51432号
公報記載の発明)にて同寸法のガラス素材を得たとこ
ろ、PV値はPV=0.206μmであった。図7およ
び図8に示す如く、従来方法ではうねり変形が出てしま
い、またPV値も大きい。
FIGS. 5 and 6 show the interference fringes on the spherical surface side and the measurement results on the aspheric surface side of the biconvex lens pressed and formed by the method of the present embodiment, respectively, as measured by an aspherical shape measuring instrument. The PV on the aspherical surface side (the maximum value of deviation from the shape) was PV = 0.09 μm. Here, in order to clarify the effect of the present embodiment, a glass material having the same dimensions was obtained by the method of the prior art (invention described in Japanese Patent Application Laid-Open No. 2-51432) without considering the undulation deformation due to its own weight. And the PV value was PV = 0.206 μm. As shown in FIGS. 7 and 8, the conventional method causes undulation and has a large PV value.

【0021】以上の比較からも明らかなように、同条件
下での押圧成形においては本実施例の方法による成形品
の方がより良好な転写性が得られるものである。また、
本実施例の方法によれば、成形条件がより低条件とな
る。従って、従来30000ショットの型寿命を500
00ショットに延命化が図れ、プレス時間,加熱時間の
短縮による成形サイクルタイムの短時間化が図れる等の
効果が得られる。
As is apparent from the above comparison, in the press molding under the same conditions, the molded article obtained by the method of the present embodiment can obtain better transferability. Also,
According to the method of this embodiment, the molding conditions are lower. Therefore, the conventional mold life of 30,000 shots is 500
The effect of extending the life to 00 shots and shortening the molding cycle time by shortening the press time and heating time is obtained.

【0022】尚、ガラス素材2を得る手段については、
研削,研磨加工による場合に限られず、予めガラス材料
を押圧成形することによっても得られるものである。
The means for obtaining the glass material 2 is as follows.
It is not limited to the case of grinding and polishing, but can also be obtained by pre-pressing a glass material.

【0023】[0023]

【実施例2】図9〜図14は本実施例を示し、図9およ
び図10はグラフ、図11は干渉縞、図12はPV値の
グラフ、図13は干渉縞、図14はPV値のグラフであ
る。本実施例は、硝材としてBaSF08を用いたもの
で、ガラス素材におけるその他の条件は前記実施例1と
同一である。
Embodiment 2 FIGS. 9 to 14 show this embodiment. FIGS. 9 and 10 are graphs, FIG. 11 is interference fringes, FIG. 12 is a graph of PV values, FIG. 13 is interference fringes, and FIG. It is a graph of. In the present embodiment, BaSF08 is used as the glass material, and other conditions in the glass material are the same as those in the first embodiment.

【0024】本実施例においても、前記実施例1と同様
に、まず一面側の曲率半径R=38mm,他面側の曲率
半径R=29mm,外径寸法φ=16.5mmの両凸レ
ンズを研削加工し、この両凸レンズを685℃に設定さ
れている加熱装置8内に搬入し、2分30秒間加熱す
る。その後、加熱装置8より搬出して冷却し、冷却後の
両凸レンズを微小形状測定機により形状測定する。この
測定結果を図9に示す。
In this embodiment, as in the first embodiment, first, a biconvex lens having a radius of curvature R of one surface of R = 38 mm, a radius of curvature of the other surface of R = 29 mm, and an outer diameter of φ = 16.5 mm is ground. After processing, the biconvex lens is carried into the heating device 8 set at 685 ° C. and heated for 2 minutes and 30 seconds. After that, it is carried out from the heating device 8 and cooled, and the shape of the cooled biconvex lens is measured by a minute shape measuring device. FIG. 9 shows the measurement results.

【0025】図9における横軸と縦軸並びに各グラフ図
は、前記図2の場合と同様に設定した。図9からも明ら
かなように、加熱軟化により両凸レンズの一面側は中心
10μm,外周20μm程度、他面側は中心20μm,
外周40μm程度の形状変化を生ずるので、このズレ量
を実際の被成形体であるガラス素材の形状にフィードバ
ックする。
The horizontal and vertical axes in FIG. 9 and each graph are set in the same manner as in FIG. As is clear from FIG. 9, the surface of the biconvex lens is about 10 μm in center and about 20 μm in outer circumference, and the other side is about 20 μm in center due to heat softening.
Since a shape change of about 40 μm occurs on the outer periphery, this deviation amount is fed back to the shape of the glass material which is the actual formed body.

【0026】すなわち、ガラス素材を研削加工する際、
一面側は、レンズ設計値R=38mmに対して中心10
μm,外周20μm程度の形状変化を見込み、中心から
外径DのD/4で変曲線をもつ中心曲率半径R1 =37
mmの第1の曲率面と、その外周面が曲率半径R2 =4
0mmの第2の曲率面との2曲面形状となる様に設定し
て加工する。また、他面側は、レンズ設計近似球面曲率
半径R=29mmに対して、中心20μm,外周40μ
mの形状変化を見込み、同様の変曲線にて第1の曲率面
が中心曲率半径R1 =27mmと、その外周面が曲率半
径R2 =25mmの第2の曲率面との2曲面形状となる
様に設定して加工する。外径寸法φは、φ16.5mm
である。
That is, when grinding a glass material,
On one side, the center is 10
A center curvature radius R 1 = 37 having an inflection curve at D / 4 of the outer diameter D from the center is anticipated.
mm and the outer peripheral surface thereof have a radius of curvature R 2 = 4.
It is set and processed so as to have a two-curved surface shape with a second curvature surface of 0 mm. On the other side, the center is 20 μm and the outer circumference is 40 μm with respect to the lens design approximate spherical radius of curvature R = 29 mm.
m, the first curved surface has a central curvature radius R 1 = 27 mm and the outer peripheral surface has a second curved surface having a radius of curvature R 2 = 25 mm. Set and process as follows. The outer diameter φ is φ16.5mm
It is.

【0027】上記のように加工したガラス素材を、前記
両面共球面の両凸レンズと同一の条件にて加熱,軟化処
理した後、上下成形型間に搬入して押圧成形するもので
ある。本実施例のように、前記実施例1とは硝材の異な
るガラス素材の成形に適用する場合においても、上記の
ような測定結果から、前記実施例1と同様の効果を奏し
うるものである。
The glass material processed as described above is heated and softened under the same conditions as the biconvex lens having a spherical surface on both sides, and then carried between upper and lower molds and pressed. As in the present embodiment, even when the present invention is applied to molding of a glass material having a different glass material from that of the first embodiment, the same effects as in the first embodiment can be obtained from the above measurement results.

【0028】図10に示す様に、一面側のレンズ設計値
とのズレ量は1μm程度で、他面側の同ズレ量は0.7
μm程度であり、ほぼレンズ設計値曲率半径Rに近似し
た形状態となる。すなわち、上下成形型間に搬入される
直前のガラス素材の形状をレンズ設計値曲率半径Rに近
似した形状にできる。かかるガラス素材を押圧成形した
成形品における球面側の干渉縞と、非球面形状測定機に
より測定した非球面側の測定結果をそれぞれ図11およ
び図12に示す。非球面側のPV値はPV=0.11μ
mであった。自重によるうねり変形を考慮しない前記従
来技術の方法(特開平2−51432号公報記載の発
明)にて同寸法のガラス素材を得たところ、PV値はP
V=0.210μmであった。図13および図14に示
す如く、従来方法ではうねり変形が出てしまい、またP
V値も大きい。
As shown in FIG. 10, the deviation from the lens design value on one surface is about 1 μm, and the deviation on the other surface is 0.7 μm.
It is about μm, and it is in a state almost similar to the lens design value radius of curvature R. That is, the shape of the glass material immediately before being conveyed between the upper and lower molds can be made to be a shape approximate to the lens design value curvature radius R. FIGS. 11 and 12 show the interference fringes on the spherical surface side and the measurement results on the aspherical surface side measured by an aspherical surface shape measuring instrument in a molded product obtained by press-molding such a glass material, respectively. PV value on the aspherical surface side is PV = 0.11 μm
m. When a glass material having the same dimensions was obtained by the above-mentioned prior art method (the invention described in Japanese Patent Application Laid-Open No. 2-51432) without considering the undulation deformation due to its own weight, the PV value was P
V = 0.210 μm. As shown in FIGS. 13 and 14, the conventional method causes undulation deformation,
The V value is also large.

【0029】以上の様に、同条件下での押圧成形におい
ては、本実施例の方法による成形品の方が従来例よりも
良好な転写性が得られるともに、成形条件がより低条件
となる。従って、本実施例の場合にも前記実施例1と同
様の効果が得られるものである。
As described above, in the press molding under the same conditions, the molded article obtained by the method of the present embodiment can obtain better transferability than the conventional example, and the molding conditions are lower. . Therefore, in the case of the present embodiment, the same effect as in the first embodiment can be obtained.

【0030】[0030]

【実施例3】本実施例は、前記実施例1と同様な光学ガ
ラス素子を作る。一面側の曲率半径R=38mm,他面
側の曲率半径R=29mm,外径寸法φ=16.5mm
の両凸レンズ(両面共球面)を研削加工し、それを前記
実施例1と同条件にて加熱軟化・冷却した後に測定した
形状変化分、つまり一面側(中心10μm,外周20μ
m),他面側(中心20μm,外周40μm)を考慮し
た2曲面形状の型(図示省略)を作成し、その型に加熱
軟化させたガラスを流し込んで冷却することにより、前
記実施例1と同じ2曲面形状のガラス素材を作成するも
のである。
Embodiment 3 In this embodiment, an optical glass element similar to that of Embodiment 1 is manufactured. The radius of curvature R on one side is R = 38 mm, the radius of curvature R on the other side is 29 mm, and the outer diameter φ is 16.5 mm.
The biconvex lens (both surfaces are spherical) is ground, and the shape is changed by heating, softening and cooling under the same conditions as in Example 1, that is, the shape change amount, that is, one surface side (center 10 μm, outer periphery 20 μm)
m), a mold having a two-curved surface shape (not shown) considering the other surface side (center 20 μm, outer periphery 40 μm) was prepared, and the heat-softened glass was poured into the mold and cooled, thereby obtaining the same results as in the first embodiment. This is to create a glass material having the same two curved surfaces.

【0031】上記型で作成された2曲面形状のガラス素
材を成形装置にて押圧成形した結果は、前記実施例1と
同様に一面側のレンズ設計値とズレ量は1μmで、他面
側は0.7μmであった。また、非球面形状測定機によ
る非球面側のPV値はPV=0.092μmであった。
As a result of pressing the glass material having a two-curved surface shape formed by the above-mentioned mold with a molding apparatus, the deviation from the lens design value on one side was 1 μm, and the other side was It was 0.7 μm. Further, the PV value on the aspherical surface side by the aspherical surface shape measuring instrument was PV = 0.092 μm.

【0032】以上にように、本実施例による方法によっ
ても良好な転写性が得られるとともに、成形条件がより
低条件となる。従って、本実施例の場合にも前記実施例
1と同様の効果が得られるものである。
As described above, good transferability can be obtained by the method according to the present embodiment, and molding conditions can be further reduced. Therefore, in the case of the present embodiment, the same effect as in the first embodiment can be obtained.

【0033】[0033]

【発明の効果】以上にように、本発明に係る成形方法に
よれば、成形条件の負荷の低減化を図れるとともに、良
好な形状の成形品を得ることができる。また、成形型の
寿命の延命化およびそれに伴うレンズコストの低減化等
を図りうるものである。
As described above, according to the molding method of the present invention, the load of molding conditions can be reduced, and a molded article having a good shape can be obtained. Further, it is possible to extend the life of the mold and reduce the cost of the lens associated therewith.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1を示す概略構成図である。FIG. 1 is a schematic configuration diagram showing a first embodiment.

【図2】実施例1を示すグラフである。FIG. 2 is a graph showing Example 1.

【図3】実施例1を示す側面図である。FIG. 3 is a side view showing the first embodiment.

【図4】実施例1を示すグラフである。FIG. 4 is a graph showing Example 1.

【図5】実施例1を示す干渉縞である。FIG. 5 shows interference fringes according to the first embodiment.

【図6】実施例1を示すグラフである。FIG. 6 is a graph showing Example 1.

【図7】実施例1を示す干渉縞である。FIG. 7 shows interference fringes according to the first embodiment.

【図8】実施例1を示すグラフである。FIG. 8 is a graph showing Example 1.

【図9】実施例2を示すグラフである。FIG. 9 is a graph showing Example 2.

【図10】実施例2を示すグラフである。FIG. 10 is a graph showing Example 2.

【図11】実施例2を示す干渉縞である。FIG. 11 is an interference pattern showing Example 2.

【図12】実施例2を示すグラフである。FIG. 12 is a graph showing Example 2.

【図13】実施例2を示す干渉縞である。FIG. 13 illustrates interference fringes according to the second embodiment.

【図14】実施例2を示すグラフである。FIG. 14 is a graph showing Example 2.

【符号の説明】[Explanation of symbols]

1 成形装置 2 ガラス素材 3 搬送治具 4 搬送アーム 5,6 成形型 7 ヒータ 8 加熱炉 DESCRIPTION OF SYMBOLS 1 Forming apparatus 2 Glass material 3 Transfer jig 4 Transfer arm 5, 6 Mold 7 Heater 8 Heating furnace

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C03B 11/08 C03B 11/00 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int. Cl. 7 , DB name) C03B 11/08 C03B 11/00

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 加熱軟化後の形状が所望の光学素子形状
に対して近似形状となる様に形成したガラス素材を押圧
成形する光学素子の成形方法において、加熱軟化後のガ
ラス素材の面形状を第1の曲率面とその外周の第2の曲
率面との2曲面形状に形成するとともに、一方の面のそ
れぞれの曲率面の曲率半径が第1の曲率面>第2の曲率
面とし、他方の面のそれぞれの曲率面の曲率半径が第1
の曲率面<第2の曲率面となる様に形成したガラス素材
を用いて成形することを特徴とする光学素子の成形方
法。
1. A method for forming an optical element by press-molding a glass material formed so that the shape after heating and softening is similar to a desired optical element shape, wherein the surface shape of the glass material after heating and softening is reduced. The first curvature surface and the second curvature surface on the outer periphery thereof are formed in a two-curvature shape, and the curvature radius of each curvature surface of one surface is defined as a first curvature surface> a second curvature surface, and the other. Radius of curvature of each surface of curvature
Molding method using a glass material formed so as to satisfy the following condition: curvature surface <second curvature surface.
【請求項2】 前記第1の曲率面と第2の曲率面との境
に形成される変曲線が加熱軟化されたガラス素材外径の
略1/4であることを特徴とする請求項1記載の光学素
子の成形方法。
2. The method according to claim 1, wherein the inflection curve formed at the boundary between the first curvature surface and the second curvature surface is approximately 4 of the outer diameter of the heat-softened glass material. The method for molding the optical element according to the above.
JP03352274A 1991-12-13 1991-12-13 Optical element molding method Expired - Fee Related JP3130619B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03352274A JP3130619B2 (en) 1991-12-13 1991-12-13 Optical element molding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03352274A JP3130619B2 (en) 1991-12-13 1991-12-13 Optical element molding method

Publications (2)

Publication Number Publication Date
JPH05163030A JPH05163030A (en) 1993-06-29
JP3130619B2 true JP3130619B2 (en) 2001-01-31

Family

ID=18422942

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03352274A Expired - Fee Related JP3130619B2 (en) 1991-12-13 1991-12-13 Optical element molding method

Country Status (1)

Country Link
JP (1) JP3130619B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5356757B2 (en) * 2008-09-05 2013-12-04 Hoya株式会社 Aspherical lens shape evaluation method

Also Published As

Publication number Publication date
JPH05163030A (en) 1993-06-29

Similar Documents

Publication Publication Date Title
JP3675679B2 (en) Optical element molding method and optical element molding apparatus
JP3130619B2 (en) Optical element molding method
JP2621941B2 (en) Optical element molding method
JPH01126232A (en) Formation of optical element
JPH0617240B2 (en) Glass lens molding method
JPH09249424A (en) Molding of optical element
JP3681114B2 (en) Manufacturing method of glass optical element
JPH048374B2 (en)
JP2621956B2 (en) Optical element molding method
JP2003073135A (en) Method and mold for forming optical element
JPH07330347A (en) Method for forming optical element
JPS6168331A (en) Press-molding process for glass lens
JP4436561B2 (en) Optical element manufacturing method
JPH1160251A (en) Formation of optical element
JPH02196039A (en) Method for molding glass optical device
JPH0812352A (en) Method for forming optical element
JPH0372016B2 (en)
JPS6227336A (en) Forming device for optical parts
JPS6374926A (en) Forming of optical glass part
JP4030799B2 (en) Optical element molding method
JPH0446025A (en) Optical element molding die
JPS63319218A (en) Production of optical device
JP2001226129A (en) Forming method of optical element
JPS6325233A (en) Compression molding of optical element
JPH0543262A (en) Production of blank material for molding optical element

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20001024

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071117

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081117

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091117

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees