JP3127725B2 - Sintered substrate for alkaline storage battery and method for producing the same - Google Patents

Sintered substrate for alkaline storage battery and method for producing the same

Info

Publication number
JP3127725B2
JP3127725B2 JP06174941A JP17494194A JP3127725B2 JP 3127725 B2 JP3127725 B2 JP 3127725B2 JP 06174941 A JP06174941 A JP 06174941A JP 17494194 A JP17494194 A JP 17494194A JP 3127725 B2 JP3127725 B2 JP 3127725B2
Authority
JP
Japan
Prior art keywords
nickel
oxide layer
sintered body
storage battery
sintered substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP06174941A
Other languages
Japanese (ja)
Other versions
JPH0837009A (en
Inventor
隆之 北野
哲郎 大越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Kobe Electric Machinery Co Ltd
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP06174941A priority Critical patent/JP3127725B2/en
Publication of JPH0837009A publication Critical patent/JPH0837009A/en
Application granted granted Critical
Publication of JP3127725B2 publication Critical patent/JP3127725B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、ニッケル焼結体の表面
にニッケル酸化物層を有するアルカリ蓄電池用焼結基板
およびその製造法に関する。
The present invention relates to a sintered substrate for an alkaline storage battery having a nickel oxide layer on the surface of a nickel sintered body and a method for producing the same.

【0002】[0002]

【従来の技術】アルカリ蓄電池の極板のためのニッケル
焼結基板は、多数の穴を開けた鉄板にニッケルめっきを
施した多孔板を用意し、これにカーボニルニッケル粉末
と粘結剤液からなるスラリを塗着した後、水素還元雰囲
気中で焼結することにより製造される。このニッケル焼
結基板は、腐食しやすい。ニッケル焼結基板に活物質を
保持させてニッケル・カドミウム蓄電池の極板を製造す
る工程は、陽極板の製造では、ニッケル焼結基板を硝酸
ニッケル水溶液に浸漬−中間乾燥−アルカリ反応−水洗
−乾燥の一連の工程を数回繰り返し、ニッケル焼結基板
に水酸化ニッケルを含浸させる。また、陰極板の製造で
は、ニッケル焼結基板を硝酸カドミウム水溶液に浸漬−
中間乾燥−アルカリ反応−水洗−乾燥の一連の工程を数
回繰り返し、ニッケル焼結基板に水酸化カドミウムを含
浸させる。硝酸ニッケル水溶液、硝酸カドミウム水溶液
が強い硝酸酸性であることから、浸漬および中間乾燥の
工程でニッケル焼結基板は簡単に腐食されるわけであ
る。生成したニッケル酸化物はアルカリ水溶液中で水酸
化物に変化する。ニッケル焼結基板から生成した水酸化
物は、活物質の利用率低下を招くと共に、電池寿命を短
くする原因となる。そこで、上記の含浸処理の前に、ニ
ッケル焼結体の表面に耐酸化性の酸化物層を形成してお
くことが提案されている。例えば、ニッケル焼結体の表
面に酸化コバルト層を設けたり、ニッケル焼結基板を過
酸化物水溶液や濃硝酸に浸漬してニッケル焼結体の表面
を酸化する技術である。しかし、これらの技術は、処理
工程が煩雑なために処理時間が長くかかり極板製造工程
を煩雑にするばかりか、耐酸化性に優れた酸化物層を形
成するには不十分である。そして、耐酸化性の酸化物層
を形成する最も簡便な手段として、ニッケル焼結基板を
酸素が存在する雰囲気で加熱処理し、ニッケル焼結体表
面にニッケル酸化物層を形成する技術が提案されている
(特開昭59−78457号公報,特開昭59−966
59号公報)。この技術は酸化量の制御が難しく、酸化
量が少ないと耐酸化性に優れた酸化物層を形成できな
い。酸化量が多くなりすぎるとニッケル焼結体の導電性
が低くなり、また脆くなるので、電池の高率放電特性が
低下するし、電池寿命も短くなる。ピンホールの少ない
均一な薄いニッケル酸化物層を形成するために、400
℃以下の比較的低い温度で加熱処理しているので処理時
間が長くなり、低い温度の加熱処理で生成したニッケル
酸化物層には低次の酸化物が含まれている。このような
低次の酸化物は、アルカリ水溶液中で水酸化物に変化す
るので、耐酸化性に優れた酸化物層とはならない。
2. Description of the Related Art A nickel sintered substrate for an electrode plate of an alkaline storage battery is prepared by preparing a perforated plate obtained by plating a nickel plate on an iron plate having a large number of holes, and comprising a carbonyl nickel powder and a binder liquid. It is manufactured by applying a slurry and then sintering in a hydrogen reducing atmosphere. This nickel sintered substrate is easily corroded. In the process of manufacturing an electrode plate of a nickel-cadmium storage battery by holding an active material on a nickel sintered substrate, in the production of an anode plate, the nickel sintered substrate is immersed in an aqueous solution of nickel nitrate-intermediate drying-alkali reaction-washing-drying. Is repeated several times to impregnate the nickel sintered substrate with nickel hydroxide. In the production of a cathode plate, a nickel sintered substrate is immersed in a cadmium nitrate aqueous solution.
A series of steps of intermediate drying-alkaline reaction-water washing-drying is repeated several times to impregnate the nickel sintered substrate with cadmium hydroxide. Since the nickel nitrate aqueous solution and the cadmium nitrate aqueous solution have strong nitric acid acidity, the nickel sintered substrate is easily corroded in the immersion and intermediate drying steps. The generated nickel oxide changes to hydroxide in an alkaline aqueous solution. The hydroxide generated from the nickel sintered substrate causes a reduction in the utilization rate of the active material and shortens the battery life. Therefore, it has been proposed to form an oxidation-resistant oxide layer on the surface of the nickel sintered body before the impregnation treatment. For example, a technique of providing a cobalt oxide layer on the surface of a nickel sintered body or immersing a nickel sintered substrate in an aqueous solution of peroxide or concentrated nitric acid to oxidize the surface of the nickel sintered body. However, these techniques are inadequate for forming an oxide layer having excellent oxidation resistance as well as complicating the electrode plate manufacturing process due to long processing time due to complicated processing steps. As the simplest means for forming an oxidation-resistant oxide layer, a technique has been proposed in which a nickel sintered substrate is heat-treated in an atmosphere in which oxygen is present to form a nickel oxide layer on the surface of the nickel sintered body. (JP-A-59-78457, JP-A-59-966).
No. 59). In this technique, it is difficult to control the amount of oxidation, and if the amount of oxidation is small, an oxide layer having excellent oxidation resistance cannot be formed. If the oxidation amount is too large, the conductivity of the nickel sintered body becomes low and the nickel sintered body becomes brittle, so that the high-rate discharge characteristics of the battery are reduced and the battery life is shortened. In order to form a uniform thin nickel oxide layer with few pinholes, 400
Since the heat treatment is performed at a relatively low temperature of not more than ° C., the treatment time becomes long, and the nickel oxide layer generated by the low-temperature heat treatment contains a low-order oxide. Such a low-order oxide changes into a hydroxide in an alkaline aqueous solution, and thus does not form an oxide layer having excellent oxidation resistance.

【0003】[0003]

【発明が解決しようとする課題】本発明が解決しようと
する課題は、ニッケル焼結体の表面にニッケル酸化物層
を形成して耐酸化性を付与したアルカリ蓄電池用焼結基
板において、十分な耐酸化性を保持しながら脆くならず
導電性も維持することである。また、そのようなアルカ
リ蓄電池用焼結基板を短い熱処理時間で製造することで
ある。
An object of the present invention is to provide a sintered substrate for an alkaline storage battery having a nickel oxide layer formed on the surface of a nickel sintered body to impart oxidation resistance. The purpose is to maintain the conductivity without being brittle while maintaining the oxidation resistance. Another object of the present invention is to manufacture such a sintered substrate for an alkaline storage battery in a short heat treatment time.

【0004】[0004]

【課題を解決するための手段】上記の課題を解決するた
めに、本発明に係るアルカリ蓄電池用焼結基板は、多孔
質ニッケル焼結体の表面にニッケル酸化物層を有するも
のにおいて、前記ニッケル酸化物層がニッケルとリチウ
ムの複合酸化物を含むことを特徴とする。本発明に係る
別のアルカリ蓄電池用焼結基板は、前記ニッケル酸化物
層がニッケルとリチウムとコバルトの複合酸化物を含む
ことを特徴とする。これらニッケル酸化物層中の酸素重
量は、多孔質ニッケル焼結体の初期重量の0.5%以上
であり、好ましくは1〜3%である。次に、本発明に係
るアルカリ蓄電池用焼結基板の製造法は、多孔質ニッケ
ル焼結体をリチウム塩の水溶液に浸漬した後に乾燥し、
酸素が存在する雰囲気で加熱処理することを特徴とす
る。また、別の製造法は、多孔質ニッケル焼結体をリチ
ウム塩とコバルト塩の混合水溶液に浸漬した後に乾燥
し、酸素が存在する雰囲気で加熱処理することを特徴と
する。
In order to solve the above-mentioned problems, a sintered substrate for an alkaline storage battery according to the present invention comprises a porous nickel sintered body having a nickel oxide layer on a surface thereof. The oxide layer contains a composite oxide of nickel and lithium. Another sintered substrate for an alkaline storage battery according to the present invention is characterized in that the nickel oxide layer contains a composite oxide of nickel, lithium and cobalt. The weight of oxygen in these nickel oxide layers is at least 0.5%, preferably 1 to 3%, of the initial weight of the porous nickel sintered body. Next, in the method for manufacturing a sintered substrate for an alkaline storage battery according to the present invention, the porous nickel sintered body is immersed in an aqueous solution of a lithium salt and then dried.
The heat treatment is performed in an atmosphere in which oxygen is present. Another manufacturing method is characterized in that a porous nickel sintered body is immersed in a mixed aqueous solution of a lithium salt and a cobalt salt, dried, and then heat-treated in an atmosphere containing oxygen.

【0005】[0005]

【作用】加熱処理によるニッケル酸化物層を十分に形成
しないと耐酸化性を確保できず、一方、加熱処理による
ニッケル酸化物層を十分に形成すると導電性と強度の低
下が問題となるが、本発明に係るアルカリ蓄電池用焼結
基板では、ニッケルとリチウム、或いは、ニッケルとリ
チウムとコバルトが複合酸化物を作るので酸化物層が脆
くならず、強度を確保できる。また、ニッケル酸化物層
中にリチウム、或いは、リチウムとコバルトが存在する
ことにより、十分な酸化物層を形成しても導電性を確保
することができる。
The oxidation resistance cannot be ensured unless the nickel oxide layer is sufficiently formed by the heat treatment. On the other hand, if the nickel oxide layer is sufficiently formed by the heat treatment, the conductivity and the strength are reduced. In the sintered substrate for an alkaline storage battery according to the present invention, nickel and lithium, or nickel, lithium and cobalt form a composite oxide, so that the oxide layer does not become brittle and the strength can be secured. Further, since lithium or lithium and cobalt are present in the nickel oxide layer, conductivity can be ensured even when a sufficient oxide layer is formed.

【0006】[0006]

【実施例】【Example】

実施例1 多数の穴を開けた鉄板にニッケルめっきを施した多孔板
を用意し、これにカーボニルニッケル粉末と粘結剤液か
らなるスラリを塗着した後、水素還元雰囲気中で焼結し
て、多孔度80〜85%のニッケル焼結基板を用意し
た。1M濃度の硝酸リチウム水溶液を用意し、これに上
記ニッケル焼結基板を15分間浸漬した後120℃で乾
燥した。次に、空気中500℃で45分間の加熱処理を
行ない、ニッケル焼結体表面にニッケル酸化物層を形成
した。ニッケル酸化物層には、ニッケルとリチウムの複
合酸化物LiNiO2が形成される。ニッケル焼結体の
初期重量に対するニッケル酸化物層中の酸素重量(以
下、「酸化度」という)は2%であった。図1は、製作
したニッケル焼結基板1の要部断面図とさらに要部の拡
大断面図である。多孔板2にニッケル焼結体3が保持さ
れており、その表面にニッケル酸化物層4が形成されて
いる。
Example 1 A perforated plate prepared by plating a nickel plate on an iron plate having a large number of holes was prepared, and a slurry composed of carbonyl nickel powder and a binder liquid was applied thereto, followed by sintering in a hydrogen reducing atmosphere. A nickel sintered substrate having a porosity of 80 to 85% was prepared. A 1M aqueous solution of lithium nitrate was prepared, and the nickel sintered substrate was immersed in the aqueous solution for 15 minutes and then dried at 120 ° C. Next, a heat treatment was performed in air at 500 ° C. for 45 minutes to form a nickel oxide layer on the surface of the nickel sintered body. The composite oxide LiNiO 2 of nickel and lithium is formed on the nickel oxide layer. The oxygen weight in the nickel oxide layer relative to the initial weight of the nickel sintered body (hereinafter, referred to as “degree of oxidation”) was 2%. FIG. 1 is a cross-sectional view of a main part of a manufactured nickel sintered substrate 1 and an enlarged cross-sectional view of a main part. A nickel sintered body 3 is held by a perforated plate 2, and a nickel oxide layer 4 is formed on the surface thereof.

【0007】実施例2 1モルの硝酸リチウムと0.5モルの硝酸コバルトを溶
解して1リットルとした水溶液を用意した。これに実施
例1で用いたニッケル焼結基板を15分間浸漬した後1
20℃で乾燥した。次に、空気中より酸素量を制限した
雰囲気中(酸素濃度3wt%)750℃で1時間の加熱処
理を行ない、ニッケル焼結体表面にニッケル酸化物層を
形成した。ニッケル酸化物層には、ニッケルとリチウム
とコバルトの複合酸化物LiNixCo1-x2が形成さ
れる。酸化度は2%であった。
Example 2 An aqueous solution was prepared by dissolving 1 mol of lithium nitrate and 0.5 mol of cobalt nitrate to make 1 liter. After immersing the nickel sintered substrate used in Example 1 for 15 minutes,
Dried at 20 ° C. Next, a heat treatment was performed at 750 ° C. for 1 hour in an atmosphere (oxygen concentration: 3 wt%) in which the amount of oxygen was more restricted than in air, to form a nickel oxide layer on the surface of the nickel sintered body. On the nickel oxide layer, a composite oxide LiNi x Co 1-x O 2 of nickel, lithium and cobalt is formed. The degree of oxidation was 2%.

【0008】従来例 実施例1で用いたニッケル焼結基板を、そのまま、空気
中430℃で4時間加熱処理し、ニッケル焼結体表面に
ニッケル酸化物層を形成した。酸化度は1%であった。
Conventional Example The nickel sintered substrate used in Example 1 was directly heated in air at 430 ° C. for 4 hours to form a nickel oxide layer on the surface of the nickel sintered body. The degree of oxidation was 1%.

【0009】上記実施例および従来例のニッケル焼結体
表面にニッケル酸化物層を有するニッケル焼結基板を用
いて常法により正極板を作製し、この正極板を用いてニ
ッケル・カドミウム蓄電池を組み立てた。組み立てたニ
ッケル・カドミウム蓄電池を充放電サイクル試験に供
し、寿命に至るまでのサイクル数と寿命に至ったときの
ニッケル焼結体の腐食度を確認した。その結果を表1に
示した。また、ニッケル酸化物層を形成したニッケル焼
結体に活物質を含浸する工程から電池組立てまでの工程
において発生した極板の不良率(ニッケル焼結体表面に
ニッケル酸化物層を形成したことによる脆さが原因と見
られるもの,n=500)を併せて示した。上記試験の
充放電条件は次のとおりである。 充電条件:5CmAで充電し、充電電圧がピーク電圧から
15mV低下(以下、「−△=15mV」という)したとき
充電終了 放電条件:5CmAで放電し、電池電圧が1Vになったと
き放電終了 また、腐食度とは、ニッケル焼結体の初期重量をW、寿
命になった陽極板から活物質を除去したニッケル焼結体
の重量をW’として、100×(W−W’)/Wで表され
る。WおよびW’には、多孔板の重量は含まない。さら
に、電池寿命は、放電容量が公称容量の1/2になった
ときとし、それまでの充放電サイクル数で示した。
A positive electrode plate is manufactured by a conventional method using the nickel sintered substrate having a nickel oxide layer on the surface of the nickel sintered body of the above embodiment and the conventional example, and a nickel-cadmium storage battery is assembled using the positive electrode plate. Was. The assembled nickel-cadmium storage battery was subjected to a charge / discharge cycle test, and the number of cycles up to the life and the degree of corrosion of the nickel sintered body at the end of the life were confirmed. The results are shown in Table 1. Also, the defect rate of the electrode plate generated in the process from the step of impregnating the nickel sintered body with the nickel oxide layer with the active material to the step of assembling the battery (due to the formation of the nickel oxide layer on the surface of the nickel sintered body) Those which are considered to be due to brittleness, n = 500) are also shown. The charge / discharge conditions of the above test are as follows. Charging conditions: Charging at 5 CmA, charging terminated when the charging voltage dropped 15 mV from the peak voltage (hereinafter referred to as “−「 = 15 mV ”). Discharging conditions: Discharging when discharging at 5 CmA and battery voltage of 1 V. The degree of corrosion is defined as 100 × (W−W ′) / W, where W is the initial weight of the nickel sintered body, and W ′ is the weight of the nickel sintered body obtained by removing the active material from the anode plate whose life has expired. expressed. W and W 'do not include the weight of the perforated plate. Further, the battery life was defined as the time when the discharge capacity was reduced to half of the nominal capacity, and represented by the number of charge / discharge cycles up to that time.

【0010】[0010]

【表1】 [Table 1]

【0011】表1から、本発明における実施例では、ニ
ッケル酸化物層による耐酸化性が十分であり、ニッケル
焼結基板の腐食が抑制される結果、電池寿命が長くなる
ことが理解できる。また、耐酸化性が十分に発揮される
ニッケル酸化物層を形成しても極板が脆くならず、極板
の不良率も極めて少ない。実施例2のように、ニッケル
酸化物層にニッケルとリチウムとコバルトの複合酸化物
を含む場合は、ニッケルとリチウムの複合酸化物を含む
場合より、電池寿命がさらに長くなり、極板の不良率も
さらに少なくなる。また、放電容量も、実施例1より5
0mAh伸びることを確認した。
From Table 1, it can be understood that in the embodiment of the present invention, the oxidation resistance of the nickel oxide layer is sufficient, and the corrosion of the nickel sintered substrate is suppressed, so that the battery life is prolonged. Further, even if a nickel oxide layer exhibiting sufficient oxidation resistance is formed, the electrode plate does not become brittle and the defect rate of the electrode plate is extremely low. As in Example 2, when the nickel oxide layer contains a composite oxide of nickel, lithium and cobalt, the battery life becomes longer and the defective rate of the electrode plate becomes longer than when the composite oxide of nickel and lithium is included. Is also reduced. Further, the discharge capacity was 5
It was confirmed that it extended 0 mAh.

【0012】次に、実施例1,2および従来例の極板に
おいて、ニッケル酸化物層の酸化度を変えて、当該酸化
度と電池寿命(寿命サイクル数)およびニッケル焼結体
の腐食度の関係を調べ、図2に示した。また、酸化度と
高率放電時の活物質利用率との関係を調べ、図3に示し
た。高率放電とは、1CmA充電(−△=15mV)後の1
5CmA放電である。尚、酸化度は、加熱処理温度、リチ
ウムとコバルトの添加量を変えることにより変化させ
た。図2および図3から、酸化度を0.5%以上とする
ことにより、ニッケル焼結体の腐食度が少なくなること
が理解できる。そして、電池寿命および活物質利用率が
向上し、特に、酸化度1〜3%において優れていること
が理解できる。耐酸化性を維持するために従来より酸化
度を高くしているにもかかわらず、ニッケル焼結体が脆
くならず導電性も維持しているのは、ニッケル酸化物層
にリチウムまたはリチウムとコバルトが含まれているか
らである。一方、従来例では、酸化度が1.5%を越え
ると、電池寿命が短くなっていく。これは、酸化度の高
いニッケル焼結体は脆く、多孔板から脱落しやすいため
である。高率放電時の活物質利用率が低下していくの
も、酸化度が高くなるにつれてニッケル焼結体の導電性
が低下するためである。
Next, in the electrode plates of Examples 1 and 2 and the conventional example, the degree of oxidation of the nickel oxide layer was changed to determine the degree of oxidation, the battery life (number of life cycles) and the corrosion degree of the nickel sintered body. The relationship was examined and shown in FIG. Further, the relationship between the degree of oxidation and the utilization rate of the active material at the time of high-rate discharge was examined, and is shown in FIG. High-rate discharge is defined as 1 charge after 1 CmA charge (-△ = 15 mV).
5 CmA discharge. The degree of oxidation was changed by changing the heat treatment temperature and the amounts of lithium and cobalt added. 2 and 3, it can be understood that the corrosion degree of the nickel sintered body is reduced by setting the oxidation degree to 0.5% or more. Then, it can be understood that the battery life and the active material utilization rate are improved, and particularly, the oxidation degree is excellent at 1 to 3%. Despite having a higher degree of oxidation than before to maintain oxidation resistance, the reason why the nickel sintered body is not brittle and maintains conductivity is that lithium or lithium and cobalt are contained in the nickel oxide layer. Is included. On the other hand, in the conventional example, when the degree of oxidation exceeds 1.5%, the battery life becomes shorter. This is because a nickel sintered body having a high degree of oxidation is brittle and easily falls off the perforated plate. The reason why the active material utilization rate at the time of high-rate discharge decreases is that the conductivity of the nickel sintered body decreases as the degree of oxidation increases.

【0013】酸化度を高くする場合、例えば、酸化度を
0.5%から2%にする場合、加熱処理の温度が同じで
あれば処理時間は40倍程度長く必要とする。しかし、
この問題は、加熱温度を高くすることで解決できる。従
来は、加熱処理温度を高くすると均一なニッケル酸化物
層が形成されず、十分な耐酸化性を付与できなかった。
また、加熱処理温度を高くすると酸化速度が速くなり、
酸化度を電池寿命と高率放電性能の面から適正な値に制
御するのが難しかった。最適酸化度は1%であり、耐酸
化性の十分なニッケル酸化物層を形成するための熱処理
温度の上限は430℃であった。本発明においては、酸
化度が従来より高くてもよく、しかも、電池性能を維持
するための酸化度の許容範囲が広いので厳密な制御を必
要としない。加熱処理の温度を高くしても(500℃以
上の温度での加熱処理が可能)支障がないので、加熱処
理時間を短縮することができる。熱処理温度を高くする
ことによりニッケル酸化物層が不均一になる点は、酸化
度を高くすることで解消されている。
When the degree of oxidation is increased, for example, when the degree of oxidation is changed from 0.5% to 2%, if the temperature of the heat treatment is the same, the treatment time needs to be about 40 times longer. But,
This problem can be solved by increasing the heating temperature. Conventionally, if the heat treatment temperature is increased, a uniform nickel oxide layer is not formed, and sufficient oxidation resistance cannot be provided.
In addition, the higher the heat treatment temperature, the faster the oxidation rate,
It was difficult to control the degree of oxidation to an appropriate value in terms of battery life and high-rate discharge performance. The optimum degree of oxidation was 1%, and the upper limit of the heat treatment temperature for forming a nickel oxide layer having sufficient oxidation resistance was 430 ° C. In the present invention, the degree of oxidation may be higher than in the past, and strict control is not required because the allowable range of the degree of oxidation for maintaining battery performance is wide. Even if the temperature of the heat treatment is increased (the heat treatment at a temperature of 500 ° C. or higher is possible), there is no problem, and thus the heat treatment time can be reduced. The point that the nickel oxide layer becomes non-uniform by increasing the heat treatment temperature is eliminated by increasing the degree of oxidation.

【0014】[0014]

【発明の効果】上述のように、本発明に係るアルカリ蓄
電池用ニッケル焼結基板は、ニッケル焼結体の表面に形
成したニッケル酸化物層が十分な耐酸化性を維持しなが
ら、脆くならず高率放電に適した導電性も保持してい
る。ニッケル酸化物層の酸化度を1〜3%にしたとき
は、特にその性能が優れている。また、本発明に係るア
ルカリ蓄電池用ニッケル焼結基板の製造法によれば、十
分な耐酸化性を維持し、脆くならず高率放電に適した導
電性も保持したニッケル酸化物層を、加熱温度を高くし
て短い加熱処理時間で形成することができる。
As described above, in the nickel sintered substrate for an alkaline storage battery according to the present invention, the nickel oxide layer formed on the surface of the nickel sintered body does not become brittle while maintaining sufficient oxidation resistance. It also maintains conductivity suitable for high-rate discharge. When the oxidation degree of the nickel oxide layer is set to 1 to 3%, the performance is particularly excellent. Further, according to the method for producing a nickel sintered substrate for an alkaline storage battery according to the present invention, a nickel oxide layer that maintains sufficient oxidation resistance, is not brittle, and also maintains conductivity suitable for high-rate discharge is heated. The film can be formed in a short heat treatment time at a high temperature.

【図面の簡単な説明】[Brief description of the drawings]

【図1】ニッケル酸化物層を有するニッケル焼結基板の
要部断面図と要部の拡大断面図である。
FIG. 1 is a sectional view of a principal part of a nickel sintered substrate having a nickel oxide layer and an enlarged sectional view of the principal part.

【図2】ニッケル酸化物層の酸化度と電池寿命(寿命サ
イクル数)およびニッケル焼結体の腐食度の関係を示す
曲線図である。
FIG. 2 is a curve diagram showing the relationship between the degree of oxidation of a nickel oxide layer, the battery life (number of life cycles), and the degree of corrosion of a nickel sintered body.

【図3】ニッケル酸化物層の酸化度と高率放電時の活物
質利用率との関係を示す曲線図である。
FIG. 3 is a curve diagram showing the relationship between the degree of oxidation of a nickel oxide layer and the utilization rate of an active material during high-rate discharge.

【符号の説明】[Explanation of symbols]

1ニッケル焼結基板 2は多孔板 3はニッケル焼結体 4はニッケル酸化物層 1 Nickel sintered substrate 2 Perforated plate 3 Nickel sintered body 4 Nickel oxide layer

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】多孔質ニッケル焼結体の表面にニッケル酸
化物層を有するアルカリ蓄電池用焼結基板において、 前記ニッケル酸化物層がニッケルとリチウムの複合酸化
物を含み、ニッケル酸化物層中の酸素重量が多孔質ニッ
ケル焼結体の初期重量の0.5%以上であることを特徴
とするアルカリ蓄電池用焼結基板。
1. A sintered substrate for an alkaline storage battery having a nickel oxide layer on the surface of a porous nickel sintered body, wherein the nickel oxide layer contains a composite oxide of nickel and lithium, and A sintered substrate for an alkaline storage battery, wherein the oxygen weight is 0.5% or more of the initial weight of the porous nickel sintered body.
【請求項2】多孔質ニッケル焼結体の表面にニッケル酸
化物層を有するアルカリ蓄電池用焼結基板において、 前記ニッケル酸化物層がニッケルとリチウムとコバルト
の複合酸化物を含み、ニッケル酸化物層中の酸素重量が
多孔質ニッケル焼結体の初期重量の0.5%以上である
ことを特徴とするアルカリ蓄電池用焼結基板。
2. A sintered substrate for an alkaline storage battery having a nickel oxide layer on a surface of a porous nickel sintered body, wherein the nickel oxide layer contains a composite oxide of nickel, lithium and cobalt, and the nickel oxide layer A sintered substrate for an alkaline storage battery, wherein the weight of oxygen therein is 0.5% or more of the initial weight of the porous nickel sintered body.
【請求項3】ニッケル酸化物層中の酸素重量が、多孔質
ニッケル焼結体の初期重量の1〜3%であることを特徴
とする請求項1または2に記載のアルカリ蓄電池用焼結
基板。
3. The sintered substrate for an alkaline storage battery according to claim 1, wherein the weight of oxygen in the nickel oxide layer is 1 to 3% of the initial weight of the porous nickel sintered body. .
【請求項4】多孔質ニッケル焼結体をリチウム塩の水溶
液に浸漬した後に乾燥し、酸素が存在する雰囲気で加熱
処理することを特徴とするアルカリ蓄電池用焼結基板の
製造法。
4. A method for producing a sintered substrate for an alkaline storage battery, comprising immersing a porous nickel sintered body in an aqueous solution of a lithium salt, followed by drying and heat treatment in an atmosphere containing oxygen.
【請求項5】多孔質ニッケル焼結体をリチウム塩とコバ
ルト塩の混合水溶液に浸漬した後に乾燥し、酸素が存在
する雰囲気で加熱処理することを特徴とするアルカリ蓄
電池用焼結基板の製造法。
5. A method for producing a sintered substrate for an alkaline storage battery, comprising immersing a porous nickel sintered body in a mixed aqueous solution of a lithium salt and a cobalt salt, followed by drying and heat treatment in an atmosphere containing oxygen. .
JP06174941A 1994-07-27 1994-07-27 Sintered substrate for alkaline storage battery and method for producing the same Expired - Fee Related JP3127725B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06174941A JP3127725B2 (en) 1994-07-27 1994-07-27 Sintered substrate for alkaline storage battery and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06174941A JP3127725B2 (en) 1994-07-27 1994-07-27 Sintered substrate for alkaline storage battery and method for producing the same

Publications (2)

Publication Number Publication Date
JPH0837009A JPH0837009A (en) 1996-02-06
JP3127725B2 true JP3127725B2 (en) 2001-01-29

Family

ID=15987413

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06174941A Expired - Fee Related JP3127725B2 (en) 1994-07-27 1994-07-27 Sintered substrate for alkaline storage battery and method for producing the same

Country Status (1)

Country Link
JP (1) JP3127725B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013030359A (en) * 2011-07-28 2013-02-07 Kyocera Corp Fuel cell device

Also Published As

Publication number Publication date
JPH0837009A (en) 1996-02-06

Similar Documents

Publication Publication Date Title
JPH0550099B2 (en)
JP3019094B2 (en) Method for producing electrode for alkaline storage battery
JP3127725B2 (en) Sintered substrate for alkaline storage battery and method for producing the same
US6245459B1 (en) Substrate for alkaline storage battery, process for producing the same and alkaline storage battery
US3779810A (en) Method of making a nickel positive electrode for an alkaline battery
US6120937A (en) Electrode for alkaline storage battery and method for manufacturing the same
JP3644427B2 (en) Cadmium negative electrode and nickel cadmium storage battery containing the same
JP2951940B2 (en) Electrode for alkaline storage battery, method for producing the same, and alkaline storage battery
JPH0410181B2 (en)
JP3185529B2 (en) Method for producing sintered substrate for alkaline storage battery
JP2865391B2 (en) Method for producing nickel hydroxide electrode for alkaline storage battery
JP3275594B2 (en) Manufacturing method of positive electrode for alkaline storage battery
JPH0589876A (en) Manufacture of ni electrode for alkaline storage battery
JP3744677B2 (en) Method for producing sintered cadmium negative electrode
JPS6237874A (en) Manufacture of nickel hydroxide electrode of alkaline storage battery
JP4301778B2 (en) Method for producing sintered nickel positive electrode for alkaline secondary battery
JP3702107B2 (en) Method for producing sintered nickel electrode for alkaline storage battery
JP3596148B2 (en) Method for producing sintered positive electrode plate for alkaline storage battery
JP3414184B2 (en) Method for producing positive electrode plate for alkaline storage battery
JP3685726B2 (en) Method for producing sintered cadmium negative electrode
JP3719284B2 (en) Positive plate for alkaline storage battery
JPS60216449A (en) Manufacture of paste type cadmium negative plate
JPH0917433A (en) Electrode substrate for battery and manufacture thereof
JP2000277097A (en) Manufacture of nickel electrode for alkaline storage battery
JPH08106905A (en) Sintered electrode plate for winding type alkaline storage battery and manufacture thereof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees