JP3126165B2 - Pressure wave attenuator in tubular passage for high-speed train travel - Google Patents

Pressure wave attenuator in tubular passage for high-speed train travel

Info

Publication number
JP3126165B2
JP3126165B2 JP03127543A JP12754391A JP3126165B2 JP 3126165 B2 JP3126165 B2 JP 3126165B2 JP 03127543 A JP03127543 A JP 03127543A JP 12754391 A JP12754391 A JP 12754391A JP 3126165 B2 JP3126165 B2 JP 3126165B2
Authority
JP
Japan
Prior art keywords
tubular passage
pressure
speed train
pressure wave
resonator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP03127543A
Other languages
Japanese (ja)
Other versions
JPH04353193A (en
Inventor
信正 杉本
Original Assignee
ノンリニアテクノロジーズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ノンリニアテクノロジーズ株式会社 filed Critical ノンリニアテクノロジーズ株式会社
Priority to JP03127543A priority Critical patent/JP3126165B2/en
Priority to EP19920108105 priority patent/EP0515912B1/en
Priority to DE1992614351 priority patent/DE69214351T2/en
Publication of JPH04353193A publication Critical patent/JPH04353193A/en
Application granted granted Critical
Publication of JP3126165B2 publication Critical patent/JP3126165B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D9/00Tunnels or galleries, with or without linings; Methods or apparatus for making thereof; Layout of tunnels or galleries
    • E21D9/14Layout of tunnels or galleries; Constructional features of tunnels or galleries, not otherwise provided for, e.g. portals, day-light attenuation at tunnel openings

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Aerodynamic Tests, Hydrodynamic Tests, Wind Tunnels, And Water Tanks (AREA)
  • Devices Affording Protection Of Roads Or Walls For Sound Insulation (AREA)
  • Geophysics And Detection Of Objects (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】将来の高速列車は、従来のトンネ
ルに加え、天候や騒音問題のためパイプの内部を走行す
ることが考えられる。列車の走行に伴って引き起こされ
る圧力変動は、パイプやトンネル内を音として伝播する
が、それらが導波管としての役割を果たすため、音波は
幾何学的に広がることなく遠方まで伝わることになる。
その音圧は走行速度の上昇と共に大きくなるので、いわ
ゆる非線形音波の伝播という新しい騒音問題が発生す
る。本発明は、高速列車走行用のこうしたパイプや従来
のトンネルのような管状通路内及びその出入口での騒音
問題を軽減する発明に関するものである。
BACKGROUND OF THE INVENTION It is conceivable that future high-speed trains will run inside pipes due to weather and noise problems in addition to conventional tunnels. The pressure fluctuations caused by the running of the train propagate as sound in pipes and tunnels, but because they act as waveguides, the sound waves travel far without geometrically spreading. .
Since the sound pressure increases as the traveling speed increases, a new noise problem called the propagation of so-called nonlinear sound waves occurs. The present invention relates to an invention for reducing noise problems in such pipes for running a high-speed train and in a tubular passage such as a conventional tunnel and at entrances and exits thereof.

【0002】[0002]

【従来の技術】現在、新幹線列車がトンネルに進入する
際、トンネルの出口において、大きな破裂音を伴う騒音
問題が発生している。これは‘微気圧波問題’として知
られているように、列車がトンネル内を走行することに
よる圧力変動が音波として伝播することに起因する。圧
力変動の大きさは、列車の走行速度の増加と共に大きく
なり、将来の超高速リニア新幹線では、その十分な対策
を講じなければ、この問題はより深刻になるものと懸念
される。
2. Description of the Related Art At present, when a Shinkansen train enters a tunnel, a noise problem accompanied by a loud popping sound has occurred at the exit of the tunnel. This is due to the fact that the pressure fluctuations caused by the train traveling in the tunnel propagate as sound waves, known as the 'micro-pressure wave problem'. The magnitude of the pressure fluctuation increases with the increase in the traveling speed of the train, and it is feared that this problem will become more serious in the future ultra-high-speed linear Shinkansen if sufficient measures are not taken.

【0003】このためリニア新幹線は、出来る限りトン
ネル内を走行するよう計画されている。しかし、トンネ
ルが圧力波に対する導波管の役割を果たすので、トンネ
ルが長くなるにつれ圧力波は幾何学的な減衰を伴うこと
なく遠方まで伝わることになる。そこで圧力変動のレベ
ルが大きくなると、圧力波は伝播するうちにその波形が
非線形(有限振幅)効果によって変形し、最終的にはト
ンネル内の予想もしない遙か遠方に衝撃波を発生させる
という、新たな騒音問題を引き起こす恐れすらある。も
しこの問題が発生すれば、トンネル出口での環境騒音問
題はもちろんのこと、トンネル内の騒音問題や走行する
列車への影響、更には車両やトンネル自身の耐久性や寿
命にも大きな影響を与える。
For this reason, the linear Shinkansen is planned to travel in a tunnel as much as possible. However, since the tunnel acts as a waveguide for the pressure wave, the longer the tunnel, the longer the pressure wave travels without any geometrical attenuation. Therefore, when the level of pressure fluctuation increases, the waveform of the pressure wave is deformed by the nonlinear (finite amplitude) effect while propagating, and finally a shock wave is generated at a far distant place in the tunnel that is not expected. It can even cause serious noise problems. If this problem occurs, it will not only affect the environmental noise at the exit of the tunnel, but also the noise in the tunnel, the effect on the running train, and the durability and life of the vehicle and the tunnel itself. .

【0004】[0004]

【発明が解決しようとする課題】この問題を軽減するに
は、当然圧力変動レベルを低く抑えるのが必須である
が、そのためには車両断面積とトンネル断面積の比を小
さくすればよい。現在の新幹線ではこの比は21%であ
るのに対し、リニア新幹線では12%に設定することが
計画されている。しかし、この比を小さくすることは、
とりもなおさずトンネル断面積を大きくすることであ
り、トンネル建設の経済性を考えるといたずらには大き
くできない。本発明の目的は、出来るだけ小さな断面積
のトンネルでも、内部の圧力変動のレベルを低く抑え、
しかもトンネルが長くなることによる遠方での衝撃波の
発生を防止することである。
To alleviate this problem, it is, of course, necessary to keep the pressure fluctuation level low, but this can be achieved by reducing the ratio of the vehicle cross section to the tunnel cross section. This ratio is 21% for the current Shinkansen, while it is planned to be set to 12% for the Linear Shinkansen. However, reducing this ratio is
The idea is to increase the cross-sectional area of the tunnel, and it cannot be increased unnecessarily considering the economics of tunnel construction. An object of the present invention is to reduce the level of internal pressure fluctuation even in a tunnel having a cross section as small as possible,
Moreover, it is to prevent a shock wave from being generated at a distant place due to a long tunnel.

【0005】[0005]

【課題を解決するための手段】そこで、管状通路の外部
に空洞を多数管状通行路方向に配置し、一つもしくは複
数の連絡路でこの空洞と管状通路を連結する。具体的に
は、図1に示す管状通路1に空洞2を連絡路3を介して
連結する。連絡路3と管状通路1との取り付け方は、必
ずしも両者の軸が直交する必要はなく、また各々の連絡
路3は管状通路1の周囲方向どの位置に設けてもよい。
図1の取り付け方以外にも、図2に示すように、空洞を
もう一つの補助管路4を分離遮蔽板5にて仕切って設け
てもよく、空洞の具体的な形は問題でない。また、図3
に示すように、複数の管状通路1・1が一つの補助管路
4を共有してもよく、その時各連絡路には適当に開閉す
るダンパ6を設ける。
Therefore, a plurality of cavities are arranged outside the tubular passage in the direction of the tubular passage, and the cavity and the tubular passage are connected by one or a plurality of communication paths. Specifically, the cavity 2 is connected to the tubular passage 1 shown in FIG. The connecting path 3 and the tubular path 1 are not necessarily required to have their axes perpendicular to each other, and each connecting path 3 may be provided at any position in the circumferential direction of the tubular path 1.
In addition to the mounting method shown in FIG. 1, as shown in FIG. 2, a cavity may be provided by separating another auxiliary conduit 4 with a separation shielding plate 5 , and the specific shape of the cavity does not matter. FIG.
As shown in (1), a plurality of tubular passages 1 may share one auxiliary conduit 4, and at that time, a damper 6 which is appropriately opened and closed is provided in each communication passage.

【0006】ところで、このような減衰装置を設けるに
は、空洞体積、連絡路断面積やその長さ、そして配置間
隔を適正かつ経済的に決定するにはどのように設計すれ
ばよいかという最も重要な問題が起こる。いま管状通路
の断面積をA 、連絡路の管状通路方向配置間隔を一定値
d とするとき、本特許での計算によると圧力波の減衰効
果は、V/2εAdによって定義される値κ及び(ω0
ω)2 によって定義される値Ωに大きく依存することが
知られている。ここで、εは圧力波の音圧レベルで、ε
= (γ+1)/2γ]Δp/p0で定義され、Δp は圧力変動の
最大値、p0は大気圧で、γは空気の比熱比1.4である。
減衰装置を有効に作用させるには、Ωの値を1近くに設
定し、κの値を大きくするほど効果的であることも知ら
れている。具体的には、κの数値としては、例えば10
以上にとればよい。
[0006] In order to provide such a damping device, the most important factor is how to design the cavity volume, the cross-sectional area of the communication path and its length, and the arrangement interval appropriately and economically. An important problem occurs. Now, the cross-sectional area of the tubular passage is A, and the spacing of the connecting passages in the direction of the tubular passage is constant.
d, the damping effect of the pressure wave according to the calculations in this patent is the value κ and (ω 0 /
ω) 2 is known to be largely dependent on the value Ω defined by 2 . Where ε is the sound pressure level of the pressure wave, ε
= (Γ + 1) / 2γ] Δp / p 0 , where Δp is the maximum value of the pressure fluctuation, p 0 is the atmospheric pressure, and γ is the specific heat ratio of air 1.4.
It is also known that, in order to make the damping device work effectively, the value of Ω is set close to 1 and the value of κ is increased, so that it is more effective. Specifically, the numerical value of κ is, for example, 10
That is all.

【0007】[0007]

【作用】個々の空洞と連絡路の一組は、管状通路内の圧
力変動に対する一種の共鳴器の役割を果たし、公知の結
果によればその固有振動数ω0 は、(Ba0 2/LV)1/2で与え
られる。ただし、音速をa0 として、空洞体積をV 、連
絡路断面積をB 、その長さをL とする。圧力変動の周波
数ωがこの固有振動数ω0 に近い場合には、大きなエネ
ルギー吸収が発生し、圧力波の減衰が期待できる。そこ
でこの一組を管状通路方向に多数配置すると、減衰効果
が高まることは容易に期待される。もし圧力波の周波数
帯が広い場合には、それに相当する異なった固有振動数
をもつ空洞と連絡路の新たな組を追加配置することによ
って減衰を高めることもできる。
The set of individual cavities and channels serves as a kind of resonator for pressure fluctuations in the tubular passage, and according to known results, its natural frequency ω 0 is (Ba 0 2 / LV ) Given by 1/2 . Here, the sound velocity is a 0 , the cavity volume is V, the cross-sectional area of the communication path is B, and the length is L. When the frequency ω of the pressure fluctuation is close to the natural frequency ω 0 , large energy absorption occurs, and attenuation of the pressure wave can be expected. Therefore, when a large number of such sets are arranged in the tubular passage direction, it is easily expected that the damping effect is enhanced. If the frequency band of the pressure wave is wide, the attenuation can be increased by additionally arranging a new set of cavities and communication paths having correspondingly different natural frequencies.

【0008】しかし、多数の空洞を連結することで最も
重要な点は、単に減衰効果が高まるという以外に、管状
通路内の圧力波の伝播速度がもはや通常の音速a0とは異
なり、その周波数に依存するようになることである。こ
の結果、圧力波の非線形効果による波形変形によって発
生する各高周波成分の伝播速度が異なる、即ち圧力波が
分散性を示すようになり、それが衝撃波の発生を抑える
ように作用する点である。
However, the most important point in connecting a large number of cavities is that, besides merely increasing the damping effect, the speed of propagation of the pressure wave in the tubular passage is no longer different from the normal sound speed a 0 , Is to become dependent on As a result, the propagation speed of each high-frequency component generated by waveform deformation due to the non-linear effect of the pressure wave is different, that is, the pressure wave exhibits dispersibility, which acts to suppress the generation of a shock wave.

【0009】[0009]

【実施例】列車の走行に伴って発生する音場は、列車の
近傍場と遠方場に分けられる。近傍場では、列車や管状
通路断面の幾何形状に起因する複雑な三次元音場が形成
され、多くの周波数成分をもつ音波が放射される。しか
しその中の高周波成分は音波の拡散効果によって速やか
に減衰してしまい、遠方場では管状通路断面にわたりほ
ぼ平面的な一次元波の伝播が予想される。その周波数を
決定する物理量としては、管状通路の代表径D 、列車の
走行速度U 及び列車の長さl以外にはなく、代表周波数
はU/D もしくはa0/l(a0 は音速である) で決定されると
考えられる。いま直径10mの円形管状通路を考え、そ
の中を長さ200mの列車が速度150m/s(540km/
h) で走行するとしよう。両見積によると、遠方場の音
波の周波数は2〜3Hzで、Doppler 効果を考えたとして
も数ヘルツにしかならず、いまその周波数ωを5Hz、そ
の音圧レベルεを0.002(141dB SPL)と想定する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A sound field generated as a train travels is divided into a near field and a far field of the train. In the near field, a complicated three-dimensional sound field is formed due to the train and the geometric shape of the cross section of the tubular passage, and a sound wave having many frequency components is emitted. However, the high-frequency components therein are rapidly attenuated by the diffusion effect of the sound wave, and in the far field, the propagation of a substantially planar one-dimensional wave over the cross section of the tubular passage is expected. The physical quantity that determines the frequency is not only the representative diameter D of the tubular passage, the running speed U of the train, and the length l of the train, but the representative frequency is U / D or a 0 / l (a 0 is the speed of sound. ). Now, consider a circular tubular passage with a diameter of 10m, in which a 200m long train runs at a speed of 150m / s (540km / s).
Let's say you drive in h). According to both estimates, the frequency of the sound wave in the far field is 2 to 3 Hz, which is only several Hertz even if the Doppler effect is considered. .

【0010】そこで図1に示す減衰装置を取付けた場合
の管状通路内の音波の伝播を考える。簡単化のため、同
一の大きさの共鳴器を等間隔で取り付けるものとする
が、その間隔は音波の波長に比べて十分小さくとり、共
鳴器が連続的に分布していると見なせるものとする。次
段に於いては、こうした管状通路内を伝播する非線形音
波を定式化する。その際、拡散による音の減衰は無視す
るが、壁面での境界層による摩擦は考慮する。摩擦効果
は一種の履歴特性を示し、局所的に小さくても十分長い
距離を伝播するうちに非線形性同様蓄積し、遠方場の評
価には不可欠である。そこで共鳴器と摩擦両効果を考慮
した遠方場での非線形音波の発展を記述する連立方程式
を導出する。後述においてはその線形分散関係式をまず
求め、音圧が十分小さい音波に対する共鳴器による減衰
効果について調べる。次に代表的な初期値問題を解くこ
とによって、非線形音波の伝播に対する共鳴器の影響、
とりわけ衝撃波の抑制効果について説明する。
Therefore, the propagation of a sound wave in the tubular passage when the damping device shown in FIG. 1 is attached will be considered. For the sake of simplicity, resonators of the same size shall be installed at equal intervals, but the interval shall be sufficiently smaller than the wavelength of the sound wave, and the resonators may be regarded as being continuously distributed. . In the next stage, a nonlinear sound wave propagating in such a tubular passage is formulated. At this time, sound attenuation due to diffusion is ignored, but friction due to the boundary layer on the wall surface is taken into consideration. The friction effect shows a kind of hysteresis, and accumulates as well as nonlinearity over a sufficiently long distance even if it is locally small, and is indispensable for the evaluation of the far field. Therefore, we derive a system of equations that describe the evolution of nonlinear acoustic waves in the far field considering both resonator and friction effects. In the following, the linear dispersion relational expression is first determined, and the attenuation effect of the resonator on sound waves with sufficiently low sound pressure is examined. Next, by solving a typical initial value problem, the effect of the resonator on the propagation of nonlinear sound waves,
In particular, the effect of suppressing shock waves will be described.

【0011】(問題の定式化) いま遠方場を考え、管
状通路の中を平面波が伝播するものとする。しかし、壁
面近くでは境界層が、また共鳴器取り付け部近傍では吸
い込み(吹き出し)が存在するため、一次元波の仮定は
それら領域を除いた‘主流部’でのみ成り立つ(図4参
照)。ただし、その断面積A は管状通路の軸方向に変化
するので、厳密には準一次元流れであることに注意す
る。このため主流部に対する連続の式は次のようにな
る:
(Formulation of Problem) Now, considering a far field, it is assumed that a plane wave propagates in a tubular passage. However, since there is a boundary layer near the wall surface and suction (blowout) near the resonator mounting portion, the assumption of the one-dimensional wave is valid only in the 'mainstream portion' excluding those regions (see FIG. 4). However, it should be noted that since the cross-sectional area A changes in the axial direction of the tubular passage, it is strictly a quasi-one-dimensional flow. So the continuity equation for the mainstream is:

【0012】[0012]

【数1】 (Equation 1)

【0013】ここで、ρ,uは主流部断面にわたって平
均した空気の密度及び管状通路軸方向速度であり、x,
tは軸方向座標及び時刻である。右辺の積分は主流部断
面の境界に沿って定義され、 vn は境界における内向き
速度成分である。従って、ρvn は境界層外縁及び共鳴
器より管状通路の主流部に流入する質量流束(密度)を
表す。一方、主流の軸方向の運動方程式は、いま粘性
(及び熱伝導性)効果を無視しているので、次のように
与えられる:
Where ρ and u are the air density averaged over the cross section of the mainstream and the axial velocity of the tubular passage, x, u
t is the axial coordinate and time. Integration of the right side is defined along the boundary of the main cross-sectional, v n is an inward velocity component at the boundary. Therefore, ρv n represents the mass flux (density) flowing from the outer edge of the boundary layer and from the resonator into the mainstream of the tubular passage. On the other hand, the mainstream equation of motion in the axial direction, which now ignores the viscous (and thermal conductivity) effect, is given by:

【0014】[0014]

【数2】 (Equation 2)

【0015】ここで、p は主流の断面にわたる平均圧力
である。これら二つの方程式に加え、pとρの間には断
熱関係式p/p0=(ρ/ρ0)r が、散逸効果を無視してい
ることから成り立つ。ただし、添え字0 は平衡状態での
値を表し、γは比熱比である。さて、数式1,数式2を
閉じさせるためには、数式1の右辺の境界層及び共鳴器
からの質量流束を明記しなければならない。境界層は速
度ならびに温度境界層の二層からなり、 vn に相当する
境界層外縁での速度 vb と主流速度uとの関係は次式で
与えられることが知られている:
Where p is the average pressure over the main flow cross section. In addition to these two equations, the adiabatic relation p / p 0 = (ρ / ρ 0 ) r between p and ρ is established because the dissipative effect is ignored. Here, the subscript 0 represents a value in an equilibrium state, and γ is a specific heat ratio. Now, in order to close Equations 1 and 2, it is necessary to specify the boundary layer on the right side of Equation 1 and the mass flux from the resonator. The boundary layer consists of two layers of the velocity and the temperature boundary layer, the relationship between the velocity v b and the main flow velocity u of the boundary layer edge corresponding to v n is known to be given by the following equation:

【0016】[0016]

【数3】 (Equation 3)

【0017】ただし、C=1+( γ-1)/Pr 1/2(Pr はPrandt
1 数) で、νは動粘性係数である。速度 vb がu に関す
る時間の積分で与えられ、しかもt 以前の時刻t'にのみ
依存することから、 vb はuの過去の履歴に依存してい
ると解釈できる。この積分はまた、以下に定義するuの
tに関する非整数-1/2階微分として知られているものの
x微分に他ならない:
However, C = 1 + (γ-1) / Pr 1/2 (Pr is Prandt
Where ν is the kinematic viscosity coefficient. Since the velocity v b is given by the integral of time with respect to u and depends only on time t ′ before t, v b can be interpreted as depending on u's past history. This integral is also nothing but the x derivative of what is known as the fractional -1/2 derivative of u with respect to t, defined below:

【0018】[0018]

【数4】 (Equation 4)

【0019】一方、共鳴器取り付け部での質量流束を求
めるには、共鳴器の応答を調べる必要がある。いま共鳴
器は体積V の空洞と、断面積B をもつ長さL の連絡路か
ら成り立っており、それらの長さスケールは音波の波長
より十分短いとする。また、空洞体積は連絡路体積より
はるかに大きいとして、空洞内気体に対してはその運動
を無視し、質量保存則のみ用いると
On the other hand, to determine the mass flux at the resonator mounting portion, it is necessary to examine the response of the resonator. The resonator now consists of a cavity of volume V and a length L of communication path with a cross section B, whose length scale is sufficiently shorter than the wavelength of the sound wave. Also, assuming that the cavity volume is much larger than the communication channel volume, ignoring the motion of the gas in the cavity and using only the law of conservation of mass

【0020】[0020]

【数5】 (Equation 5)

【0021】となる。ここで、ρc は空洞内気体の平均
密度であり、q は連絡路から空洞に流れ込む質量流束で
ある。一方、連絡路に対しては、その長さが波長に比べ
て短いことから、内部の気体の圧縮性は無視できる。こ
のため、質量流束は連絡路に沿って一定になり、連絡路
から管状通路に流れ込む質量流束ρ vn は-qに等しくお
ける。連絡路内気体の軸方向の運動方程式は、それを今
度は連絡路全断面(境界層も含んで)にわたって平均す
ると
## EQU1 ## Here, ρ c is the average density of the gas in the cavity, and q is the mass flux flowing into the cavity from the communication path. On the other hand, since the length of the communication path is shorter than the wavelength, the compressibility of the gas inside can be ignored. Thus, the mass flux becomes constant along the communication path, the mass flux [rho v n flowing into the tubular passageway from the communication path definitive equal to -q. The equation of motion of the gas in the channel in the axial direction can be calculated by averaging it over the entire cross section of the channel (including the boundary layer).

【0022】[0022]

【数6】 (Equation 6)

【0023】となる。ここで、y座標を連絡路軸方向に
とり、管状通路への取り付け口を原点とする(図4参
照)。また、ρ,v,pはそれぞれ連絡路内気体の密度、y
軸方向速度、圧力であり、−は全断面にわたる平均を示
す。壁面での摩擦力σ(単位軸長さ当たり)を評価する
には、管状通路内同様境界層流れを知る必要がある。し
かし、連絡路内流れを非圧縮近似できるために、速度境
界層のみ考えればよく、状況は管状通路の場合と比べ簡
単になる。その結果、σは次の履歴積分で与えられる:
## EQU1 ## Here, the y-coordinate is set in the direction of the communication path axis, and the attachment port to the tubular passage is set as the origin (see FIG. 4). Also, ρ, v, and p are the density of the gas in the communication path and y, respectively.
Axial velocity, pressure,-indicates average over the entire cross section. In order to evaluate the frictional force σ (per unit axial length) on the wall surface, it is necessary to know the boundary layer flow as in the tubular passage. However, since the flow in the communication path can be incompressible, only the velocity boundary layer needs to be considered, and the situation is simpler than that in the case of the tubular passage. Consequently, σ is given by the following history integral:

【0024】[0024]

【数7】 (Equation 7)

【0025】ここで、r は連絡路の水力半径である。こ
の積分は数式4に従って定義したqの-1/2階微分をtに
関してもう一度微分したことになっているので、1/2 階
微分と呼ぶ。いま連絡路内の気体の運動は最低次項のみ
評価するとして、数式6の二次の運動量流束密度(ρは
ρ0 に近い)を無視し、管状通路側y=0から空洞側y
=L まで積分する。その際、ρv の断面にわたる平均値
はq に等しく、q,σともyに依存しないことに注意す
る。また、y=0での圧力を管状通路内圧力pに、y=
L での圧力を空洞内圧力pc と等しいと仮定する。そし
て、q を空洞内圧力で表すために、圧力、密度の関係を
線形化してdpc /dρc =a0 2を用い、数式5のq をpc
表す。その結果、pc '(= pc −p0)とp'(=p-p0) の関
係は次の‘微分方程式' で支配される:
Here, r is the hydraulic radius of the communication path. This integration is referred to as the 1 / 2-order differentiation because the -1 / 2-order differentiation of q defined according to Equation 4 is once again differentiated with respect to t. Now, assuming that only the lowest order term is evaluated for the motion of the gas in the communication path, the secondary momentum flux density (ρ is close to ρ 0 ) in Equation 6 is ignored, and the tubular passage side y = 0 and the cavity side y
= L. Note that the average value of ρv over the cross section is equal to q, and neither q nor σ depends on y. Further, the pressure at y = 0 is converted into the pressure p in the tubular passage, and y =
It assumed to be equal and the cavity pressure p c the pressure at L. Then, in order to express in the intracavity pressure q, using dp c / dρ c = a 0 2 to linearize the pressure, the relationship between the density, representing the q of Equation 5 p c. As a result, the relationship between p c ′ (= p c −p 0 ) and p ′ (= pp 0 ) is governed by the following 'differential equation':

【0026】[0026]

【数8】 (Equation 8)

【0027】ここで、ω0 2(=Ba0 2/LV)は共鳴器の固有振
動数で、p'c の3/2 階微分はその1/2 階微分をもう一度
tで微分したものと定義される。さて数式1の右辺の質
量流束を評価する。共鳴器が軸方向に連続的に分布して
いるとし、その数密度をN とする。管状通路の単位長さ
当たりには、連絡路取り付け口総断面積はNBで、数式1
の右辺は次のようになる:
Here, ω 0 2 (= Ba 0 2 / LV) is the natural frequency of the resonator, and the 3/2 order derivative of p ′ c is obtained by differentiating the 1/2 order again with t. Defined. Now, the mass flux on the right side of Expression 1 is evaluated. It is assumed that the resonators are continuously distributed in the axial direction, and the number density is N. Per unit length of the tubular passage, the total cross-sectional area of the connection passage attachment port is NB,
Is on the right side of:

【0028】[0028]

【数9】 (Equation 9)

【0029】ただし、R は管状通路の水力半径である。
この結果、数式1,2,8はρ,u及びp'c に対して閉じ
る。しかし、ρの代わりに局所音速a2(=dp/dρ=a0 2( ρ
/ ρ0)r-1)を用いると、数式1,数式2は最終的には次
式に帰着される:
Where R is the hydraulic radius of the tubular passage.
As a result, Equations 1, 2, and 8 close for ρ, u and p ′ c . However, instead of ρ, the local sound velocity a 2 (= dp / dρ = a 0 2
Using / ρ 0 ) r-1 ), Equations 1 and 2 ultimately result in:

【0030】[0030]

【数10】 (Equation 10)

【0031】ただし、複号同順とし、1/R * =(1-NRB/2
A)/R で定義される。この左辺はよく知られた圧縮性気
体の非定常一次元流れを記述し、左辺はそれに対する共
鳴器及び境界層の影響を表している。いま、x軸の正方
向へ伝わる波を取り出すために、遅延時間θ=[ ω(t-x
/a0); ωを音波の代表周波数とする] 及び非線形性の大
きさεに応じた長い空間座標X( =εωx/a0) を導入す
る。このεは物理的には音圧比p'/p0 の大きさの程度を
表している。これらθ,xに加え、[(γ+1)/2]u/a0ならび
に[(γ+1)/2 γ]pc '/p0をそれぞれεf,εg とおき、ε
の高次項を無視すると、数式10及び数式8は次の無次
元化された方程式に帰着される:
However, 1 / R * = (1-NRB / 2
A) Defined by / R. The left-hand side describes the well-known unsteady one-dimensional flow of compressible gas, and the left-hand side shows the effect of the resonator and the boundary layer on it. Now, in order to extract a wave propagating in the positive direction of the x-axis, the delay time θ = [ω (tx
/ a 0 ); ω is the representative frequency of the sound wave] and a long spatial coordinate X (= εωx / a 0 ) corresponding to the magnitude ε of the nonlinearity is introduced. This ε physically represents the magnitude of the sound pressure ratio p ′ / p 0 . In addition to these θ and x, [(γ + 1) / 2] u / a 0 and [(γ + 1) / 2 γ] p c '/ p 0 are set as εf and εg, respectively.
Ignoring the higher order terms of, Equations 10 and 8 result in the following dimensionless equations:

【0032】[0032]

【数11】 [Equation 11]

【0033】[0033]

【数12】 (Equation 12)

【0034】ただし、However,

【0035】[0035]

【数13】 (Equation 13)

【0036】は定数で、δR , δr はそれぞれ境界層厚
さ (ν/ ω)1/2と管状通路水力半径、連絡路水力半径の
比を表し、κ及びΩがそれぞれ共鳴器の管状通路への結
合の大きさ、ならびに音波と共鳴器の周波数の同調を表
す定数である。これらの数値を具体例によって求めてみ
る。いま直径10mの円形管状通路を考えており、一
方、共鳴器は、空洞が直径4mの球で、連絡路部は直径
1m、長さ3mとすると、その固有振動数ω0 は4.8Hz
となる。いま音波の代表周波数ωを5Hzとし、連絡路は
目安として10m間隔(N=0.1/m)で管状通路と取付ける
ものとすると、δR =2.0x10 -4/ ε, κ=2.1x10 -2/
ε, δr =2.7x10 -3となる。いま音圧比εを2x10-3程度
にとれば、δR は0.1 程度、κは10程度である。
Is a constant, δ R and δ r are the ratio of the boundary layer thickness (ν / ω) 1/2 to the hydraulic radius of the tubular passage and the hydraulic radius of the connecting passage, respectively, and κ and Ω are the tubular shapes of the resonator, respectively. It is a constant that describes the magnitude of the coupling into the path, as well as the tuning of the sound wave and the frequency of the resonator. Let's find these numerical values using specific examples. We are now considering a circular tubular passage with a diameter of 10 m, while the resonator is a sphere with a diameter of 4 m and the communication path is 1 m in diameter and 3 m in length. Its natural frequency ω 0 is 4.8 Hz.
Becomes Now, assuming that the representative frequency ω of the sound wave is 5 Hz, and that the communication path is attached to the tubular passage at intervals of 10 m (N = 0.1 / m), δ R = 2.0 × 10 −4 / ε, κ = 2.1 × 10 −2 /
ε, δ r = 2.7 × 10 -3 . Assuming now that the sound pressure ratio ε is about 2 × 10 −3 , δ R is about 0.1 and κ is about 10.

【0037】(分散関係式) 非線形波の伝播を考える
前に、微小振幅波の減衰が共鳴器を取り付けることによ
ってどのように増大するか調べてみる。いま、f, gがex
p[i(θ-SX)] (Sは定数)に比例するとして、非線形項を
無視した数式11、及び数式12に代入すると、S は複
素数となる。その虚数部 Si
(Dispersion relational expression) Before considering the propagation of a nonlinear wave, it is examined how the attenuation of a small amplitude wave is increased by installing a resonator. Now, f and g are ex
Assuming that it is proportional to p [i (θ-SX)] (where S is a constant), S is a complex number when it is substituted into Equations 11 and 12 ignoring the nonlinear term. Its imaginary part S i

【0038】[0038]

【数14】 [Equation 14]

【0039】が音波の空間Xに関する減衰率を与える。
ここで、第一項は境界層摩擦による管状通路本来の減衰
を表し、第二項が共鳴器による寄与である。いま|Si|
をω0の関数とみなし図示すると図5のようになり、ω0
/ω=1+δr / √2+ ...で最大減衰率|Si|≒√2 κ/
δr をとる。従って、ω0 を音波の代表周波数に合わせ
れば大きな減衰が期待できる。
Gives the attenuation rate for the space X of the sound wave.
Here, the first term represents the inherent attenuation of the tubular passage due to boundary layer friction, and the second term is the contribution by the resonator. Now | Si |
The To illustrate regarded as a function of omega 0 is as shown in FIG. 5, omega 0
/ ω = 1 + δ r / √2 + ... maximum attenuation rate | Si | Si2 κ /
Take δr. Therefore, if ω 0 is adjusted to the representative frequency of the sound wave, a large attenuation can be expected.

【0040】(非線形音波の空間発展) さて、連立方
程式11,12の初期値問題を解くことによって非線形
音波の発展に対する共鳴器の影響について考える。この
ために、それらをいわゆる‘特性形’に表現する。即
ち、
(Spatial Evolution of Nonlinear Sound) Now, consider the effect of the resonator on the development of nonlinear sound by solving the initial value problem of the simultaneous equations 11 and 12. For this, they are represented in what is called 'characteristic forms'. That is,

【0041】[0041]

【数15】 (Equation 15)

【0042】で定義される特性線に沿って、数式11,
12は
Along the characteristic line defined by
12 is

【0043】[0043]

【数16】 (Equation 16)

【0044】[0044]

【数17】 [Equation 17]

【0045】と書ける。走行している列車による圧力波
のモデルとして、1組の正(圧縮)、負(膨張)のパル
ス波を考える。そこで、X=0での初期条件を、ガウス
分布型の関数の微係数で与える:
Can be written as A set of positive (compression) and negative (expansion) pulse waves is considered as a model of a pressure wave generated by a running train. Thus, the initial condition at X = 0 is given by the derivative of a Gaussian function:

【0046】[0046]

【数18】 (Equation 18)

【0047】ここで、√2eはfの最大振幅を規格化する
ために導入されている。ところで、g の初期値は数式1
7の解として、すなわち右辺のfを18で与えた方程式
の解として求まることになる。境界層や共鳴器を考慮し
なければ、条件18で与えられる音波は二つの衝撃波を
伴ういわゆるN波に発展する。そこで、共鳴器がどのよ
うに影響を与えるのか、取り付けない場合と、取り付け
た場合の代表例を示す。以下の例においては、境界層効
果を示すδR は0.1に、δr は0.01 に固定する。
Here, √2e is introduced to normalize the maximum amplitude of f. By the way, the initial value of g is given by Equation 1.
7, that is, as the solution of the equation given by 18 on the right side. If the boundary layer and the resonator are not considered, the sound wave given in the condition 18 evolves into a so-called N wave accompanied by two shock waves. Therefore, a typical example of how the resonator influences, a case where the resonator is not mounted, and a case where the resonator is mounted will be described. In the following example, δ R indicating the boundary layer effect is fixed to 0.1, and δ r is fixed to 0.01.

【0048】[0048]

【発明の効果】まず、共鳴器を取付けない場合(数式1
6でκ=0に相当する)のfの発展を図6に示す。因
に、fとパイプ内圧力p'とは[(γ+1)/2γ]p'/p0=εf
で関係づけられる。衝撃波(波形の不連続)がX=1.0
265 及びX=1.0530 で前縁、後縁に発生する。いま、
音波の代表周波数ωを5Hz、代表音圧比εを2x10-3とし
ているので、X=1は実際には約5kmに相当する。境界
層の影響で衝撃波形の右側がまるくなり、後ろに尻尾が
発生する。
First, when no resonator is attached (Equation 1)
6 is equivalent to κ = 0). Incidentally, f and the pressure p ′ in the pipe are [(γ + 1) / 2γ] p ′ / p 0 = εf
Are related by Shock wave (waveform discontinuity) X = 1.0
265 and X = 1.0530 occur at the leading and trailing edges. Now
Since the representative frequency ω of the sound wave is 5 Hz and the representative sound pressure ratio ε is 2 × 10 −3 , X = 1 actually corresponds to about 5 km. The right side of the shock waveform is rounded due to the influence of the boundary layer, and a tail is generated behind.

【0049】さて、共鳴器を取付けた代表的な場合を示
す。大きな減衰が得られるように、共鳴器の同調係数Ω
を1に設定し、係合係数κは1に選んだ場合の発展を図
7に示す。図7(a)はfの初期波形からの発展を示し
ており、二つの衝撃波がX=0.8630 には後縁に、X=
1.2960 には前縁に出現する。共鳴器を取付けない場合
と比べ、後縁の衝撃波が前縁よりも早く現われ、しかも
大きく成長し正の値(圧縮)をとる。図7(b)には空
洞内圧力gの発展を示す。座標Xの方向を(a)とは逆
に表示してあるので、振動するgの初期波形が見られ
る。衝撃波の抑制という目的には、この程度の大きさの
共鳴器では役に立たない。
Now, a typical case where a resonator is mounted will be described. The tuning factor Ω of the resonator is
Is set to 1 and the engagement coefficient κ is selected to be 1 as shown in FIG. FIG. 7 (a) shows the development of f from the initial waveform, where two shock waves are at the trailing edge at X = 0.63030 and X = 0.8630.
Appears at the leading edge at 1.2960. Compared to the case without the resonator, the shock wave at the trailing edge appears earlier than at the leading edge, and grows larger to take a positive value (compression). FIG. 7B shows the development of the pressure g in the cavity. Since the direction of the coordinate X is displayed in the opposite direction to that of (a), an initial waveform of the vibrating g is seen. Resonators of this size are useless for the purpose of suppressing shock waves.

【0050】次に、共鳴器との結合定数を大きくκ=1
0にした場合の発展を図8に示す。κの値を大きくする
と、減衰率が大きくなることは数式14から明らかであ
る。図8(a)は初期波形が次第に漣に発展していく様
子を示し、この場合の衝撃波の出現は見られない。図8
(b)はgの発展を示すが、その値も急速に減衰してい
く様子が見られる。このように適当な大きさの共鳴器を
取付けると、遠方場での衝撃波の出現を抑制できる。
Next, the coupling constant with the resonator is increased to κ = 1
FIG. 8 shows the development when the value is set to 0. It is apparent from Expression 14 that the larger the value of κ, the larger the attenuation rate. FIG. 8A shows a state in which the initial waveform gradually develops into a ripple, and no appearance of a shock wave is observed in this case. FIG.
(B) shows the development of g, and it can be seen that the value also rapidly decreases. By installing a resonator having an appropriate size in this way, the appearance of a shock wave in the far field can be suppressed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の管状通路1と空洞2と連絡路3の実施
例を示す図面。
FIG. 1 is a view showing an embodiment of a tubular passage 1, a cavity 2, and a communication passage 3 of the present invention.

【図2】空洞2を補助管路4に構成し、分離遮蔽板5に
より各室を遮蔽し空洞とした実施例の図面。
FIG. 2 is a drawing of an embodiment in which the cavity 2 is formed as an auxiliary conduit 4 and each chamber is shielded by a separation shielding plate 5 to form a cavity.

【図3】2本の管状通路1・1の間に、分離遮蔽板5を
具備した1本の補助管路4を配置し、各連絡路内には、
適当に開閉するダンパ6を設けた実施例の図面。
FIG. 3 shows that one auxiliary conduit 4 having a separation shielding plate 5 is arranged between two tubular passages 1;
Drawing of embodiment provided with damper 6 which opens and closes suitably.

【図4】図1の実施例の平面断面図。FIG. 4 is a plan sectional view of the embodiment of FIG. 1;

【図5】音波の管状通路X方向の空間減衰率を示す図
面。
FIG. 5 is a diagram showing a spatial attenuation rate of a sound wave in a tubular passage X direction.

【図6】本発明の圧力波減衰装置を付加しない場合の管
状通路内の圧力波の伝播を示す図面。
FIG. 6 is a drawing showing the propagation of a pressure wave in a tubular passage when the pressure wave attenuating device of the present invention is not added.

【図7】κ=1の圧力波減衰装置を付設した場合の管状
通路内圧力(a)及び空洞内圧力(b)の伝播を示す図
面。
FIG. 7 is a drawing showing the propagation of the pressure in the tubular passage (a) and the pressure in the cavity (b) when a pressure wave attenuator with κ = 1 is additionally provided.

【図8】κ=10の圧力波減衰装置を付設した場合の管
状通路内圧力(a)及び空洞内圧力(b)の伝播を示す
図面。
FIG. 8 is a drawing showing the propagation of the pressure in the tubular passage (a) and the pressure in the cavity (b) when a pressure wave attenuator with κ = 10 is attached.

【符号の説明】[Explanation of symbols]

1 管状通路 2 空洞 3 連絡路 4 補助管路 5 分離遮蔽板 6 連絡路開閉ダンパ DESCRIPTION OF SYMBOLS 1 Tubular passage 2 Cavity 3 Communication path 4 Auxiliary pipe 5 Separation shielding plate 6 Connection path opening / closing damper

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 高速列車が走行するトンネル等の管状通
路にて、高速列車が管状通路内に進入する際や管状通路
内を走行する際に発生し伝播する圧力波を減衰する装置
であって、前記管状通路と連通する空洞を配置し、該空
洞と管状通路を連絡路にて連結し、前記空洞と連絡路が
管状通路内の圧力変動に対する共鳴器の働きをし、前記
管状通路内を伝播する圧力波を減衰すべく構成したこと
を特徴とする高速列車走行用管状通路内の圧力波減衰装
置。
1. A tubular passage such as a tunnel through which a high-speed train travels.
When a high-speed train enters a tubular passage on a road,
To attenuate the pressure waves generated and propagated when traveling in a vehicle
Arranging a cavity communicating with said tubular passage;
The sinus and the tubular passage are connected by a communication channel, and the cavity and the communication channel are connected.
Act as a resonator for pressure fluctuations in the tubular passage,
It is configured to attenuate the pressure wave propagating in the tubular passage
A pressure wave damping device in a tubular passage for running a high-speed train.
【請求項2】 高速列車が走行するトンネル等の管状通
路にて、高速列車が管状通路内に進入する際や管状通路
内を走行する際に発生し伝播する圧力波を減衰する装置
であって、前記管状通路と連通する空洞を管状通路方向
に多数配置し、その個々の空洞と管状通路との間を断面
の小さな連絡路でそれぞれ連結し、前記個々の空洞と連
絡路が管状通路内の圧力変動に対する共鳴器の働きを
し、前記管状通路内を伝播する圧力波を減衰すべく構成
したことを特徴とする高速列車走行用管状通路内の圧力
波減衰装置。
2. A tubular train such as a tunnel in which a high-speed train runs.
When a high-speed train enters a tubular passage on a road,
To attenuate the pressure waves generated and propagated when traveling in a vehicle
Wherein a cavity communicating with said tubular passage is oriented in a tubular passage direction.
And a cross section between the individual cavities and the tubular passage
Connected to the individual cavities
The junction acts as a resonator for pressure fluctuations in the tubular passage.
And configured to attenuate pressure waves propagating in the tubular passage.
A pressure wave damping device in a tubular passage for running a high-speed train.
【請求項3】 前記空洞を、筒状の補助管路とし、該補
助管路を分離遮蔽板にて仕切ることを特徴とする請求項
2記載の高速列車走行用管状通路内の圧力波減衰装置。
3. The method according to claim 1, wherein the cavity is a cylindrical auxiliary conduit.
3. The pressure wave attenuating device in a tubular passage for high-speed train running according to claim 2, wherein the auxiliary conduit is partitioned by a separation shielding plate .
【請求項4】 前記連絡路にダンパを設けたことを特徴
とする請求項1または請求項2記載の高速列車走行用管
状通路内の圧力波減衰装置。
4. A damper is provided in said communication path.
The pressure wave damping device in a tubular passage for high-speed train running according to claim 1 or 2.
JP03127543A 1991-05-30 1991-05-30 Pressure wave attenuator in tubular passage for high-speed train travel Expired - Lifetime JP3126165B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP03127543A JP3126165B2 (en) 1991-05-30 1991-05-30 Pressure wave attenuator in tubular passage for high-speed train travel
EP19920108105 EP0515912B1 (en) 1991-05-30 1992-05-13 Tunnel-structure to suppress propagation of pressure disturbances generated by travelling of high-speed trains
DE1992614351 DE69214351T2 (en) 1991-05-30 1992-05-13 Suitable tunnel structure for suppressing pressure disturbances caused by high speed trains

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03127543A JP3126165B2 (en) 1991-05-30 1991-05-30 Pressure wave attenuator in tubular passage for high-speed train travel

Publications (2)

Publication Number Publication Date
JPH04353193A JPH04353193A (en) 1992-12-08
JP3126165B2 true JP3126165B2 (en) 2001-01-22

Family

ID=14962612

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03127543A Expired - Lifetime JP3126165B2 (en) 1991-05-30 1991-05-30 Pressure wave attenuator in tubular passage for high-speed train travel

Country Status (3)

Country Link
EP (1) EP0515912B1 (en)
JP (1) JP3126165B2 (en)
DE (1) DE69214351T2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011132705A (en) * 2009-12-24 2011-07-07 Railway Technical Research Institute Prediction arithmetic unit, prediction operation method, and prediction operation program for pressure wave

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2556439B2 (en) * 1993-11-18 1996-11-20 西日本旅客鉄道株式会社 Method of reducing air pressure noise at tunnel exit
KR100449513B1 (en) * 2002-03-02 2004-09-22 주식회사 대우엔지니어링 Duct tunnel system
KR100449512B1 (en) * 2002-03-02 2004-09-22 주식회사 대우엔지니어링 Duct tunnel system
KR100449509B1 (en) * 2002-03-02 2004-09-22 주식회사 대우엔지니어링 Draft hole type train tunnel
KR100449510B1 (en) * 2002-03-02 2004-09-22 주식회사 대우엔지니어링 Draft hole type train tunnel
KR100449514B1 (en) * 2002-03-02 2004-09-22 주식회사 대우엔지니어링 Duct tunnel system
KR100449511B1 (en) * 2002-03-02 2004-09-22 주식회사 대우엔지니어링 Draft hole type train tunnel
JP4555560B2 (en) * 2003-11-25 2010-10-06 東日本旅客鉄道株式会社 Tunnel buffer
CN101929339A (en) * 2010-06-22 2010-12-29 西南交通大学 Micro-pressure wave retardance structure for tunnel trunk of high-speed railway
US9198765B1 (en) 2011-10-31 2015-12-01 Nuvasive, Inc. Expandable spinal fusion implants and related methods
US9445918B1 (en) 2012-10-22 2016-09-20 Nuvasive, Inc. Expandable spinal fusion implants and related instruments and methods
KR101445251B1 (en) * 2013-10-21 2014-09-29 한국철도기술연구원 Structure for reducing tunel micro pressure wave including air pipe parrarel to advancing direction of train
JP6356988B2 (en) * 2014-03-20 2018-07-11 大成建設株式会社 tunnel
CN103899330A (en) * 2014-04-15 2014-07-02 中国矿业大学(北京) Method for relieving pressure of high confining pressure roadway full fracture face quirk
CN105003282A (en) * 2015-08-25 2015-10-28 西南交通大学 Enlarged chamber alleviation structure on end part of high-speed railway tunnel
JP6635836B2 (en) * 2016-03-15 2020-01-29 東海旅客鉄道株式会社 Pressure fluctuation reduction structure

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3741343A1 (en) * 1987-11-24 1989-09-07 Guenter Dipl Ing Suessmuth Tunnel for high-speed vehicles
DE3739685A1 (en) * 1987-11-24 1989-06-08 Guenter Dipl Ing Suessmuth Tunnel for high-speed vehicles
JPH0823279B2 (en) * 1988-02-18 1996-03-06 徹 石間 Anti-shock device in tunnel

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
日本機械学会関西支部講演会講演論文集Vol.25 2nd p.38−40

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011132705A (en) * 2009-12-24 2011-07-07 Railway Technical Research Institute Prediction arithmetic unit, prediction operation method, and prediction operation program for pressure wave

Also Published As

Publication number Publication date
DE69214351T2 (en) 1997-03-13
EP0515912B1 (en) 1996-10-09
DE69214351D1 (en) 1996-11-14
EP0515912A3 (en) 1993-04-28
JPH04353193A (en) 1992-12-08
EP0515912A2 (en) 1992-12-02

Similar Documents

Publication Publication Date Title
JP3126165B2 (en) Pressure wave attenuator in tubular passage for high-speed train travel
Howe The compression wave produced by a high-speed train entering a tunnel
Cummings The effects of grazing turbulent pipe-flow on the impedance of an orifice
Chang et al. Low-frequency sound absorptive properties of double-layer perforated plate under grazing flow
Elnady et al. On semi-empirical liner impedance modeling with grazing flow
Farahani et al. Supersonic inlet buzz detection using pressure measurement on wind tunnel wall
Aurégan et al. Low frequency sound propagation in a coaxial cylindrical duct: application to sudden area expansions and to dissipative silencers
Howe Mach number dependence of the compression wave generated by a high-speed train entering a tunnel
Jing et al. Broadband acoustic liner based on the mechanism of multiple cavity resonance
Zhang et al. Low-frequency fluctuations and their suppression in the 5.5 m× 4 m aeroacoustic wind tunnel at CARDC
Liu et al. Influence of air chambers on wavefront steepening in railway tunnels
JPH074200A (en) Pressure wave dispersion device in tubular passage for rapid train
JP7453748B2 (en) Louvers, double skin, noise reduction structure
Ramakrishnan et al. Design curves for rectangular splitter silencers
Mashimo et al. Attenuation and Distortion of a Compression Wave Propagating in a High-Speed Railwav Tunnel
CN112282786B (en) Micro-pressure wave retarding method for long and large tunnel of high-speed railway
Vardy Reflection of step-wavefronts from perforated and flared tube extensions
Howe et al. Reflection and transmission of a compression wave at a tunnel portal
JP2556439B2 (en) Method of reducing air pressure noise at tunnel exit
Kharazi et al. Application of Helmholtz resonators in open jet wind tunnels
Hu The acoustic and instability waves of jets confined inside an acoustically lined rectangular duct
Anthoine Alleviation of pressure rise from a high-speed train entering a tunnel
Maeda Micropressure waves radiating from a Shinkansen tunnel portal
Davies et al. The measurement and prediction of sound waves of arbitrary amplitude in practical flow ducts
KR100449511B1 (en) Draft hole type train tunnel

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 11