JP3126007B2 - Non-aqueous electrolyte battery - Google Patents

Non-aqueous electrolyte battery

Info

Publication number
JP3126007B2
JP3126007B2 JP05090432A JP9043293A JP3126007B2 JP 3126007 B2 JP3126007 B2 JP 3126007B2 JP 05090432 A JP05090432 A JP 05090432A JP 9043293 A JP9043293 A JP 9043293A JP 3126007 B2 JP3126007 B2 JP 3126007B2
Authority
JP
Japan
Prior art keywords
active material
electrode active
positive electrode
fepo
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP05090432A
Other languages
Japanese (ja)
Other versions
JPH06283207A (en
Inventor
重人 岡田
秀昭 大塚
創 荒井
昌司 柴田
雅弘 市村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP05090432A priority Critical patent/JP3126007B2/en
Publication of JPH06283207A publication Critical patent/JPH06283207A/en
Application granted granted Critical
Publication of JP3126007B2 publication Critical patent/JP3126007B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、非水電解質電池、さら
に詳細には充放電可能な非水電解質二次電池に関し、特
に正極活物質の改良に関わり、電池の充放電容量の増加
を目的とするものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte battery, and more particularly to a chargeable / dischargeable non-aqueous electrolyte secondary battery. It is assumed that.

【0002】[0002]

【従来の技術】リチウム等のアルカリ金属およびその合
金や化合物を負極活物質とする非水電解質電池は、負極
金属イオンの正極活物質へのインサーションもしくはイ
ンターカレーション反応によって、その大放電容量と可
充電性を両立させている。従来から、リチウムを負極活
物質として用いる二次電池としては、リチウムに対しイ
ンターカレーションホストとなりうるV2 5 やLiC
oO2 やLiNiO2 などの層状もしくはトンネル状酸
化物を正極に用いた電池が提案されているが、これらの
金属酸化物は、コストの点で実用上難点がある。
2. Description of the Related Art A non-aqueous electrolyte battery using an alkali metal such as lithium or an alloy or compound thereof as a negative electrode active material has a large discharge capacity by an insertion or intercalation reaction of a negative electrode metal ion into a positive electrode active material. It balances chargeability. Conventionally, as a secondary battery using lithium as a negative electrode active material, V 2 O 5 or LiC which can serve as an intercalation host for lithium has been used.
Batteries using a layered or tunnel-shaped oxide such as oO 2 or LiNiO 2 as a positive electrode have been proposed, but these metal oxides have practical difficulties in terms of cost.

【0003】[0003]

【発明が解決しようとする課題】本発明は上記現状の問
題点を改善するために提案されたもので、その目的は、
小型で充放電特性に優れた電池特性を持つ非水電解質電
池を低コストで提供することにある。
SUMMARY OF THE INVENTION The present invention has been proposed in order to improve the above-mentioned problems, and its object is to
An object of the present invention is to provide a nonaqueous electrolyte battery having a small size and excellent battery characteristics with excellent charge / discharge characteristics at low cost.

【0004】[0004]

【課題を解決するための手段】上記の目的を達成するた
め、本発明は組成式FePO4 で与えられる化合物を正
極活物質とし、リチウムその他のアルカリ金属またはそ
の化合物を負極活物質とし、前記正極活物質及び、前記
負極活物質に対して化学的に安定であり、且つアルカリ
金属イオンが前記正極活物質あるいは前記負極活物質と
電気化学反応をするための移動を行い得る物質を電解質
物質としたことを特徴とする非水電解質電池を発明の要
旨とするものである。
In order to achieve the above-mentioned object, the present invention provides a compound having the composition formula FePO 4 as a positive electrode active material, lithium or another alkali metal or a compound thereof as a negative electrode active material, An active material and a material which is chemically stable with respect to the negative electrode active material, and which is capable of performing an alkali metal ion transfer for performing an electrochemical reaction with the positive electrode active material or the negative electrode active material is defined as an electrolyte material. A non-aqueous electrolyte battery characterized by the above is the gist of the invention.

【0005】[0005]

【作用】本発明の鉄化合物である正極活物質は、既知4
V級高電圧正極の中でも最も安価なMn酸化物であるL
iMn2 4 に比べてもさらに半分以下の低コストを可
能とするものである。
The positive electrode active material, which is the iron compound of the present invention, is a known positive electrode.
L, the cheapest Mn oxide among V-class high voltage positive electrodes
Compared with iMn 2 O 4 , the cost can be reduced by half or less.

【0006】[0006]

【実施例】次に本発明の実施例について説明する。本発
明ではFePO4 は、FePO4 ・nH2 Oを熱処理し
て得た。熱分析の結果を図1に示す。図1の熱重量分析
の結果から、市販FePO4 ・nH2 O試薬より結晶水
を完全に除去するためには少なくとも250℃以上の熱
処理が必要であることがわかる。曲線Aは重量の減少、
曲線Bは発熱又は吸熱を示す。また、室温および250
℃,550℃,600℃,750℃各温度での24時間
熱処理品のX線回折結果を図2に示す。250℃で熱処
理した試料は非晶質であり、550℃〜750℃で熱処
理した試料は六方晶である。この正極活物質を用いて正
極を形成するには、FePO4 化合物粉末とポリテトラ
フルオロエチレンのような結着剤粉末との混合物をニッ
ケル,ステンレス等の支持体上に圧着成形する。あるい
は、かかる混合物質粉末に導電性を付与するため熱分解
黒鉛やアセチレンブラックのような導電性粉末を混合
し、これに更にポリテトラフルオロエチレンのような結
着剤粉末を所要に応じて加え、この混合物を金属容器に
入れ、あるいは前述の混合物をニッケル,ステンレス等
の支持体に圧着成形する等の手段によって形成される。
負極活物質であるリチウムは一般のリチウム電池のそれ
と同様にシート状として、またはそのシートをニッケ
ル,ステンレス等の導電体網に圧着して負極として形成
される。また負極活物質としては、リチウム以外にリチ
ウム合金やリチウム化合物、その他ナトリウム,カリウ
ム等、従来公知のものが使用できる。電解質としては、
例えばジメトキシエタン,2−メチルテトラヒドロフラ
ン,エチレンカーボネート,メチルホルメート,ジメチ
ルスルホキシド,プロピレンカーボネート,アセトニト
リル,ブチロラクトン,ジメチルフォルムアミドなどの
有機溶媒に、LiAsF6 ,LiBF4 ,LiPF6
LiAlCl4 ,LiClO4 などのルイス酸を溶解し
た非水電解質溶液が使用できる。更に、セパレータ,構
造材料(電池ケース等)などの他の要素についても従来
公知の各種材料が使用でき、特に制限はない。以下実施
例によって本発明の方法を更に具体的に説明するが、本
発明はこれらによりなんら制限されるものではない。な
お、実施例において電池の作製及び測定はアルゴン雰囲
気下のドライボックス中で行った。
Next, an embodiment of the present invention will be described. In the present invention, FePO 4 was obtained by heat-treating FePO 4 .nH 2 O. FIG. 1 shows the results of the thermal analysis. From the results of the thermogravimetric analysis in FIG. 1, it can be seen that a heat treatment of at least 250 ° C. or more is necessary to completely remove water of crystallization from the commercially available FePO 4 .nH 2 O reagent. Curve A is weight loss,
Curve B shows heat generation or heat absorption. Room temperature and 250
FIG. 2 shows the results of X-ray diffraction of the heat-treated product at 24 ° C., 550 ° C., 600 ° C. and 750 ° C. for 24 hours. The sample heat treated at 250 ° C. is amorphous, and the sample heat treated at 550 ° C. to 750 ° C. is hexagonal. To form a positive electrode using this positive electrode active material, a mixture of an FePO 4 compound powder and a binder powder such as polytetrafluoroethylene is compression-molded on a support such as nickel or stainless steel. Alternatively, a conductive powder such as pyrolytic graphite or acetylene black is mixed to impart conductivity to such a mixed substance powder, and a binder powder such as polytetrafluoroethylene is further added thereto as needed, The mixture is placed in a metal container, or the mixture is press-formed on a support such as nickel or stainless steel.
Lithium as the negative electrode active material is formed as a negative electrode by forming a sheet in the same manner as that of a general lithium battery, or by pressing the sheet against a conductive net such as nickel or stainless steel. As the negative electrode active material, other than lithium, a conventionally known material such as a lithium alloy, a lithium compound, and sodium and potassium can be used. As the electrolyte,
For example, LiAsF 6 , LiBF 4 , LiPF 6 , LiPF 6 ,
A non-aqueous electrolyte solution in which a Lewis acid such as LiAlCl 4 or LiClO 4 is dissolved can be used. Further, as for other elements such as a separator and a structural material (such as a battery case), conventionally known various materials can be used, and there is no particular limitation. Hereinafter, the method of the present invention will be described more specifically by way of examples, but the present invention is not limited thereto. In the examples, the production and measurement of the battery were performed in a dry box under an argon atmosphere.

【0007】〔実施例1〕図3は本発明による電池の一
具体例であるコイン型電池の断面図であり、図中1はス
テンレス製封口板、2はポリプロピレン製ガスケット、
3はステンレス製正極ケース、4はリチウム負極、5は
ポリプロピレン製微孔性セパレータ、6は正極合剤ペレ
ットを示す。正極活物質は、FePO4 ・nH2 Oを2
50℃で36時間熱処理してFePO4 を無水化したも
のを用いた。得られた無水FePO4 を導電剤(アセチ
レンブラック粉末),結着剤(ポリテトラフルオロエチ
レン)と共に、70:25:5の重量比で混合の上、ロ
ール成形し、正極合剤ペレット6(厚さ0.5mm,直
径17mm,200mg/cell)とした。まず、封
口板1上に金属リチウム負極4を加圧配置したものを、
ガスケット2の凹部に挿入し、金属リチウム負極4の上
にセパレータ5,正極合剤ペレット6の順序に配置し、
電解液としてプロピレンカーボネート(PC)と2−ジ
メトキシエタン(DME)の等容積混合溶媒にLiCl
4 を溶解させた1規定溶液をそれぞれ適量注入して含
浸させた後に、正極ケース3をかぶせてかしめることに
より、厚さ2mm,直径23mmのコイン型電池を作製
した。実施例1のリチウム2次電池について、0.5m
A/cm2 の放電電流密度で4.5V>1Vの電圧規制
下の充放電試験を行ったところ、図4に示す良好な特性
図を得、可逆的に充放電できることがわかった。図4に
おいて、縦軸にセル電圧、横軸に充放電時間をとり、右
下りの曲線は放電、右上りの曲線は充電状態を示す。
FIG. 3 is a cross-sectional view of a coin-type battery as a specific example of the battery according to the present invention. In FIG. 3, 1 is a stainless steel sealing plate, 2 is a polypropylene gasket,
Reference numeral 3 denotes a stainless steel positive electrode case, 4 denotes a lithium negative electrode, 5 denotes a polypropylene microporous separator, and 6 denotes a positive electrode mixture pellet. The positive electrode active material is FePO 4 .nH 2 O 2
Heat-treated at 50 ° C. for 36 hours to dehydrate FePO 4 was used. The obtained anhydrous FePO 4 was mixed with a conductive agent (acetylene black powder) and a binder (polytetrafluoroethylene) in a weight ratio of 70: 25: 5, and then roll-molded to form a positive electrode mixture pellet 6 (thickness). 0.5 mm, diameter 17 mm, 200 mg / cell). First, a metal lithium negative electrode 4 placed under pressure on a sealing plate 1 is
Inserted into the recess of the gasket 2, placed on the lithium metal anode 4 in the order of the separator 5 and the cathode mixture pellet 6,
LiCl in an equal volume mixed solvent of propylene carbonate (PC) and 2-dimethoxyethane (DME) as electrolyte
After injecting and impregnating an appropriate amount of a 1 N solution in which O 4 was dissolved, the positive electrode case 3 was covered and swaged to produce a coin-type battery having a thickness of 2 mm and a diameter of 23 mm. 0.5 m for the lithium secondary battery of Example 1
When a charge / discharge test was performed under a voltage regulation of 4.5 V> 1 V at a discharge current density of A / cm 2 , a favorable characteristic diagram shown in FIG. 4 was obtained, and it was found that reversible charge / discharge was possible. In FIG. 4, the vertical axis represents the cell voltage, the horizontal axis represents the charging / discharging time, and the downward-sloping curve shows the discharging and the upper-right curve shows the charging state.

【0008】〔比較例1〕市販のFePO4 ・nH2
試薬を90℃の真空乾燥処理後、正極として用いた以
外、実施例1と同様な構造のコイン型電池を組み立て
た。しかして、実施例1及び比較例1のリチウム2次電
池について、0.5mA/cm2 の放電電流密度で4.
5V>1Vの電圧規制下の充放電試験を行ったところ、
その放電容量の充放電サイクル回数に伴う劣化挙動を図
5に示す。両者の比較から単に市販試薬のFePO4
nH2 Oを90℃で真空乾燥しただけでは結晶に含まれ
る水分が除去しきれず、良好なサイクル特性が得られな
い。FePO4 ・nH2 Oの熱処理による無水化処理品
がFePO4 の高電圧容量向上に効果的であることがわ
かる。
Comparative Example 1 Commercially available FePO 4 .nH 2 O
A coin-type battery having the same structure as in Example 1 was assembled except that the reagent was subjected to a vacuum drying treatment at 90 ° C. and used as a positive electrode. Thus, for the lithium secondary batteries of Example 1 and Comparative Example 1, at a discharge current density of 0.5 mA / cm 2 , 4.
When a charge / discharge test under voltage regulation of 5V> 1V was performed,
FIG. 5 shows the deterioration behavior of the discharge capacity with the number of charge / discharge cycles. From the comparison between the two, the commercial reagent FePO 4.
If nH 2 O is simply vacuum dried at 90 ° C., water contained in the crystals cannot be completely removed, and good cycle characteristics cannot be obtained. It can be seen that the product dehydrated by heat treatment of FePO 4 .nH 2 O is effective for improving the high voltage capacity of FePO 4 .

【0009】〔実施例2〕熱処理温度による結晶系の影
響を調べるため、実施例1と同じコイン型電池を用い
て、FePO4 ・nH2 O熱処理条件を600℃,24
時間に変えた以外は実施例1と同条件でその充放電特性
を測定した。この熱処理条件で得られる六方晶FePO
4 の充放電曲線を図6に示す。高温熱処理により結晶化
しても、2サイクル目以降の充放電曲線は実施例1の非
晶質熱処理品と類似しており、電池特性上の優劣はほと
んど見られない。
Example 2 In order to examine the influence of the crystal system on the heat treatment temperature, the same coin-type battery as in Example 1 was used, and the heat treatment conditions of FePO 4 .nH 2 O were set at 600 ° C. and 24 ° C.
The charge and discharge characteristics were measured under the same conditions as in Example 1 except that the time was changed. Hexagonal FePO obtained under these heat treatment conditions
The charge / discharge curve of No. 4 is shown in FIG. Even when crystallized by the high-temperature heat treatment, the charge / discharge curves after the second cycle are similar to those of the amorphous heat-treated product of Example 1, and there is almost no difference in battery characteristics.

【0010】[0010]

【発明の効果】以上説明したように、本発明によれば、
可逆容量の大きな小型高エネルギー密度のリチウム電池
を極めて低コストで構成することができ、本発明電池は
コイン型電池など種々の分野に利用できるという利点を
有する。
As described above, according to the present invention,
A small high-density lithium battery having a large reversible capacity can be formed at extremely low cost, and the battery of the present invention has an advantage that it can be used in various fields such as a coin-type battery.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例であるFePO4 ・nH2
の熱重量分析及び示差熱分析特性図を示す。
FIG. 1 is an embodiment of the present invention, FePO 4 .nH 2 O
1 shows a thermogravimetric analysis and differential thermal analysis characteristic diagram of the sample.

【図2】本発明の一実施例であるFePO4 ・nH2
の各熱処理温度でのX線回折特性図を示す。
FIG. 2 shows an embodiment of the present invention, FePO 4 .nH 2 O;
3 shows X-ray diffraction characteristics at each heat treatment temperature.

【図3】本発明の一実施例におけるコイン電池の構成例
を示す断面図である。
FIG. 3 is a cross-sectional view illustrating a configuration example of a coin battery according to an embodiment of the present invention.

【図4】本発明の一実施例であるFePO4 熱処理品の
0.5mA/cm2 充放電電流時の4.5V>1V電圧
規制充放電曲線を示す特性図である。
FIG. 4 is a characteristic diagram showing a 4.5V> 1V voltage regulation charge / discharge curve at a charge / discharge current of 0.5 mA / cm 2 of the heat-treated FePO 4 product according to one embodiment of the present invention.

【図5】本発明の一実施例であるFePO4 熱処理品
(本発明)及び未処理品(従来品)の0.5mA/cm
2 充放電電流時の放電容量の充放電サイクル回数に伴う
劣化挙動を示す特性図である。
FIG. 5 shows 0.5 mA / cm of an FePO 4 heat-treated product (invention) and an untreated product (conventional product) according to one embodiment of the present invention.
FIG. 2 is a characteristic diagram showing a deterioration behavior of a discharge capacity at the time of two charge / discharge currents with the number of charge / discharge cycles.

【図6】本発明の一実施例である無水FePO4 結晶の
0.5mA/cm2 放電電流時の4.5V>1V規制充
放電曲線を示す特性図である。
FIG. 6 is a characteristic diagram showing a 4.5V> 1V regulated charge / discharge curve at the time of a discharge current of 0.5 mA / cm 2 of the anhydrous FePO 4 crystal which is an example of the present invention.

【符号の説明】[Explanation of symbols]

1 ステンレス製封口板 2 ポリプロピレン製ガスケット 3 ステンレス製正極ケース 4 リチウム負極 5 ポリプロピレン製セパレータ 6 正極合剤ペレット 1 stainless steel sealing plate 2 polypropylene gasket 3 stainless steel positive electrode case 4 lithium negative electrode 5 polypropylene separator 6 positive electrode mixture pellet

───────────────────────────────────────────────────── フロントページの続き (72)発明者 柴田 昌司 東京都千代田区内幸町1丁目1番6号 日本電信電話株式会社内 (72)発明者 市村 雅弘 東京都千代田区内幸町1丁目1番6号 日本電信電話株式会社内 (58)調査した分野(Int.Cl.7,DB名) H01M 4/36 - 4/62 H01M 4/02 - 4/04 H01M 10/36 - 10/40 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Shoji Shibata 1-1-6 Uchisaiwaicho, Chiyoda-ku, Tokyo Nippon Telegraph and Telephone Corporation (72) Masahiro Ichimura 1-16-1 Uchisaiwaicho, Chiyoda-ku, Tokyo Nippon Telegraph and Telephone Corporation (58) Fields surveyed (Int.Cl. 7 , DB name) H01M 4/36-4/62 H01M 4/02-4/04 H01M 10/36-10/40

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 組成式FePO4 で与えられる化合物を
正極活物質とし、リチウムその他のアルカリ金属または
その化合物を負極活物質とし、前記正極活物質及び、前
記負極活物質に対して化学的に安定であり、且つアルカ
リ金属イオンが前記正極活物質あるいは前記負極活物質
と電気化学反応をするための移動を行い得る物質を電解
質物質としたことを特徴とする非水電解質電池。
1. A compound represented by the composition formula FePO 4 is used as a positive electrode active material, and lithium or another alkali metal or a compound thereof is used as a negative electrode active material, and is chemically stable to the positive electrode active material and the negative electrode active material. A non-aqueous electrolyte battery, characterized in that a substance capable of transferring an alkali metal ion to cause an electrochemical reaction with the positive electrode active material or the negative electrode active material is used as an electrolyte material.
【請求項2】 請求項1において正極活物質であるFe
PO4 は、FePO4 ・nH2 Oを熱分解することによ
り得られた無水晶であることを特徴とする非水電解質電
池。
2. The method according to claim 1, wherein the positive electrode active material is Fe.
PO 4 is a non-aqueous electrolyte battery obtained by pyrolyzing FePO 4 .nH 2 O.
JP05090432A 1993-03-26 1993-03-26 Non-aqueous electrolyte battery Expired - Lifetime JP3126007B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05090432A JP3126007B2 (en) 1993-03-26 1993-03-26 Non-aqueous electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05090432A JP3126007B2 (en) 1993-03-26 1993-03-26 Non-aqueous electrolyte battery

Publications (2)

Publication Number Publication Date
JPH06283207A JPH06283207A (en) 1994-10-07
JP3126007B2 true JP3126007B2 (en) 2001-01-22

Family

ID=13998454

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05090432A Expired - Lifetime JP3126007B2 (en) 1993-03-26 1993-03-26 Non-aqueous electrolyte battery

Country Status (1)

Country Link
JP (1) JP3126007B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004036672A1 (en) * 2002-10-18 2004-04-29 Japan As Represented By President Of The University Of Kyusyu Method for preparing positive electrode material for lithium cell, and lithium cell

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5910382A (en) * 1996-04-23 1999-06-08 Board Of Regents, University Of Texas Systems Cathode materials for secondary (rechargeable) lithium batteries
US6514640B1 (en) 1996-04-23 2003-02-04 Board Of Regents, The University Of Texas System Cathode materials for secondary (rechargeable) lithium batteries
CN1323447C (en) * 1999-04-06 2007-06-27 索尼株式会社 Positive electrode active material, non-aqueous electrolyte secondary battery
KR20010025116A (en) * 1999-04-06 2001-03-26 이데이 노부유끼 Method for manufacturing active material of positive plate and method for manufacturing nonaqueous electrolyte secondary cell
CA2270771A1 (en) 1999-04-30 2000-10-30 Hydro-Quebec New electrode materials with high surface conductivity
JP4848582B2 (en) * 2000-10-06 2011-12-28 ソニー株式会社 Method for producing positive electrode active material
JP3997702B2 (en) * 2000-10-06 2007-10-24 ソニー株式会社 Nonaqueous electrolyte secondary battery
JP5011518B2 (en) * 2005-07-01 2012-08-29 国立大学法人九州大学 Method for producing positive electrode material for secondary battery, and secondary battery
US8158090B2 (en) 2005-08-08 2012-04-17 A123 Systems, Inc. Amorphous and partially amorphous nanoscale ion storage materials
US7939201B2 (en) 2005-08-08 2011-05-10 A123 Systems, Inc. Nanoscale ion storage materials including co-existing phases or solid solutions
US8323832B2 (en) 2005-08-08 2012-12-04 A123 Systems, Inc. Nanoscale ion storage materials
JP2007080839A (en) * 2006-11-22 2007-03-29 Gs Yuasa Corporation:Kk Nonaqueous solid electrolyte cell
JP4984945B2 (en) * 2007-02-14 2012-07-25 株式会社Gsユアサ Non-aqueous electrolyte battery
JP5159134B2 (en) * 2007-03-23 2013-03-06 三洋電機株式会社 Nonaqueous electrolyte secondary battery
JP5159133B2 (en) * 2007-03-23 2013-03-06 三洋電機株式会社 Nonaqueous electrolyte secondary battery
JP5423495B2 (en) * 2010-03-15 2014-02-19 株式会社Gsユアサ Nonaqueous electrolyte secondary battery
CN103915626A (en) * 2014-04-21 2014-07-09 上海电力学院 Sodium ion battery composite positive material and preparation method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004036672A1 (en) * 2002-10-18 2004-04-29 Japan As Represented By President Of The University Of Kyusyu Method for preparing positive electrode material for lithium cell, and lithium cell

Also Published As

Publication number Publication date
JPH06283207A (en) 1994-10-07

Similar Documents

Publication Publication Date Title
JP3126007B2 (en) Non-aqueous electrolyte battery
JP3484003B2 (en) Non-aqueous electrolyte secondary battery
JP3523397B2 (en) Non-aqueous electrolyte secondary battery
EP2436066B1 (en) Titanium system composite and the preparing method of the same
JP3008228B2 (en) Non-aqueous electrolyte secondary battery and method for producing negative electrode active material thereof
US20090023069A1 (en) Type of Lithium Iron Phosphate Cathode Active Material and Its Method of Synthesis
US6087043A (en) Lithium-ion rechargeable battery with carbon-based anode
JP2004178835A (en) Nonaqueous electrolyte secondary battery
JPH09194214A (en) Lithium manganese oxide compound and its preparation
JP2847663B2 (en) Non-aqueous electrolyte battery
JPH04284374A (en) Nonaqueous electrolytic secondary battery
US5641465A (en) Lithium maganese oxide compound and method of preparation
JP2001250555A (en) Method to manufacture activate substance for positive electrode and method of manufacturing non aqueous electrolyte cell
JP2000348722A (en) Nonaqueous electrolyte battery
JPH11111291A (en) Positive electrode material for nonaqueous secondary battery and battery using this
CA2477065C (en) Electrochemical cell with carbonaceous material and molybdenum carbide as anode
JP3480764B2 (en) Non-aqueous electrolyte secondary battery
JP3424722B2 (en) Positive active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP3125075B2 (en) Non-aqueous electrolyte secondary battery
CN113423665A (en) Negative electrode active material based on lithium iron hydroxysulfide
JP2002260661A (en) Negative electrode for nonaqueous electrolyte secondary battery
JPH0845509A (en) Nonaqueous electrolyte secondary cell
JP2002063904A (en) Positive electrode active material and nonaqueous electrolyte battery as well as their manufacturing method
JP2559055B2 (en) Lithium battery
JPH10223225A (en) Electrode active material, and alkali metallic non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071102

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081102

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091102

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131102

Year of fee payment: 13