JP3121916B2 - Method for producing lime sintered body - Google Patents

Method for producing lime sintered body

Info

Publication number
JP3121916B2
JP3121916B2 JP04167916A JP16791692A JP3121916B2 JP 3121916 B2 JP3121916 B2 JP 3121916B2 JP 04167916 A JP04167916 A JP 04167916A JP 16791692 A JP16791692 A JP 16791692A JP 3121916 B2 JP3121916 B2 JP 3121916B2
Authority
JP
Japan
Prior art keywords
limestone
lime
crystal
sintered body
firing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04167916A
Other languages
Japanese (ja)
Other versions
JPH069263A (en
Inventor
信吾 伊藤
義己 後藤
Original Assignee
矢橋工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 矢橋工業株式会社 filed Critical 矢橋工業株式会社
Priority to JP04167916A priority Critical patent/JP3121916B2/en
Publication of JPH069263A publication Critical patent/JPH069263A/en
Application granted granted Critical
Publication of JP3121916B2 publication Critical patent/JP3121916B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は工業用石灰焼成炉で製造
に適さない石灰石より石灰焼結体を製造する方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a lime sintered body from limestone which is not suitable for production in an industrial lime burning furnace.

【0002】[0002]

【従来の技術】工業的に製造される生石灰は一般に石灰
石を焼成炉に適した大きさに粉砕、分級し、これをシャ
フトキルン、ロータリーキルン等の焼成炉で焼成するこ
とにより製造される。この時石灰石を構成する炭酸塩の
結晶の大きさ(以下、石灰石の結晶径と略す)が細晶質
以上、特に中晶質以上の場合、焼成中に焼成炉の耐火物
との摩擦によって焼成された生石灰表面が剥離し、粉体
となって飛散してしまう。このため製造効率の悪化や燃
費の増大を招くため、他の粉化しにくい石灰石と混合し
て使用する等の処置を取るか、焼成を避けて他の用途に
向けられていた。ただしここでいう細晶質および中晶質
とは表1に示す石灰石の結晶径のスケールのことであ
る。
2. Description of the Related Art In general, quicklime produced industrially is produced by pulverizing and classifying limestone into a size suitable for a firing furnace, and firing this in a firing furnace such as a shaft kiln or a rotary kiln. At this time, if the size of the crystals of the carbonate constituting the limestone (hereinafter abbreviated as the crystal diameter of the limestone) is more than fine-crystalline, especially more than medium-crystalline, it is fired by friction with the refractory of the firing furnace during firing. The surface of the calcined lime is exfoliated and scattered as powder. For this reason, the production efficiency is deteriorated and the fuel efficiency is increased. Therefore, measures such as mixing with other hard-to-pulverize limestone have been taken, or sintering has been avoided for other uses. However, the fine and medium crystalline materials referred to here are the scales of the crystal diameter of limestone shown in Table 1.

【0003】[0003]

【表1】 また鉄鋼の精錬や珪酸カルシウム製造、左官用消石灰の
製造等の用途においては高活性の生石灰が必要になる
が、高活性の生石灰を製造するには細晶質以上の石灰石
を使用するか、石灰石に塩化ナトリウム等を添加して焼
成する塩焼きという方法が取られる。しかし、結晶径の
大きな石灰石は前述のような、塩焼きには塩素の大気中
への放出、ナトリウム、塩素の生石灰への残留という短
所がある。尚、本願に類似の先行技術として、本発明者
等による特開平3−196814及び特開平4−130
046があるが、使用する石灰石の結晶の大きさによ
り、得られる焼結体の物性及び焼成に必要な経済的な破
砕粒度については本発明で始めて解明されるに至った。
[Table 1] In addition, highly active quicklime is required for applications such as iron and steel refining, calcium silicate production, and plastering slaked lime production.To produce highly active quicklime, use fine-crystalline or higher limestone or use limestone. Salt baking, in which sodium chloride or the like is added to the mixture and firing is performed. However, limestone with a large crystal diameter has the disadvantages of salt burning, as described above, in that chlorine is released into the atmosphere and sodium and chlorine remain in quicklime. As prior art similar to the present application, Japanese Patent Application Laid-Open Nos.
046, but the physical properties of the resulting sintered body and the economical crushing particle size required for firing have been elucidated for the first time in the present invention, depending on the crystal size of the limestone used.

【0004】[0004]

【発明が解決しようとする課題】本発明は、焼成時に表
面の剥離等で粉化しにくく、用途によっては高活性の石
灰焼結体を製造することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to produce a highly active lime sintered body which is hardly powdered due to surface peeling or the like at the time of sintering.

【0005】[0005]

【課題を解決するための手段】本発明は石灰石の結晶径
が中晶質以上の場合に、石灰石を焼成に耐え得る程度に
粉砕、成形後、900℃以上で焼成することで焼成中に
粉化しにくい、高活性な石灰焼結体の製造方法を、また
石灰石の結晶径に関係なく石灰石を結晶径以下に粉砕、
成形後、900℃以上で焼成することで焼成中に粉化し
にくい石灰焼結体の製造方法を提供する。
According to the present invention, when the crystal diameter of limestone is medium or larger, the limestone is pulverized and molded to the extent that it can withstand calcination, and then calcined at 900 ° C. or more, whereby powder during calcination is obtained. A method for producing a highly active lime sintered body that is difficult to change, and crushing limestone to a crystal diameter or less regardless of the crystal diameter of limestone,
Provided is a method for producing a lime sintered body that is hard to be powdered during firing by firing at 900 ° C. or higher after molding.

【0006】[0006]

【作用】石灰石を走査型電子顕微鏡で1000〜500
0倍で観察すると石灰石の結晶径が微晶質以下の場合は
立方形に近い結晶が均一に並んでいるが、細晶質以上の
場合は不定型な粒状結晶がちょうど石垣を組んだように
結晶粒の間に隙間が生じて並んでいる。これらの石灰石
を1300℃程度で焼成したものを同様に観察すると、
石灰石の結晶径が微晶質以下の場合は焼結が進み、石灰
石の元の結晶粒どおしが融合しているが、細晶質以上の
場合は結晶粒の間は隙間は残ったままで、むしろ間隔は
大きくなり、石灰石の元の結晶粒中には細かいCaOの
結晶が生成している。この結晶径が細晶質以上の石灰石
およびこれを焼成した生石灰に見られる特徴は中晶質以
上で特に顕著となる。従って結晶径が細晶質以上の石灰
石を焼成した生石灰は摩擦、落下の衝撃等物理的な力に
より結晶粒の界面から簡単に剥離し粉化の原因となる。
[Action] Limestone is 1000-500 by scanning electron microscope.
When observed at 0x magnification, when the crystal diameter of limestone is less than microcrystalline, crystals close to cubic are arranged uniformly, but when it is more than fine crystalline, irregular granular crystals are just like a stone wall. There are gaps between the crystal grains and they are arranged side by side. Observing the limestone fired at about 1300 ° C in the same way,
If the crystal diameter of the limestone is smaller than microcrystalline, sintering proceeds, and the original crystal grains of the limestone are fused, but if the crystal diameter is larger than fine crystal, the gap remains between the crystal grains. Rather, the spacing becomes large, and fine CaO crystals are formed in the original crystal grains of the limestone. The characteristics observed in limestone having a crystal size of fine crystal or more and calcined lime obtained by calcining the same are particularly remarkable in medium lime or higher. Therefore, calcined lime obtained by calcining limestone having a crystal diameter of fine crystal or more easily peels off from the interface of crystal grains due to physical force such as friction and impact of dropping, causing powdering.

【0007】しかし結晶径が細晶質以上の石灰石を焼成
した生石灰にできる隙間は連続性を持つものと考えら
れ、しかも適度な大きさがあるマクロポアと石灰石の結
晶粒の形骸中に生成した細かいCaOの結晶が形成する
ミクロポアとで比表面積が大きくなるため、溶鋼や水と
の反応性が良く、高活性生石灰の原料として適している
という長所も持っている。
However, it is considered that the gap formed in calcined lime obtained by calcining limestone having a crystal size of fine crystal or more has continuity, and moreover, fine pores formed in the form of macropores and limestone crystal grains having an appropriate size. Since the specific surface area is increased with the micropores formed by the CaO crystals, it has the advantage of good reactivity with molten steel and water and is suitable as a raw material for highly active quicklime.

【0008】本発明第一項は結晶径が中晶質以上の石灰
石の隙間を粉砕により、ある割合で破壊した石灰石粉体
を成形することで焼成時の焼結性を向上させて粉化を抑
え、しかも破壊されていない隙間(マクロポア)と石灰
石の結晶粒の形骸中に生成した細かいCaOの形成する
ミクロポアにより高活性を維持することで、低粉化、高
活性石灰焼結体の製造を実現している。
[0008] The first item of the present invention is to improve the sinterability during firing by pulverizing the gaps between limestones having a crystal diameter of medium or larger to form limestone powder broken at a certain ratio, thereby improving the powdering. By maintaining high activity by suppressing pores, which are not destroyed, and by micropores formed by fine CaO formed in the limestone crystal grains and macroscopic pores that are not broken, it is possible to produce a powdered, highly active lime sintered body. Has been realized.

【0009】本発明第二項は元来、塊のまま焼成しても
低粉化、高比重になる細晶質以下の石灰石を粉砕、成形
することにより成形体適度な空隙を持たせ、この空隙が
焼結により埋まらない1300℃以下で焼成すること
で、粉化度を悪化させずに高活性な石灰焼結体の製造を
実現している。
The second term of the present invention is to provide a molded article having an appropriate gap by pulverizing and molding limestone having a low crystallinity and a high specific gravity which becomes low powder and high specific gravity even when baked as a lump. By firing at a temperature of 1300 ° C. or lower where the voids are not filled by sintering, production of a highly active lime sintered body without deteriorating the degree of powdering is realized.

【0010】本発明第三項は結晶径が中晶質以上の石灰
石の隙間を粉砕によりほぼ全部を破壊し、かつ結晶粒子
をも破壊し見かけの結晶粒を小さくすることで、焼成時
の焼結性を向上させて粉化を抑えて低粉化石灰焼結体の
製造を実現している。しかもこの場合は見かけの結晶径
を小さくするということから、結晶径が細晶質以下の石
灰石についても適用できる。ただし第三項の場合は焼成
時の焼結性を向上させて粉化を抑えるため高活性を維持
するには比較的低温で焼成する必要がある。また結晶径
が粗晶質以上の石灰石については、結晶径以下に粉砕し
ても成形が困難な場合があるが、このときは成形性はハ
ンドリングの強度を考慮して200μm以下程度にする
必要がある。
[0010] The third term of the present invention is to reduce the apparent crystal grains by destroying almost all of the gaps of limestone having a crystal diameter of medium or larger by grinding, and also to destroy the crystal grains, thereby reducing the firing during firing. The production of a low-powder lime sintered body is realized by improving the sinterability and suppressing the pulverization. In addition, in this case, since the apparent crystal diameter is reduced, the invention can be applied to limestone having a crystal diameter of fine crystal or less. However, in the case of the third item, it is necessary to perform calcination at a relatively low temperature in order to improve sinterability at the time of calcination and suppress powdering and maintain high activity. In addition, for limestone having a crystal diameter of coarse or higher, molding may be difficult even if crushed to a crystal diameter or less, but in this case, the formability needs to be about 200 μm or less in consideration of handling strength. is there.

【0011】本発明の範囲で得られた石灰石粉体は、一
般的な成形方法、例えばプレス成形や押し出し成形等に
より成形することができ、必要に応じてバインダーを用
いることもできる。成形密度は焼成中に成形体どおしや
耐火物との摩擦、落下の衝撃等を考慮すると1.5g/
cm以上とすることが望ましい。
The limestone powder obtained within the scope of the present invention can be molded by a general molding method, for example, press molding or extrusion molding, and if necessary, a binder can be used. The molding density is 1.5 g / g in consideration of the friction between the molded product and the refractory during firing and the impact of dropping.
cm 2 or more.

【0012】得られた成形体はついで900℃以上で焼
成される。炭酸カルシウムの分解圧が1気圧になるのが
約900℃であるので、これ以上の温度で焼成する必要
がある。工業的には1000℃以上で焼成されるのが普
通である。また本発明第三項の範囲に入る石灰石粉体を
成形後、高温焼成すれば、焼結性が良いためカサ比重が
大きくなり、石灰石を塊のまま焼成したものより水和抵
抗性に優れた石灰焼結体を得ることができる。
The obtained compact is then fired at 900 ° C. or higher. Since the decomposition pressure of calcium carbonate reaches 1 atm at about 900 ° C., it is necessary to calcine at a temperature higher than 900 ° C. Industrially, baking is usually performed at 1000 ° C. or higher. In addition, after molding a limestone powder falling within the scope of the third aspect of the present invention, if calcined at a high temperature, the bulk specific gravity increases due to good sinterability, and the limestone has superior hydration resistance than that calcined as a lump. A lime sintered body can be obtained.

【0013】[0013]

【実施例1】原料石灰石として中晶質の石灰石Aと微晶
質の石灰石Cを用意した。各々の石灰石の破断面を走査
型電子顕微鏡で観察したところ、石灰石A、Cの結晶径
は各々130μm、5μmであった。石灰石A、Cを各
々約35mmの塊とハンマークラッシャーで粉砕して1
50μmで分級した粉体とした。また石灰石Aについて
は150μmで分級したものをさらにボールミルで粉砕
して平均粒子径が17μmの粉体とした。粉体とした試
料は直径40mmの金型を用いて圧力500kg/cm
で円盤状の成形体とした。ついで塊および成形体を1
100、1300、1500℃及び1850℃で3時間
焼成した。
Example 1 Medium-crystalline limestone A and microcrystalline limestone C were prepared as raw limestones. When the fracture surface of each limestone was observed with a scanning electron microscope, the crystal diameters of the limestones A and C were 130 μm and 5 μm, respectively. Limestones A and C are each pulverized with a hammer crusher to a lump of about 35 mm and
The powder was classified at 50 μm. Limestone A was classified at 150 μm and further pulverized with a ball mill to obtain a powder having an average particle diameter of 17 μm. A powdered sample was prepared using a mold having a diameter of 40 mm and a pressure of 500 kg / cm.
2 was a disk-shaped molded body. Then, remove the lump and the compact
Baking was performed at 100, 1300, 1500 ° C. and 1850 ° C. for 3 hours.

【0014】得られた焼結体についてはカサ比重、活性
度および粉化度を測定した。結果を表2に示す。ただし
ここでいう活性度とは、温度30℃の水4lの2−5m
mに破砕した試料を100g入れ、かくはんしながら1
0分後に溶出したアルカリ分を中和するのに必要な4N
−HClの量をmlで表したものであり、粉化度とは内
径75mm、高さ120mmの磁器製のポットに試料3
個と直径10mmの磁器ボール10個を入れて約60r
pmで30分回転させた時の3mm以下の粉の発生率で
ある。
The specific gravity of the bulk, the activity and the degree of powdering of the obtained sintered body were measured. Table 2 shows the results. However, the activity here is 2-5 m of 4 l of water at a temperature of 30 ° C.
100 g of the crushed sample, and stir 1
4N necessary to neutralize the alkali eluted after 0 minutes
The amount of HCl was expressed in ml, and the degree of powdering was as follows.
Approximately 60r with 10 pieces and 10 pieces of porcelain balls with a diameter of 10mm
This is the rate of occurrence of powder of 3 mm or less when rotated at pm for 30 minutes.

【0015】[0015]

【表2】 1100℃および1300℃で焼成した場合どの石灰で
も塊のままのほうが粉体にして成形したものよりカサ比
重は大きくなる。これは粉体成形物の持つ空隙が130
0℃では焼結により埋まらないためである。しかし粉化
度は特に中晶質の石灰石Aのように結晶径が大きいもの
ほど、塊のまま焼成したものより粉体成形物の焼結体が
優れており、微晶質の石灰石Cでは、粉砕、成形による
効果は活性度の低下を防ぐ程度である。
[Table 2] When calcined at 1100 ° C. and 1300 ° C., the bulk specific gravity of any lime in the form of a lump is larger than that of the lime which is formed into a powder. This is because the voids of the powder molded product are 130
At 0 ° C., it is not filled by sintering. However, as for the degree of powdering, the sintered body of the powder molded product is more excellent as compared with the one sintered in a lump as the crystal diameter is larger, such as medium-crystalline limestone A. In the case of microcrystalline limestone C, The effect of pulverization and molding is such that the decrease in activity is prevented.

【0016】1500℃で焼成した場合は中晶質の石灰
石Aでは塊より粉砕成形物、特に粒度の小さいもののほ
うがカサ比重が大きくなり活性度も著しく低下するの
で、高活性を維持するには1300℃以下が適当と考え
られる。逆に水和抵抗性が必要な時は1500℃以上で
本発明第三項の範囲に調整した粉体成形物を焼成すれば
良い。
When calcined at 1500 ° C., crushed and molded products, especially those having a small particle size, of medium-crystalline limestone A have larger bulk specific gravity and significantly lower activity than lump. C. or less is considered appropriate. Conversely, when hydration resistance is required, the powder molded product adjusted to the range of the third item of the present invention may be fired at 1500 ° C. or more.

【0017】[0017]

【発明の効果】本発明により高活性であるという長所を
持ちながら、粉化等で焼成が困難であった結晶径の大き
な石灰石を容易に効率良く焼成することができる。また
前述の塩焼きのような添加剤を用いる場合は、粉砕時あ
るいは粉砕後に添加剤を混合することにより、より均一
な混合、添加が可能となり、少量の添加剤の使用で添加
目的を達成することができる。
According to the present invention, while having the advantage of high activity, limestone having a large crystal diameter, which has been difficult to fire due to pulverization or the like, can be easily and efficiently fired. In addition, when using an additive such as the above-mentioned salt grilling, mixing the additive at the time of pulverization or after the pulverization enables more uniform mixing and addition, and achieves the purpose of addition by using a small amount of the additive. Can be.

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 石灰石を構成している炭酸塩の結晶の大
きさが平均で64μm以上(中晶質以上)である石灰石
を粉砕して結晶粒子間に存在する間隙を破壊し、得られ
た石灰石粉体を成形後、900℃以上で焼成することに
より、焼成時の燒結性を向上させて粉化を抑え、且つ破
壊されていない間隙と石灰石の結晶粒子の形骸中に生成
した細かいCaOの形成するミクロポアとによって高活
性を維持して低粉化、高活性の石灰燒結体とすることを
特徴とする石灰燒結体の製造方法。
1. A limestone having an average crystal size of 64 μm or more (medium or higher) of carbonates constituting limestone is crushed to break gaps existing between crystal particles, thereby obtaining the limestone. After molding the limestone powder, by firing at 900 ° C. or higher, the sinterability at the time of firing is improved to suppress the powdering, and fine CaO generated in the gaps not destroyed and in the limestone crystal particle bodies. A method for producing a lime sintered body, characterized in that a high activity is maintained by micropores to be formed to obtain a powdered and highly active lime sintered body.
【請求項2】 石灰石を構成している炭酸塩の結晶の大
きさが平均で64μm以下(細晶質以下)である石灰石
を粉砕し、得られた石灰石粉末を成形することによって
その成形体に適度な空隙を持たせ、その空隙が燒結によ
り埋まらない900−1300℃の温度で焼成すること
からなる、粉化度を悪化させずに高活性な石灰燒結体と
することを特徴とする石灰燒結体の製造方法。
2. A limestone having an average crystallite size of carbonate of 64 μm or less (fine crystallite or less) constituting limestone is pulverized, and the resulting limestone powder is formed into a molded product. Lime sintering characterized in that the lime sinter is made into a highly active lime sintered body without deteriorating the degree of powdering, which comprises firing at a temperature of 900 to 1300 ° C., which has appropriate voids and the voids are not filled by sintering. How to make the body.
【請求項3】 石灰石を構成している炭酸塩の結晶の大
きさが平均で64μm以上(中晶質以上)である石灰石
を粉砕して結晶粒子間に存在する間隙をほぼ全部破壊
し、且つ結晶粒子をも破壊し見かけの結晶粒子を小さく
した後、得られた石灰石粉体を成形後、900℃以上で
焼成することにより、焼成時の燒結性を向上させて粉化
を抑えて低粉化石灰燒結体とすることを特徴とする石灰
燒結体の製造方法。
3. A limestone in which the size of a crystal of carbonate constituting limestone is 64 μm or more (medium crystal or more) on average, crushes limestone to destroy almost all gaps between crystal particles, and After breaking the crystal particles and reducing the apparent crystal particles, the resulting limestone powder is molded and fired at 900 ° C or higher to improve the sintering property during firing and reduce powdering by suppressing powdering. A method for producing a sintered lime, which is a sintered lime.
JP04167916A 1992-06-25 1992-06-25 Method for producing lime sintered body Expired - Fee Related JP3121916B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04167916A JP3121916B2 (en) 1992-06-25 1992-06-25 Method for producing lime sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04167916A JP3121916B2 (en) 1992-06-25 1992-06-25 Method for producing lime sintered body

Publications (2)

Publication Number Publication Date
JPH069263A JPH069263A (en) 1994-01-18
JP3121916B2 true JP3121916B2 (en) 2001-01-09

Family

ID=15858433

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04167916A Expired - Fee Related JP3121916B2 (en) 1992-06-25 1992-06-25 Method for producing lime sintered body

Country Status (1)

Country Link
JP (1) JP3121916B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0625018U (en) * 1992-09-02 1994-04-05 小松メック株式会社 Cab of construction machinery
US8294356B2 (en) 2008-06-27 2012-10-23 Toshiba Lighting & Technology Corporation Light-emitting element lamp and lighting equipment
US8354783B2 (en) 2009-09-24 2013-01-15 Toshiba Lighting & Technology Corporation Light-emitting device.having a frame member surrounding light-emitting elements and illumination device utilizing light-emitting device
US8360606B2 (en) 2009-09-14 2013-01-29 Toshiba Lighting & Technology Corporation Light-emitting device and illumination device
US8376562B2 (en) 2009-09-25 2013-02-19 Toshiba Lighting & Technology Corporation Light-emitting module, self-ballasted lamp and lighting equipment
US8382325B2 (en) 2009-06-30 2013-02-26 Toshiba Lighting & Technology Corporation Lamp and lighting equipment using the same
US8384275B2 (en) 2007-10-16 2013-02-26 Toshiba Lighting & Technology Corporation Light emitting element lamp and lighting equipment
US8398272B2 (en) 2005-04-08 2013-03-19 Toshiba Lighting & Technology Corporation Lamp having outer shell to radiate heat of light source
US8450915B2 (en) 2008-01-07 2013-05-28 Toshiba Lighting & Technology Corporation LED bulb and lighting apparatus
US8500316B2 (en) 2010-02-26 2013-08-06 Toshiba Lighting & Technology Corporation Self-ballasted lamp and lighting equipment
US8678618B2 (en) 2009-09-25 2014-03-25 Toshiba Lighting & Technology Corporation Self-ballasted lamp having a light-transmissive member in contact with light emitting elements and lighting equipment incorporating the same
JP2014513399A (en) * 2011-04-12 2014-05-29 コーニンクレッカ フィリップス エヌ ヴェ LED-based lighting unit with high bundle density LED array
US9109784B2 (en) 2011-09-26 2015-08-18 Posco Led Company Ltd. LED-based lighting apparatus with heat pipe cooling structure
KR101596893B1 (en) * 2008-06-26 2016-02-24 서울반도체 주식회사 Heat radiating led mount and lamp
KR101778089B1 (en) * 2011-09-21 2017-09-13 솔레코 가부시키가이샤 Led illumination device
KR101814194B1 (en) * 2009-06-17 2018-01-02 필립스 라이팅 홀딩 비.브이. A connector for connecting a component to a heat sink

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009286671A (en) * 2008-05-30 2009-12-10 Okutama Kogyo Co Ltd Method of manufacturing quicklime
JP5389491B2 (en) * 2009-03-25 2014-01-15 太平洋セメント株式会社 Method for producing high purity calcium carbonate

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0625018U (en) * 1992-09-02 1994-04-05 小松メック株式会社 Cab of construction machinery
US8858041B2 (en) 2005-04-08 2014-10-14 Toshiba Lighting & Technology Corporation Lamp having outer shell to radiate heat of light source
US8398272B2 (en) 2005-04-08 2013-03-19 Toshiba Lighting & Technology Corporation Lamp having outer shell to radiate heat of light source
US8384275B2 (en) 2007-10-16 2013-02-26 Toshiba Lighting & Technology Corporation Light emitting element lamp and lighting equipment
US9018828B2 (en) 2007-10-16 2015-04-28 Toshiba Lighting & Technology Corporation Light emitting element lamp and lighting equipment
US8450915B2 (en) 2008-01-07 2013-05-28 Toshiba Lighting & Technology Corporation LED bulb and lighting apparatus
KR101596893B1 (en) * 2008-06-26 2016-02-24 서울반도체 주식회사 Heat radiating led mount and lamp
US8294356B2 (en) 2008-06-27 2012-10-23 Toshiba Lighting & Technology Corporation Light-emitting element lamp and lighting equipment
KR101814194B1 (en) * 2009-06-17 2018-01-02 필립스 라이팅 홀딩 비.브이. A connector for connecting a component to a heat sink
US8382325B2 (en) 2009-06-30 2013-02-26 Toshiba Lighting & Technology Corporation Lamp and lighting equipment using the same
US8360606B2 (en) 2009-09-14 2013-01-29 Toshiba Lighting & Technology Corporation Light-emitting device and illumination device
US8354783B2 (en) 2009-09-24 2013-01-15 Toshiba Lighting & Technology Corporation Light-emitting device.having a frame member surrounding light-emitting elements and illumination device utilizing light-emitting device
US8376562B2 (en) 2009-09-25 2013-02-19 Toshiba Lighting & Technology Corporation Light-emitting module, self-ballasted lamp and lighting equipment
US8678618B2 (en) 2009-09-25 2014-03-25 Toshiba Lighting & Technology Corporation Self-ballasted lamp having a light-transmissive member in contact with light emitting elements and lighting equipment incorporating the same
US8500316B2 (en) 2010-02-26 2013-08-06 Toshiba Lighting & Technology Corporation Self-ballasted lamp and lighting equipment
JP2014513399A (en) * 2011-04-12 2014-05-29 コーニンクレッカ フィリップス エヌ ヴェ LED-based lighting unit with high bundle density LED array
KR101778089B1 (en) * 2011-09-21 2017-09-13 솔레코 가부시키가이샤 Led illumination device
US9109784B2 (en) 2011-09-26 2015-08-18 Posco Led Company Ltd. LED-based lighting apparatus with heat pipe cooling structure

Also Published As

Publication number Publication date
JPH069263A (en) 1994-01-18

Similar Documents

Publication Publication Date Title
JP3121916B2 (en) Method for producing lime sintered body
TWI732944B (en) Spinel powder containing magnesium oxide and its manufacturing method
JPS5819640B2 (en) Hexagonal plate-shaped alpha aluminum oxide single crystal, its production method, and surface treatment method using the single crystal
WO2010041558A1 (en) Process for producing an oxide
EP0188371B1 (en) Artificial lightweight aggregate
JPH08283073A (en) Kiln tool
EP2864731B1 (en) Ceramic compositions comprising alumina
WO2019029918A1 (en) Method for treating magnesite, a sintered magnesia produced by the method, and a sintered refractory ceramic product produced by the method
JP3153637B2 (en) Method for producing calcia clinker
JPH0741318A (en) Production of low soda alumina
JP2525432B2 (en) Normal pressure sintered boron nitride compact
JPH0611668B2 (en) Manufacturing method of high strength porcelain products
JPH0544428B2 (en)
JP3073100B2 (en) Method for producing dolomite and magnesia sintered body
JPH03146454A (en) Production of fine powder of ceramics and refractories
JPH07126080A (en) Production of light-weight sintered alumina clinker
US1453468A (en) Process for making refractory products
JPH0463008B2 (en)
JP2005154590A (en) Dust-free solidification material and method for producing the same
JP2017538651A (en) Ceramic powder with controlled size distribution
JP2003137658A (en) Method of producing aluminum oxide powder, and aluminum oxide powder
JPH0681832B2 (en) Method for producing alumina-based sintered abrasive grains
SU1458352A1 (en) Composition for making unfired periclase-carbon refractory articles
JP2573720B2 (en) Manufacturing method of silicon nitride sintered body
KR890000624B1 (en) Refractory

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees