JP3118244B2 - Method for producing surface impregnated dispersed cobalt metal catalyst - Google Patents

Method for producing surface impregnated dispersed cobalt metal catalyst

Info

Publication number
JP3118244B2
JP3118244B2 JP02091933A JP9193390A JP3118244B2 JP 3118244 B2 JP3118244 B2 JP 3118244B2 JP 02091933 A JP02091933 A JP 02091933A JP 9193390 A JP9193390 A JP 9193390A JP 3118244 B2 JP3118244 B2 JP 3118244B2
Authority
JP
Japan
Prior art keywords
cobalt
range
metal
titania
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP02091933A
Other languages
Japanese (ja)
Other versions
JPH03293036A (en
Inventor
ハリソン モールディン チャールズ
ロイド リリー ケニス
Original Assignee
エクソン リサーチ アンド エンヂニアリング コムパニー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エクソン リサーチ アンド エンヂニアリング コムパニー filed Critical エクソン リサーチ アンド エンヂニアリング コムパニー
Priority to JP02091933A priority Critical patent/JP3118244B2/en
Publication of JPH03293036A publication Critical patent/JPH03293036A/en
Application granted granted Critical
Publication of JP3118244B2 publication Critical patent/JP3118244B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Catalysts (AREA)

Description

【発明の詳細な説明】 発明の分野 本発明は粒状担体または支持体、特にチタニア担体ま
たは支持体の周縁または外表面上に金属を薄膜またはコ
ーティングとして含浸させかつ分散させるコバルト触媒
の製造法に関する。
Description: FIELD OF THE INVENTION The present invention relates to a process for producing a cobalt catalyst in which a metal is impregnated and dispersed as a thin film or coating on the periphery or outer surface of a particulate support or support, particularly a titania support or support.

発明の背景 種々のガス及び液体供給物をより望ましい生成物へ化
学的に変化、または転化させるための化学的、石油及び
石油化学的処理に於ては、通常、粒状触媒が用いられ
る。かかる触媒は1種以上の触媒活性金属、あるいはそ
の化合物を粒状担体または支持体上に分散させることに
よって製造される。通常の知識によれば、該1種以上の
触媒活性金属を一般に粒子全体にわたってできるだけ均
一に分散させ、粒子の中心から外方へ触媒活性部位の均
一性を与える。
BACKGROUND OF THE INVENTION Granular catalysts are commonly used in chemical, petroleum and petrochemical processes to chemically convert or convert various gas and liquid feeds to more desirable products. Such catalysts are prepared by dispersing one or more catalytically active metals, or compounds thereof, on a particulate carrier or support. According to common knowledge, the one or more catalytically active metals are generally dispersed as uniformly as possible throughout the particles, providing uniformity of the catalytically active sites outward from the center of the particles.

一酸化炭素と水素(合成ガス)からの炭化水素の製造
法であるフィッシャー・トロプシュ合成は世界の幾つか
の地区で商業的に実施されている。この方法は、現存の
技術にもし適当な改良がなされるならば、多分米国に於
て、より広く受入れられるかもしれない。初期のフィッ
シャー・トロプシュ触媒は大部分が多孔性無機酸化物担
体全体にわたって分散された非貴金属で構成されてい
た。フィッシャー・トロプシュ反応ではVIII族非貴金
属、鉄、コバルト及びニッケルが広く用いられており、
かつこれらの金属は種々の他の金属で促進され、かつ種
々の担体、主としてアルミナ、上に種々の方法で担体さ
れている。しかし、ほとんどの商業的経験はコバルト及
び鉄触媒に基づいている。最初の商業的フィッシャー・
トロプシュ操作はコバルト触媒を利用したが、後に、よ
り活性な鉄触媒も商業化された。コバルト触媒及び鉄触
媒は該金属を無機酸化物全体にわたって配合することに
よって製造された。しかし、初期のコバルト触媒は一般
に多段階法の使用を必要とする低活性であり、かつ合成
ガススループットが低かった。他方、鉄触媒は合成ガス
からの二酸化炭素の生成が多過ぎ、炭化水素へ転化され
る一酸化炭素が少な過ぎる。
Fischer-Tropsch synthesis, a process for producing hydrocarbons from carbon monoxide and hydrogen (syngas), is commercially practiced in several parts of the world. This method may be more widely accepted in the United States, if appropriate modifications are made to existing technology. Early Fischer-Tropsch catalysts consisted largely of non-noble metals dispersed throughout a porous inorganic oxide support. In the Fischer-Tropsch reaction, Group VIII non-precious metals, iron, cobalt and nickel are widely used,
And these metals are promoted with various other metals and are supported in various ways on various supports, mainly alumina. However, most commercial experience is based on cobalt and iron catalysts. First commercial fisher
Although the Tropsch operation utilized a cobalt catalyst, later, more active iron catalysts were also commercialized. Cobalt and iron catalysts were made by blending the metal throughout the inorganic oxide. However, early cobalt catalysts generally had low activity requiring the use of a multi-step process and low synthesis gas throughput. On the other hand, iron catalysts produce too much carbon dioxide from synthesis gas and too little carbon monoxide is converted to hydrocarbons.

発明の目的 従って、本発明の第一の目的は、粒状無機酸化物担
体、特に粒状チタニアまたは含チタン担体の周縁すなわ
ち外表面上にコバルト、あるいはコバルトと1種以上の
追加金属との触媒有効量を噴霧することによる含浸方法
による高生産性フィッシャー・トロプシュコバルト触媒
の製造に於ける一層の改良を提供することである。
OBJECTS OF THE INVENTION Accordingly, a first object of the present invention is to provide a catalytically effective amount of cobalt, or cobalt and one or more additional metals, on the periphery or outer surface of a particulate inorganic oxide support, particularly a particulate titania or titanium-containing support. To provide a further improvement in the production of high-productivity Fischer-Tropsch cobalt catalysts by the impregnation method by spraying with water.

本発明のもう1つの目的は、該粒状担体粒子を加熱条
件下で、かつ流動状態に保ちながら該粒状担体粒子の表
面上にコバルト、あるいはコバルトと1種以上の追加金
属を噴霧、含浸かつ分散させる、上記第一の目的を特徴
とする噴霧被覆方法を提供することである。
Another object of the present invention is to spray, impregnate and disperse cobalt, or cobalt and one or more additional metals, on the surface of the granular carrier particles while heating and maintaining the granular carrier particles in a fluidized state. It is an object of the present invention to provide a spray coating method characterized by the first object.

本発明の1つの特別な目的は、粒状無機酸化物担体、
特に粒状チタニアまたは含チタン担体の周縁すなわち外
表面上に、該粒状担体を加熱条件下でかつ流動化状態に
保ちながら、コバルトを含む化合物、あるいはコバルト
と1種以上の促進剤金属とを含む化合物を噴霧被覆する
ことによる含浸方法の使用によるフィッシャー・トロプ
シュ合成に有用なコバルト触媒及び促進コバルト触媒の
製造法を提供することである。
One particular object of the present invention is a particulate inorganic oxide support,
A compound containing cobalt, or a compound containing cobalt and one or more promoter metals, particularly on the periphery of the particulate titania or titanium-containing carrier, that is, on the outer surface, while keeping the particulate carrier in a fluidized state under heating conditions. To provide a cobalt catalyst useful for Fischer-Tropsch synthesis and a method for producing a promoted cobalt catalyst by using an impregnation method by spray coating.

本発明のもう1つのさらに特別な目的は、加熱流動化
された粒状チタニアまたは含チタニア担体上にコバル
ト、あるいはコバルトと1種以上の追加のコバルト変性
剤または促進剤金属とを噴霧被覆及び含浸する新規方法
であって特にチタニアまたはチタニア成分が高いルチ
ル:アナターゼ比を有する方法を提供することである。
Another more specific object of the present invention is to spray coat and impregnate cobalt, or cobalt and one or more additional cobalt modifiers or promoter metals, on a heat fluidized granular titania or titania-containing support. It is an object of the present invention to provide a novel process, especially where the titania or titania component has a high rutile: anatase ratio.

発明の目的 これらの目的及び他の目的は、粒状多孔性無機酸化物
担体粒子を約50℃以上の温度、好ましくは約50〜約100
℃の温度、より好ましくは約70〜約90℃の温度に保ちな
がら、流動床中の担体粒子を、該1種以上の金属の化合
物の液体分散体、相応しくは懸濁液または溶液で接触及
び含浸することによって、粒状多孔性無機酸化物担体の
周縁または外表面上に、フィッシャー・トロプシュ合成
反応に於て触媒として有効なコバルト、あるいはコバル
トと1種以上の追加金属とを触媒活性層または膜として
被覆する触媒製造法を具体化する本発明によって達成さ
れる。好ましい無機酸化物担体はアルミナ、シリカ、ア
ルミナ−シリカ及びチタニアであり、これらの中でチタ
ニアまたは含チタニア担体、特にルチルチタニア担体、
あるいはチタニアまたはチタニア成分が少なくとも約3:
2のルチル:アナターゼの重量比を有する担体が最も好
ましい。触媒活性表面層または膜は、平均厚さが約20〜
約250μm、好ましくは約40〜約150μmの範囲であり、
触媒の単位充填かさ容積当たりの金属コバルトの重量と
して表わされるコバルトの含量が約0.01〜約0.15g/cc触
媒、好ましくは約0.03〜約0.09g/cc触媒の範囲である。
These and other objects of the invention are to provide the particulate porous inorganic oxide carrier particles at a temperature of about 50 ° C or higher, preferably from about 50 to about 100 ° C.
The carrier particles in the fluidized bed are contacted and contacted with a liquid dispersion, suitably a suspension or solution, of the one or more compounds of the metal, while maintaining a temperature of from about 70 ° C., more preferably from about 70 to about 90 ° C. By impregnation, a catalytically active layer or film is formed on the peripheral or outer surface of the granular porous inorganic oxide support, on the periphery or on the outer surface, of cobalt effective as a catalyst in a Fischer-Tropsch synthesis reaction, or cobalt and one or more additional metals. The invention is embodied in a method for producing a catalyst coated as a substrate. Preferred inorganic oxide supports are alumina, silica, alumina-silica and titania, among which titania or titania-containing supports, especially rutile titania supports,
Alternatively, the titania or titania component is at least about 3:
Carriers having a rutile: anatase weight ratio of 2 are most preferred. The catalytically active surface layer or membrane has an average thickness of about 20 to
About 250 μm, preferably in the range of about 40 to about 150 μm,
The cobalt content, expressed as the weight of metallic cobalt per unit bulk volume of the catalyst, ranges from about 0.01 to about 0.15 g / cc catalyst, preferably from about 0.03 to about 0.09 g / cc catalyst.

触媒の活性及び再生能を向上させるため、レニウム、
ジルコニウム、ハフニウム、セリウム、トリウム及びラ
ウンのような金属またはこれらの金属の化合物をコバル
トへ添加することができる。かくして、担体粒子、特に
チタニアまたは含チタニア担体粒子の表面上に生成され
る薄い触媒活性層または膜は触媒活性層のコバルトに加
えて、レニウム、ジルコニウム、ハフニウム、セリウ
ム、トリウム及びウラン、あるいは、これら相互の、ま
たはこれらと他の金属との混合物あるいはこれらの化合
物のいずれか1種以上を含むことができる。かくして、
担体、特にチタニアまたは含チタニア担体上に担持され
た好ましい薄い触媒活性層または膜はコバルト・レニウ
ム、コバルト・ジルコニウム、コバルト・ハフニウム、
コバルト・セリウム、コバルト・トリウム及びコバルト
・ラウンを、他の金属またはその化合物の付加的な存在
下または不在下で含む。
To improve the activity and regeneration ability of the catalyst, rhenium,
Metals such as zirconium, hafnium, cerium, thorium and Raun or compounds of these metals can be added to the cobalt. Thus, the thin catalytically active layer or film formed on the surface of the support particles, in particular titania or titania-containing support particles, may contain, in addition to the cobalt of the catalytically active layer, rhenium, zirconium, hafnium, cerium, thorium and uranium, or these. It may contain one or more of each other, or mixtures of these with other metals, or these compounds. Thus,
Preferred thin catalytically active layers or membranes supported on a support, especially a titania or titania-containing support, are cobalt rhenium, cobalt zirconium, cobalt hafnium,
Cobalt-cerium, cobalt-thorium and cobalt-round are included in the presence or absence of other metals or compounds thereof.

担体粒子を床中で流動化しかつフィッシャー・トロプ
シュ合成反応に於て触媒として有効な、コバルトの化合
物あるいはコバルトと1種以上の追加金属との1種以上
の化合物を含む懸濁液または溶液で噴霧する。噴霧中の
床の温度は50℃以上、好ましくは約50〜約100℃、より
好ましくは約70〜約90℃であるべきである。相応しく
は、担体粒子をガス、好ましくは空気で流動化し、かつ
担体粒子の流動床を1個または複数のノズルを通して該
懸濁液または溶液で噴霧する。本発明の方法の重要かつ
新規な特徴は空気の温度及び流速、1種以上の金属、1
種以上の化合物、及び1種以上のノズルから床中への懸
濁液または溶液の流速の特定の条件範囲内で操作するこ
とによって噴霧中に非常に高い粒子乾燥能力が生ずるこ
とである。例えば粒状チタニア担体上のコバルト金属膜
の被覆のような、粒状粒子上の所要の一様な厚さの1種
以上の金属膜またはコーティングの生成に於て、噴霧中
の床の温度、または噴霧温度は約50℃以上、好ましくは
約50〜約100℃、より好ましくは約70〜約90℃に保たれ
ねばならない。また、溶液供給速度対流動化ガスまたは
空気速度の比は約21.2g溶液/m3空気(0.6g溶液/ft3
気)以下、好まくは約3.53〜約21.2g/m3(約0.1〜0.6g/
ft3)、より好ましくは約10.6〜約17.7g/m3(約0.3〜約
0.5g/ft3)に保たれねばならない。これらのパラメータ
ーを一緒に採用することによって、高い金属回収率が得
られ、乾燥能力が制御されかつ平均厚さが約20〜約250
μm、好ましくは約40〜約150μmの範囲であり、かつ
触媒の単位充填嵩容積当たりの金属状金属の重量として
表わされる1種以上の該金属の含量が約0.01〜約0.15g/
cc、好ましくは約0.03〜約0.09g/cc触媒の範囲である触
媒が生成される。流動化ガスの温度が高温側にある場合
には、明示された範囲の高い方の側の溶液対ガス比が好
ましく、逆に、流動化ガスの温度が低温側にある場合に
は、明示された範囲の低い方の側の溶液対ガス比が好ま
しい。溶液中の1種以上の金属の含量及び担体の空隙率
も、ある程度、与えられた一連の噴霧条件下で、1種以
上の該金属の厚さに影響を与える。コバルトについて、
例えば明示された好ましい条件範囲内で操作するとき、
コバルト膜の厚さは容量測定コバルト含量約6g/100ccに
対して約100〜約250μmの範囲である。一般に、懸濁液
または溶液中の1種以上の金属化合物の濃度は約5重量
%以上、好ましくは10重量%以上である。好ましくは溶
液が用いられ、溶液は1種以上の金属化合物で飽和また
は過飽和されることができる。最適濃度は、恐らく、用
いられる1種以上の特別な化合物によって最もよく決定
される。低濃度はより長い噴霧時間を必要とし、逆に高
濃度は噴霧時間を短くする。膜厚についての所要な1種
以上の金属の含量を得るためには、特定な溶液濃度と所
要噴霧時間との間のバランスが所要である。
Spraying the support particles with a suspension or solution containing a compound of cobalt or one or more compounds of cobalt and one or more additional metals, which is fluidized in the bed and effective as a catalyst in the Fischer-Tropsch synthesis reaction. I do. The temperature of the bed during spraying should be above 50 ° C, preferably from about 50 to about 100 ° C, more preferably from about 70 to about 90 ° C. Suitably, the carrier particles are fluidized with a gas, preferably air, and the fluidized bed of carrier particles is sprayed with the suspension or solution through one or more nozzles. Important and novel features of the method of the present invention are the temperature and flow rate of air, one or more metals,
Operating within the specified range of flow rates of the suspension or solution from one or more nozzles and one or more nozzles into the bed results in a very high particle drying capacity during spraying. The temperature of the bed during spraying, or the spraying, in the production of one or more metal films or coatings of the required uniform thickness on the granular particles, for example the coating of a cobalt metal film on a granular titania support. The temperature should be maintained above about 50 ° C, preferably between about 50 and about 100 ° C, more preferably between about 70 and about 90 ° C. Also, the ratio of solution feed rate to fluidizing gas or air velocity is less than about 21.2 g solution / m 3 air (0.6 g solution / ft 3 air), preferably about 3.53 to about 21.2 g / m 3 (about 0.1 to 0.6g /
ft 3 ), more preferably about 10.6 to about 17.7 g / m 3 (about 0.3 to about
0.5 g / ft 3 ). By employing these parameters together, a high metal recovery is obtained, the drying capacity is controlled and the average thickness is from about 20 to about 250
μm, preferably from about 40 to about 150 μm, and the content of one or more such metals, expressed as the weight of metal-like metal per unit bulk volume of the catalyst, is from about 0.01 to about 0.15 g / m
A catalyst is produced that ranges from cc, preferably from about 0.03 to about 0.09 g / cc catalyst. When the temperature of the fluidizing gas is on the high temperature side, the solution-to-gas ratio of the higher side of the specified range is preferable, and conversely, when the temperature of the fluidizing gas is on the low temperature side, it is specified. The solution to gas ratio on the lower side of the range is preferred. The content of one or more metals in the solution and the porosity of the carrier will also, to some extent, affect the thickness of one or more of the metals under a given set of spraying conditions. About cobalt,
For example, when operating within the specified preferred conditions,
The thickness of the cobalt film ranges from about 100 to about 250 μm for a volumetric cobalt content of about 6 g / 100 cc. Generally, the concentration of one or more metal compounds in the suspension or solution will be about 5% or more, preferably 10% or more. Preferably, a solution is used, and the solution can be saturated or supersaturated with one or more metal compounds. The optimum concentration is probably best determined by one or more particular compounds used. Low concentrations require longer spray times, while higher concentrations shorten spray times. In order to obtain the required content of one or more metals for the film thickness, a balance between the specific solution concentration and the required spray time is required.

幾つかの型の床流動化装置が文献に記載されている
が、特定の型及びサイズの流動床装置それ自体は粒状担
体の周縁表面下の1種以上の金属の含浸の深さに影響を
もつようには思われない。既知の装置には、例えば床の
上または下から入るノズルを取りつけた流動床造粒/乾
燥機、回転造粒機、及びワースター(Wurster)カラム
が含まれる。かかる装置は米国ニュージャーシー州ラム
ゼーのグラット・エア・テクニックス社(Glatt Air Te
chniques,Inc.)から1トップ式噴霧器〔バーサ・グ
ラット(Versa−Glatt)モデル〕及び20トップ式噴霧
器、モデルGPCG−5、として、また、米国ウィスコンシ
ン州ベロナのザ・コーティング・プレス社(the Coatin
g Place,Inc.)から20ボトム式噴霧器として発売され
ている。トップ入口ノズルの方が粒子の破損が少ないよ
うである。典型的には、これらの装置の作動に於て、空
気の流速を担体粒子を適当に流動化させるために所要な
速度に調節し、次に空気の流速に対して金属溶液添加速
度を調節する。
Although several types of bed fluidizers are described in the literature, certain types and sizes of fluidized bed devices themselves affect the depth of impregnation of one or more metals below the peripheral surface of the particulate support. Does not seem to have. Known devices include, for example, fluidized bed granulators / dryers fitted with nozzles entering from above or below the bed, rotary granulators, and Wurster columns. Such equipment is available from Glatt Air Tecnics, Inc. of Ramsey, NJ, USA.
Chniques, Inc.) as a one-top sprayer (Versa-Glatt model) and a 20-top sprayer, model GPCG-5, and the Coatin Press of Verona, Wisconsin, USA.
g Place, Inc.) as a 20 bottom sprayer. The top inlet nozzle appears to have less particle breakage. Typically, in the operation of these devices, the air flow rate is adjusted to the required rate to properly fluidize the carrier particles, and then the metal solution addition rate is adjusted to the air flow rate. .

コバルト・チタニア触媒が特に好ましい。コバルト・
チタニア触媒は、ASTM D3720−78、すなわちX線回折
の使用による二酸化チタン顔料中のアナターゼ対ルチル
比(Ratio of Anatase to Rutile In Titaniun Dioxide
Pigments By Use of X−Ray Diffraction)の標準試験
法で測定されるとき、チタニアが少なくとも約3:2のル
チル:アナターゼ重量比を有するチタニア、あるいは含
チタニア担体または支持体上にコバルト、あるいはコバ
ルトと促進剤とを薄い触媒活性膜として分散させてある
触媒である。一般に、コバルト・チタニア触媒はチタニ
アが少なくとも3:2〜100:1またはそれ以上、より好まし
くは約4:1〜約100:1またはそれ以上の範囲のルチル:ア
ナターゼ比を有する触媒である。それぞれレニウム、ジ
ルコニウム、ハフニウム、セリウム、トリウムまたはウ
ラン金属のいずれか1種を促進剤としてコバルトへ添加
して薄い触媒活性膜を生成させる場合、コバルト:金属
促進剤重量比が約30:1〜約2:1、好ましくは約20:1〜約
5:1の範囲になるのに充分な濃度で金属をコバルトへ添
加する。レニウム及びハフニウムが好ましい促進剤金属
であり、レニウムは絶対基準で改良活性保持の促進に於
てより有効であり、ハフニウムは価格−有効性基準でよ
り有効である。これらの触媒組成物は、低いメタン選択
性を有し、主としてC10+直鎖パラフィン及びオレフィン
である生成物を生成し、酸素化生成物が極めて少ないこ
とがわかった。これらの触媒は一酸化炭素及び水素の留
出燃料への転化に於ける高活性、高選択性及び高活性保
持をも与える。
Cobalt titania catalysts are particularly preferred. cobalt·
The titania catalyst is ASTM D3720-78, the ratio of anatase to rutile in titanium dioxide pigment in titanium dioxide pigment by using X-ray diffraction.
Pigments by Use of X-Ray Diffraction) as determined by the standard test method, titania having a rutile: anatase weight ratio of at least about 3: 2, or cobalt on a titania-containing carrier or support. A catalyst in which a promoter is dispersed as a thin catalytically active film. Generally, the cobalt titania catalyst is a catalyst wherein the titania has a rutile: anatase ratio in the range of at least 3: 2 to 100: 1 or more, more preferably about 4: 1 to about 100: 1 or more. When each of rhenium, zirconium, hafnium, cerium, thorium or uranium metal is added to cobalt as a promoter to form a thin catalytically active film, the weight ratio of cobalt: metal promoter is about 30: 1 to about 30: 1. 2: 1, preferably about 20: 1 to about
Metal is added to cobalt at a concentration sufficient to be in the 5: 1 range. Rhenium and hafnium are the preferred promoter metals, with rhenium being more effective in promoting improved activity retention on an absolute basis and hafnium being more effective on a price-effectiveness basis. These catalyst compositions have been found to have low methane selectivity, produce products that are primarily C 10+ linear paraffins and olefins, and have very low oxygenation products. These catalysts also provide high activity, high selectivity and high activity retention in the conversion of carbon monoxide and hydrogen to distillate fuels.

噴霧終了後、含浸金属化合物を対応する金属酸化物へ
分解させなければならない。好ましくは、1種以上の金
属成分、例えばコバルトを、該コバルトをC03O4へ転化
させるために、酸化するのに充分な温度で、触媒を酸
素、空気または他の含酸素ガスと接触させる。金属、特
にコバルト、を酸化物へ転化させるためには、約150℃
以上、好ましくは約200℃以上の温度が充分である。約5
00℃を越える温度は避けるべきである。相応しくは、1
種以上の金属化合物の分解は約150〜約300℃の範囲の温
度で行われる。この分解工程は流動床装置中で、あるい
は外部のオーブンまたは焼成装置中で行うことができ
る。
After the end of spraying, the impregnated metal compound must be decomposed into the corresponding metal oxide. Preferably, one or more metal components, for example cobalt, in order to convert the cobalt to C 03 O 4, at a temperature sufficient to oxidize, contacting the catalyst with oxygen, air or other oxygen-containing gas . Approximately 150 ° C to convert metals, especially cobalt, to oxides
Above, preferably a temperature of about 200 ° C. or higher is sufficient. About 5
Temperatures above 00 ° C should be avoided. Suitably 1
The decomposition of one or more metal compounds is performed at a temperature in the range of about 150 to about 300C. This decomposition step can be carried out in a fluidized bed apparatus or in an external oven or calciner.

本発明の方法で製造されたコバルト触媒は高い生産性
で合成ガスからの液体炭化水素の製造に特に有用であ
り、メタン生成が低いことが立証された。これらのコバ
ルト触媒は本質的に全活性金属、特にコバルトを担体粒
子の外周縁表面上に含み、金属は粒子の内面からは実質
的に排除されている。粒子の外表面上の薄い縁部または
殻中の高い金属含量が触媒粒子の表面に於ける水素と一
酸化炭素との反応を最大にする。このことはほとんどの
先行技術の触媒の通常の拡散制限を避け、本発明の触媒
はより理想的に挙動し、拡散制限がない粉末状触媒の挙
動に近い。しかし、粉末状触媒の使用とは異なり、触媒
の粒度が大きいので触媒床を通る反応体流が実際上妨害
をうけない。既知の技術では全く不可能ではないとして
も極めて困難な、この型の触媒の大規模生産は本発明の
方法によって容易に達成される。
The cobalt catalysts prepared by the process of the present invention have proven particularly useful for the production of liquid hydrocarbons from synthesis gas with high productivity and have low methane production. These cobalt catalysts contain essentially all of the active metal, especially cobalt, on the outer peripheral surface of the carrier particle, with the metal being substantially excluded from the inner surface of the particle. The high metal content in the thin edges or shells on the outer surface of the particles maximizes the reaction between hydrogen and carbon monoxide at the surface of the catalyst particles. This avoids the usual diffusion limitations of most prior art catalysts, and the catalysts of the present invention behave more ideally, approaching the behavior of powdery catalysts without diffusion limitations. However, unlike the use of powdered catalysts, the reactant flow through the catalyst bed is virtually unhindered due to the large size of the catalyst. Large-scale production of catalysts of this type, which is extremely difficult, if not impossible at all with the known techniques, is easily achieved by the process according to the invention.

合成ガス反応の実施に於て、CO及びH2の反応混合物の
全圧力は一般に約5.624kg/cm2ゲージ圧(80psig)以
上、好ましくは約9.844kg/cm2ゲージ圧(140psig)以上
に保たれる。生成物中のC10+炭化水素の濃度を増加させ
るためには、一般に約0.5:1を越える、好ましくは約1.
7:1以上のH2:COのモル比の一酸化炭素及び水素を用いる
ことが望ましい。相応しくは、H2:COモル比は約0.5:1〜
約4:1の範囲であり、好ましくは、一酸化炭素及び水素
を約1.7:1約2.5:1の範囲のH2:COのモル比で用いる。一
般に、触媒の単位容量当たり毎時の一酸化炭素と水素と
の気体混合物の標準容量(0℃、1気圧)として測定し
て約100〜約5000V/Hr/V、好ましくは約300〜約1500V/Hr
/Vの範囲のガス毎時空間速度で反応は行われる。反応は
約160〜約290℃、好ましくは約190〜約260℃の範囲の温
度で行われる。圧力は好ましくは約5.624〜約42.18kg/c
m2ゲージ圧(約80〜約600psig)、より好ましくは約9.8
44〜約28.12kg/cm2ゲージ圧(約140〜約400psig)の範
囲である。生成物は一般にかつ好ましくは60%以上、よ
り好ましくは75%以上の、沸点が160℃(320゜F)以上
のC10+液体炭化水素を含む。
At a practice of synthesis gas reaction, the total pressure of the reaction mixture of CO and H 2 are generally about 5.624kg / cm 2 gauge pressure (80 psig) or more, preferably coercive above about 9.844kg / cm 2 gauge pressure (140 psig) Dripping. In order to increase the concentration of C10 + hydrocarbons in the product, generally it will exceed about 0.5: 1, preferably about 1.
It is desirable to use a carbon monoxide and hydrogen molar ratio of H 2 : CO of 7: 1 or more. Suitably, H 2: CO molar ratio of about 0.5: 1
Carbon monoxide and hydrogen are used in a molar ratio of H 2 : CO in the range of about 1.7: 1 to about 2.5: 1, preferably in the range of about 4: 1. Generally, from about 100 to about 5000 V / Hr / V, preferably from about 300 to about 1500 V /, measured as the standard volume of a gas mixture of carbon monoxide and hydrogen per hour per unit volume of catalyst (0 ° C., 1 atmosphere). Hr
The reaction takes place at gas hourly space velocities in the range of / V. The reaction is carried out at a temperature ranging from about 160 to about 290C, preferably from about 190 to about 260C. Pressure is preferably from about 5.624 to about 42.18 kg / c
m 2 gauge pressure (about 80 to about 600 psig), more preferably from about 9.8
It ranges from 44 to about 28.12 kg / cm 2 gauge pressure (about 140 to about 400 psig). The product generally and preferably comprises at least 60%, more preferably at least 75%, C10 + liquid hydrocarbons having a boiling point of at least 320 ° F.

本発明は、本発明のより顕著な特徴を示す比較データ
を示す以下の実施例及び説明を参照することによって、
より充分に理解されるであろう。特に断わらない限り、
部はすべて重量単位による。
The present invention is described by reference to the following examples and descriptions, which show comparative data that illustrate the more salient features of the present invention.
It will be more fully understood. Unless noted otherwise,
All parts are by weight.

実施例1−10 触媒の製造に用いるための1組の担体は信頼できる市
販源から得たか、あるいは粒状チタニア・アルミナ(9
6.5%Ti/3.5%Al2O3)、シリカ、アルミナから、押出物
及び球形の両方の形で製造された。担体の組成、その物
理的サイズ及び形、並びに幾つかの物理的特性、すなわ
ちm2/gの表面積(SA)(B.E.T.)、水銀注入によって測
定される細孔容積(PV)及び空隙率を第1表に示す。
Examples 1-10 A set of supports for use in the preparation of the catalyst were obtained from reliable commercial sources or were prepared from granular titania alumina (9
Manufactured from 6.5% Ti / 3.5% Al 2 O 3 ), silica, alumina in both extrudate and spherical form. The composition of the carrier, its physical size and shape, and some physical properties, namely surface area (SA) in m 2 / g (BET), pore volume (PV) and porosity measured by mercury injection The results are shown in Table 1.

これらの担体から製造された触媒を第2表に示す。触
媒製造に用いられた担体は第1表に関する担体番号で示
されている。
Table 2 shows the catalysts prepared from these supports. The supports used in the preparation of the catalyst are indicated by the support numbers in Table 1.

硝酸コバルト(11〜13重量%Co)及び過レニウム酸
(1〜1.3重量%Re)の水溶液を1組15触媒の製造に用
いた。これらの触媒は、流動床噴霧器、グラット・エア
・テクニックス社(Glatt Aia Techniques,Inc.)のそ
れぞれ1及び20のトップ式噴霧器、及びコーティン
グ・プレース社(Coating Place,Inc.)発売の20のボ
トム式噴霧器中で個々に製造された。触媒は第2表中に
示したようにして焼成された。第2表には、流動床噴霧
器への装填重量、溶液速度(g/分)、流動化空気速度
(ft3/分(CFM)、溶液:空気比(g/ft3)、噴霧中の平
均床温度、焼成方法、最終触媒上のCo−Reの重量%:外
表面からの平均深さすなわち担体粒子の外表面上のCo−
Reの厚さ、すなわち電子プローブアナライザー(JEOL C
ompany製、モデルNo.JXA−50A)で測定されるRIM厚さも
示してある。Co−Re表面層の厚さすなわちRIMは与えら
れた触媒製造の成功か不成功かの目安である。この深さ
全体にわたって金属分布は均一でないことが見いださ
れ、濃度はしばしば粒子の周縁表面からの距離の増加と
共に減少した。しかし、粒子内の深さ及び粒子ごとに行
われた測定は一般に良好な均一性を示し、特に本発明に
よる成功例である触媒製造No.1〜10に関しては良好な均
一性を示した。平均RIM厚さに加えて、金属回収率も成
功の重要な基準であり、金属回収率は実施例12に関する
以外は90重量%を越えていた。
An aqueous solution of cobalt nitrate (11-13% by weight Co) and perrhenic acid (1-1.3% by weight Re) was used to make a set of 15 catalysts. These catalysts are available in fluidized bed sprayers, 1 and 20 top sprayers, respectively, from Glatt Aia Techniques, Inc., and 20 from Coating Place, Inc. Manufactured individually in a bottom sprayer. The catalyst was calcined as shown in Table 2. The second table, loaded weight of the fluidized bed nebulizer solution rate (g / min), fluidizing air velocity (ft 3 / min (CFM), the solution: air ratio (g / ft 3), the average in the spray Bed temperature, calcination method,% by weight of Co-Re on final catalyst: average depth from outer surface, ie Co- on outer surface of carrier particles
Re thickness, ie electron probe analyzer (JEOL C
The RIM thickness measured with ompany, Model No. JXA-50A) is also shown. The Co-Re surface layer thickness, or RIM, is a measure of the success or failure of a given catalyst preparation. The metal distribution was found to be non-uniform throughout this depth, and the concentration often decreased with increasing distance from the peripheral surface of the particles. However, measurements taken within the particles and on a particle-by-particle basis generally showed good uniformity, especially for the successful catalyst preparations Nos. 1-10 according to the present invention. In addition to the average RIM thickness, metal recovery was also an important criterion of success, with metal recovery exceeding 90% by weight except for Example 12.

第2表記載の調製物から次の結論を出すことができ
る。すなわち、 調製物No.1〜4aは、他の条件が比較的一定である場合
に噴霧温度とRIM厚さとの間に強い関係があることを示
す。50〜100℃の範囲にわたって、温度が高いほどRIMが
薄くなる。製造No.1〜3は低い溶液:空気比で噴霧され
ていることに注目されたい。
The following conclusions can be drawn from the preparations described in Table 2. That is, Preparations Nos. 1-4a show that there is a strong relationship between spray temperature and RIM thickness when other conditions are relatively constant. Over a range of 50-100 ° C., the higher the temperature, the thinner the RIM. Note that Production Nos. 1-3 were sprayed at a low solution: air ratio.

調製物4aと4bとはRIM厚さが最終焼成工程にある程度
依存することを示す。溶融硝酸塩は加熱中、酸化物へ分
解する前に担体中へさらに移動する。粒子の中心へ向か
うこの金属の移動は迅速な加熱によって最小にすること
ができ、噴霧器はこれを行うための最良の方法となる。
別法は噴霧中の低い溶液:空気比の使用である。これを
余分に乾燥することは焼成中に後でRIMが移動する傾向
を最小にするのを助けることができる。0.56の溶液:空
気比は受容可能範囲の高端である。噴霧直後に噴霧器か
ら小部分を取り出し、次いでチューブユニット中で焼成
するとき、RIMは顕著に増加した。
Preparations 4a and 4b show that the RIM thickness depends to some extent on the final firing step. The molten nitrate moves further into the support during heating before decomposing into oxides. This movement of the metal towards the center of the particles can be minimized by rapid heating, and atomizers are the best way to do this.
An alternative is to use a low solution: air ratio during spraying. Excessive drying of this can help minimize the tendency of the RIM to migrate later during firing. A solution: air ratio of 0.56 is at the high end of the acceptable range. When a small portion was removed from the atomizer immediately after spraying and then fired in a tube unit, the RIM increased significantly.

調製物No.5を調製物No.2と比べると、RIMの厚さがコ
バルト含量の関数であることがわかる。一定の噴霧条件
下で担体上へ噴霧されたコバルトが少なければ少ない
程、RIMは薄くなる。
Comparison of Preparation No. 5 with Preparation No. 2 shows that the RIM thickness is a function of the cobalt content. The less cobalt sprayed onto the carrier under certain spray conditions, the thinner the RIM.

調製物No.6は、例外的に薄いRIMを高金属含量で作る
ことができることを示す。この場合、調製物No.5を焼成
後もう1度含浸させるために噴霧器へ単に戻しただけで
ある。1回含浸調製物No.2に比べて非常に薄いRIMが得
られた。
Preparation No. 6 shows that exceptionally thin RIM can be made with high metal content. In this case, Preparation No. 5 was simply returned to the atomizer for another impregnation after firing. A very thin RIM was obtained compared to the single impregnation preparation No. 2.

調製物No.7及び8はRIM厚さが担体の空隙率の関数で
あることを示す。担体が高い細孔容積を有するとき、RI
Mはより薄くなる(製造No.4aに対する製造No.7)。
Preparations Nos. 7 and 8 show that the RIM thickness is a function of the porosity of the carrier. When the carrier has a high pore volume, the RI
M is thinner (Production No. 7 for Production No. 4a).

調製物No.9及びNo.10はシリカ及びアルミナ担体につ
いての成功を示す。
Preparations No. 9 and No. 10 show success on silica and alumina supports.

調製物No.11及び12は好ましい温度範囲外の操業の悪
影響を示す。調製物No.11は50℃未満の噴霧が低い溶
液:空気比にも拘らずRIMを与えないことを示す。ま
た、僅か2.8%のコバルトが析出した。調製物No.12は、
110℃での噴霧は薄いRIMを与えるが、噴霧された金属の
60%しか最終的に触媒上に析出しないことを示す。コバ
ルト及び高価なレニウムの残りは微粉として頂部から運
び出された。溶液が担体へ達する前に溶液の“噴霧乾
燥”及び硝酸塩の分解が起ったようである。
Preparations Nos. 11 and 12 show the adverse effects of operating outside the preferred temperature range. Preparation No. 11 shows that spraying below 50 ° C. does not give a RIM despite a low solution: air ratio. Also, only 2.8% of cobalt was precipitated. Preparation No. 12
Spraying at 110 ° C gives a thin RIM, but does not
It shows that only 60% is finally deposited on the catalyst. The balance of cobalt and expensive rhenium was carried off from the top as fines. It appears that "spray drying" of the solution and decomposition of the nitrate occurred before the solution reached the carrier.

頂部物No.13及び14は高い溶液:空気比を用いるとき
には良好なRIMが得られないことを示す。
Top Nos. 13 and 14 indicate that good RIM is not obtained when using a high solution: air ratio.

さらに、これらのRIM触媒の有用性を示すために、流
動床技術で成功裏に製造された触媒を用いて一連のフィ
ッシャー・トロプシュ実験を行った。すべてが成功であ
り、かつ得られたデータは各触媒調製物のコバルト含量
及びRIM厚さに基づく予測性能とよく一致した。触媒調
製物4aについて得られた結果は実例と考えることができ
る。かくして調製物No.4aを合成ガスの重質炭化水素へ
の転化のために用いた。触媒の一部分を450℃で1時間
還元した後、65%H2/31%CO/4%Neを含む供給物につい
て、200℃、19.684kg/cm2ゲージ圧(280psig)、GHSV=
1000で反応させた。20時間操業後、CO転化率は79%でっ
あた。反応したCO 1モル当たりの生成物へ転化したCOの
モル数で示される生成物選択率は6.0%CH4、0.4%CO2
び93.4%C2+であった。
In addition, a series of Fischer-Tropsch experiments were performed with catalysts successfully manufactured in fluid bed technology to demonstrate the utility of these RIM catalysts. All were successful and the data obtained agreed well with the predicted performance based on the cobalt content and RIM thickness of each catalyst preparation. The results obtained for catalyst preparation 4a can be considered illustrative. Preparation No. 4a was thus used for the conversion of synthesis gas to heavy hydrocarbons. After reducing a portion of the catalyst at 450 ° C. for 1 hour, for a feed containing 65% H 2 /31% CO / 4% Ne, 200 ° C., 19.684 kg / cm 2 gauge (280 psig), GHSV =
The reaction was performed at 1,000. After 20 hours of operation, the CO conversion was 79%. Reacted CO 1 product selectivity represented by the number of moles of CO were converted to product per mole of 6.0% CH 4, it was 0.4% CO 2 and 93.4% C 2+.

本発明の精神及び範囲を逸脱することなく種々の変更
や変化を行うことができることは明らかである。
Obviously, various changes and modifications can be made without departing from the spirit and scope of the invention.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 ケニス ロイド リリー アメリカ合衆国 ルイジアナ州 ベイト ン ルージュ ロドニー ドライヴ 1289 (56)参考文献 特開 昭63−147545(JP,A) (58)調査した分野(Int.Cl.7,DB名) B01J 21/00 - 37/36 ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Kennis Lloyd Lilly Beitung Rouge Rodney Drive, Louisiana, USA 1289 (56) References JP-A-63-147545 (JP, A) (58) Fields investigated (Int. Cl. . 7, DB name) B01J 21/00 - 37/36

Claims (13)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】合成ガスの炭化水素への転化のために有用
な触媒を製造するために触媒有効量のコバルトを粒状多
孔性無機酸化物担体の周縁の外表面上に層として分散さ
せ、かつ該担体粒子を1種以上の該金属の分解可能な化
合物を含む噴霧と接触させる触媒製造法であって、 該担体粒子の床を50〜100℃の範囲の温度のガスとの接
触によって50〜100℃の範囲の温度に於て流動化状態に
保ち、 該加熱された担体粒子床を、コバルトの1種以上の化合
物が分散されている液体で、液体の流速:流動化ガスの
流速の比が21.2g液体/m3流動化ガス(0.6g液体/ft3流動
化ガス)未満になるように充分な流速で噴霧して、平均
厚さが20〜250μmの範囲にあり、かつ該金属の含量が
触媒の単位充填かさ容積当たりの金属状金属として計算
して0.01〜0.15g/ccの範囲にある該金属の表面層を該粒
子上に形成させること を特徴とする製造法。
1. A catalytically effective amount of cobalt is dispersed as a layer on the peripheral outer surface of a particulate porous inorganic oxide support to produce a catalyst useful for the conversion of synthesis gas to hydrocarbons, and A method for preparing a catalyst, comprising contacting said carrier particles with a spray comprising one or more decomposable compounds of said metal, wherein the bed of said carrier particles is brought into contact with a gas at a temperature in the range of 50-100 ° C by 50-50 ° C. The bed of heated carrier particles is maintained in a fluidized state at a temperature in the range of 100 ° C. and the heated bed of carrier particles is a liquid in which one or more compounds of cobalt are dispersed, the ratio of the flow rate of the liquid to the flow rate of the fluidizing gas. Is sprayed at a flow rate sufficient to be less than 21.2 g liquid / m 3 fluidizing gas (0.6 g liquid / ft 3 fluidizing gas), the average thickness is in the range of 20-250 μm, and Content is in the range of 0.01 to 0.15 g / cc, calculated as metal-like metal per unit packed bulk volume of catalyst A production method comprising forming a surface layer of the metal on the particles.
【請求項2】液体の流速:流動化ガスの流速の比が10.6
〜17.7g/m3(0.3〜0.5g/ft3)の範囲である請求項1記
載の製造法。
2. A liquid flow velocity: fluidizing gas velocity velocity ratio of 10.6.
~17.7g / m 3 (0.3~0.5g / ft 3) The process according to claim 1, wherein the range of.
【請求項3】該分解可能な1種以上の金属化合物がコバ
ルトを含む化合物と、レニウム、ハフニウム、ジルコニ
ウム、セリウム、トリウム及びウランからなる群から選
ばれる化合物とからなり、かつコバルトが該1種以上の
追加金属と共に該担体上に表面層として分散される請求
項1記載の製造法。
3. The method according to claim 1, wherein the one or more decomposable metal compounds comprises a compound containing cobalt, and a compound selected from the group consisting of rhenium, hafnium, zirconium, cerium, thorium and uranium, and wherein the one or more cobalt compounds are selected from the group consisting of: The method according to claim 1, wherein said additional metal is dispersed as a surface layer on said carrier.
【請求項4】該触媒の触媒活性表面層が40〜150μmの
範囲の平均厚さでありかつコバルト含量が0.03〜0.09g/
ccの範囲である請求項1記載の製造法。
4. The catalyst according to claim 1, wherein the catalytically active surface layer has an average thickness in the range of from 40 to 150 μm and a cobalt content of from 0.03 to 0.09 g / m.
2. The method according to claim 1, wherein the range is cc.
【請求項5】該担体がアルミナ、シリカ、シリカ−アル
ミナ、チタニアあるいはアルミナ、シリカまたはチタニ
アからなる混合物からなる請求項1記載の製造法。
5. The process according to claim 1, wherein said carrier comprises alumina, silica, silica-alumina, titania or a mixture of alumina, silica or titania.
【請求項6】該担体がチタニアからなる請求項5記載の
製造法。
6. The method according to claim 5, wherein said carrier comprises titania.
【請求項7】チタニアが少なくとも3:2のルチル:アナ
ターゼ重量比を有する請求項6記載の製造法。
7. The method of claim 6, wherein the titania has a rutile: anatase weight ratio of at least 3: 2.
【請求項8】チタニアの少なくとも3:2〜100:1及びそれ
以上の範囲のルチル:アナターゼ重量比を有する請求項
7記載の製造法。
8. The method of claim 7 wherein the titania has a rutile: anatase weight ratio in the range of at least 3: 2 to 100: 1 and greater.
【請求項9】液体の流速対分散された金属化合物を含む
流動化ガスの流速の比が10.6〜17.7g/m3(0.3〜0.5g/ft
3)の範囲である請求項1記載の製造法。
9. The ratio of the flow rate of the liquid to the flow rate of the fluidizing gas containing the dispersed metal compound is 10.6-17.7 g / m 3 (0.3-0.5 g / ft).
3. The method according to claim 1, wherein the method falls within the range of 3 ).
【請求項10】コバルトの1種以上の化合物が中に分散
される液体が水である請求項1記載の製造法。
10. The method according to claim 1, wherein the liquid in which the one or more compounds of cobalt are dispersed is water.
【請求項11】流動化ガスが空気である請求項1記載の
製造法。
11. The method according to claim 1, wherein the fluidizing gas is air.
【請求項12】流動化ガスの温度が70〜90℃の範囲であ
る請求項1記載の製造法。
12. The method according to claim 1, wherein the temperature of the fluidizing gas ranges from 70 to 90 ° C.
【請求項13】流動化ガスが空気である請求項12記載の
製造法。
13. The method according to claim 12, wherein the fluidizing gas is air.
JP02091933A 1990-04-06 1990-04-06 Method for producing surface impregnated dispersed cobalt metal catalyst Expired - Lifetime JP3118244B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02091933A JP3118244B2 (en) 1990-04-06 1990-04-06 Method for producing surface impregnated dispersed cobalt metal catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02091933A JP3118244B2 (en) 1990-04-06 1990-04-06 Method for producing surface impregnated dispersed cobalt metal catalyst

Publications (2)

Publication Number Publication Date
JPH03293036A JPH03293036A (en) 1991-12-24
JP3118244B2 true JP3118244B2 (en) 2000-12-18

Family

ID=14040396

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02091933A Expired - Lifetime JP3118244B2 (en) 1990-04-06 1990-04-06 Method for producing surface impregnated dispersed cobalt metal catalyst

Country Status (1)

Country Link
JP (1) JP3118244B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2006325210B8 (en) * 2005-12-16 2010-09-23 Shell Internationale Research Maatschappij B.V. Catalyst bodies for use in Fischer-Tropsch reactions

Also Published As

Publication number Publication date
JPH03293036A (en) 1991-12-24

Similar Documents

Publication Publication Date Title
US4977126A (en) Process for the preparation of surface impregnated dispersed cobalt metal catalysts
JP2572079B2 (en) Catalyst composition and method for producing the same
US5545674A (en) Surface supported cobalt catalysts, process utilizing these catalysts for the preparation of hydrocarbons from synthesis gas and process for the preparation of said catalysts
US4764498A (en) Silica-containing shaped articles and a process for their preparation
AU777852B2 (en) Reducing Fischer-Tropsch catalyst attrition losses in high agitation reaction systems
RU2271250C2 (en) Crusted metallic catalyst, method for preparation thereof, and a hydrocarbon production process
JP2849134B2 (en) Improved titania catalyst, its preparation and use in Fischer-Tropsch synthesis
EP1392432B2 (en) Method for making a high surface area, small crystallite size catalyst for Fischer-Tropsch synthesis
TWI527623B (en) Eggshell catalyst consisting of a hollow cylindrical support body and a catalytically active oxide material applied to the outer surface of the support body
JP4800948B2 (en) Process for producing a catalyst for gas phase oxidation by coating a support material in a fluidized bed apparatus
JP6916219B2 (en) Cobalt-containing catalyst composition
JP4772695B2 (en) Zirconia-containing support for catalyst
JPH0326340A (en) Coated catalyst useful for hydrogenation of maleic anhydride to tetrahydrofuran and gamma- butyrolactone
JP3408811B2 (en) Activation conditions to maximize HCS activity of supported cobalt catalyst
JP4772694B2 (en) Layered support for catalysts
JP3009646B2 (en) Shell-type catalyst for gas-phase oxidation of C-C4 hydrocarbons to maleic anhydride, method for producing the same, and gas-phase oxidation of C-C4 hydrocarbons
US4508848A (en) Catalysts and process of making
JP5096003B2 (en) Halide-free precursors for catalysts
JP3118244B2 (en) Method for producing surface impregnated dispersed cobalt metal catalyst
KR20090037089A (en) Cobalt catalyst with metallic frame, manufacturing method same and method for highly selective wax production in fischer-tropsch synthesis using cobalt catalyst with metallic frame
KR100893547B1 (en) Metallic structured catalyst and its manufacturing method
WO2012044591A2 (en) Multiphase alumina particle
EP0453674B1 (en) Process for the preparation of surface impregnated dispersed cobalt metal catalysts and hydrocarbon synthesis using said catalysts
CA2012682C (en) Process for the preparation of surface impregnated dispersed cobalt metal catalysts
JP4939230B2 (en) Rhodium-containing catalyst

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081006

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091006

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091006

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101006

Year of fee payment: 10

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101006

Year of fee payment: 10