JP3116129B2 - Processing method - Google Patents

Processing method

Info

Publication number
JP3116129B2
JP3116129B2 JP07221098A JP22109895A JP3116129B2 JP 3116129 B2 JP3116129 B2 JP 3116129B2 JP 07221098 A JP07221098 A JP 07221098A JP 22109895 A JP22109895 A JP 22109895A JP 3116129 B2 JP3116129 B2 JP 3116129B2
Authority
JP
Japan
Prior art keywords
tool
workpiece
machining
shape data
tool system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP07221098A
Other languages
Japanese (ja)
Other versions
JPH0947939A (en
Inventor
和雄 山崎
順 吉田
啓 川名
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Makino Milling Machine Co Ltd
Original Assignee
Makino Milling Machine Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Makino Milling Machine Co Ltd filed Critical Makino Milling Machine Co Ltd
Priority to JP07221098A priority Critical patent/JP3116129B2/en
Publication of JPH0947939A publication Critical patent/JPH0947939A/en
Application granted granted Critical
Publication of JP3116129B2 publication Critical patent/JP3116129B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Landscapes

  • Machine Tool Sensing Apparatuses (AREA)
  • Numerical Control (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、X,Y,Z軸の直
線送り軸と、A,B,C軸の回転送り軸のうち少なくと
も1つの回転送り軸とを有するNC工作機械において、
回転送り軸をワークと工具系とが干渉しない角度に割り
出してワークを加工する加工方法に関する。
The present invention relates to an NC machine tool having a linear feed axis of X, Y and Z axes and at least one rotary feed axis of A, B and C axes.
The present invention relates to a machining method for machining a workpiece by indexing a rotary feed shaft to an angle at which the workpiece and a tool system do not interfere with each other.

【0002】[0002]

【従来の技術】金型などの凹凸のある自由曲面を加工す
る場合、最近は5軸マシニングセンタ等の回転送り軸を
有するNC工作機械がよく使われるようになってきた。
これはX,Y,Z軸の直線送り軸しか有さない3軸マシ
ニングセンタを用いるより、ワークの段取り替えなしに
様々な形状のワークが加工できる上、工具長さをいたず
らに長くしなくても回転送り軸の運動でワークと工具系
との干渉回避が行える利点があるからである(例えば、
特開平6−259123号公報を参照)。この回転送り
軸を有するNC工作機械による加工方法には、適当な角
度に回転送り軸を割り出して、X,Y,Z軸の同時3軸
送りで加工する方法と、X,Y,Z軸と回転送り軸との
同時4軸以上の送りで加工する方法とがある。本発明で
は、この前者の方法に着目する。
2. Description of the Related Art Recently, when machining a free-form surface having irregularities such as a mold, an NC machine tool having a rotary feed shaft such as a 5-axis machining center has been frequently used.
In this method, a work of various shapes can be processed without changing the work of the work, and a tool length is not increased unnecessarily, as compared with the case of using a three-axis machining center having only linear feed axes of X, Y, and Z axes. This is because there is an advantage that interference between the workpiece and the tool system can be avoided by the movement of the rotary feed shaft (for example,
See JP-A-6-259123). A machining method using an NC machine tool having this rotary feed axis includes a method of indexing the rotary feed axis at an appropriate angle and performing processing by simultaneous three-axis feed of X, Y, and Z axes; There is a method of processing by feeding four or more axes simultaneously with the rotary feed shaft. The present invention focuses on the former method.

【0003】[0003]

【発明が解決しようとする課題】前者の方法で加工する
場合、まずNC加工プログラムを作成するプログラマー
は、ワークの全加工範囲をいくつの工程に分割して加工
すれば良いかを決め、次いでその分割した1工程毎の回
転送り軸の割り出し角度を決定しなければならない。通
常、プログラマーはこれらの作業をワークの加工面の形
状と工具系(工具、工具ホルダ、主軸や主軸頭の最外側
形状等を含む)の形状とから、勘と経験で行うため、割
り出し角度が適切か否かを試行錯誤を繰り返して決定し
なければならず大変手間と時間がかかる。1工程毎の回
転送り軸の割り出し角度が決定したら、その後、X,
Y,Z軸の同時3軸加工のNC加工プログラムを全工程
について作成し、加工を行う。このようにプログラマー
の勘と経験が必要な作業は、どうしてもワークと工具系
との干渉が起きる限界付近の領域では、安全のため、加
工範囲の分割数、つまり工程数を多くして、干渉回避に
余裕を持たせた工程設計をせざるを得ない。するとプロ
グラミング回数も増え、トータルとしての加工時間が長
くなり、また工程間における加工面の段差の数が増える
という問題も生じる。またプログラマーは勘と経験を有
した熟練を必要とすることともなる。
In the case of machining by the former method, a programmer who creates an NC machining program first determines the number of steps in which the entire machining range of the work should be divided and machined. It is necessary to determine the index angle of the rotary feed shaft for each divided step. Usually, the programmer performs these tasks with intuition and experience based on the shape of the work surface of the workpiece and the shape of the tool system (including tools, tool holders, the spindle and the outermost shape of the spindle head). It must be determined through trial and error to determine whether it is appropriate or not. After the indexing angle of the rotary feed shaft for each process is determined, X,
An NC machining program for simultaneous three-axis machining of the Y and Z axes is created for all processes and machining is performed. For work that requires the intuition and experience of the programmer, in the area near the limit where the interference between the work and the tool system is inevitable, the number of divisions of the processing range, that is, the number of steps, is increased for safety to avoid interference. Inevitably, the process must be designed with a margin. Then, the number of times of programming increases, the total processing time increases, and the number of steps on the processing surface between processes increases. Also, programmers need skill with intuition and experience.

【0004】よって本発明の目的は、金型などの自由曲
面を有したワークを前者の方法で加工する場合におい
て、工具長さを過度に長くせず、ワークと工具系との干
渉がなく、かつ工程数を極力少なくして回転送り軸の割
り出し角度を自動的に求め、高能率で高精度な加工が行
える加工方法を提供することである。
Accordingly, an object of the present invention is to provide a method for processing a workpiece having a free-form surface such as a mold by the former method without excessively increasing the length of the tool, preventing interference between the workpiece and the tool system, Further, it is an object of the present invention to provide a processing method capable of automatically obtaining an index angle of a rotary feed shaft by minimizing the number of steps and performing high-efficiency and high-precision processing.

【0005】[0005]

【課題を解決するための手段】前述の課題を解決するた
め、本発明では、互いに直交するX,Y,Z軸の直線送
り軸と、A,B,C軸の回転送り軸のうち少なくとも1
つの回転送り軸とを有するNC工作機械を用い、前記N
C工作機械の主軸に工具を装着してワークを加工する加
工方法において、加工するワークの形状を表すワーク形
状データを記憶し、前記工具、前記工具を把持する工具
ホルダ、前記工具ホルダを把持する主軸の最外側部等を
含む工具系の形状を表す工具系形状データを記憶し、前
記工具で加工するワークの加工曲面の加工範囲を指定
し、前記記憶したワーク形状データから前記指定した加
工範囲におけるワークの加工曲面の平均傾き角度θを演
算し、前記回転送り軸の割り出し角度を前記平均傾き角
度θとしたとき、前記記憶したワーク形状データおよび
工具系形状データから前記加工範囲の全域にわたってワ
ークと工具系との干渉チェックを行い、ワークと工具系
とが干渉しない場合は、前記演算した平均傾き角度θに
なるように前記回転送り軸を割り出し、前記直線送り軸
の送り動作によって前記ワークの当該加工曲面の加工を
行うようにした加工方法が提供される。
According to the present invention, at least one of a linear feed axis of X, Y, and Z axes and a rotary feed axis of A, B, and C axes is provided.
Using an NC machine tool having two rotary feed axes,
In a machining method for machining a workpiece by mounting a tool on a main spindle of a C machine tool, workpiece shape data representing the shape of the workpiece to be machined is stored, and the tool, a tool holder for gripping the tool, and the tool holder are gripped. Tool system shape data representing the shape of the tool system including the outermost portion of the spindle is stored, and a machining range of a machining curved surface of a workpiece to be machined by the tool is designated, and the designated machining range is determined from the stored workpiece shape data. Calculate the average inclination angle θ of the processing curved surface of the workpiece in the above, and when the index angle of the rotary feed shaft is the average inclination angle θ, the workpiece is stored over the entire processing range from the stored workpiece shape data and tool system shape data. Is checked for interference between the workpiece and the tool system. If the workpiece and the tool system do not interfere, the transfer is performed so that the calculated average inclination angle θ is obtained. Indexing the shaft, processing method to perform the machining of the machining curved surface of the workpiece by the feed operation of the linear feed axis is provided.

【0006】また、上記干渉チェックにおいて、ワーク
と工具系とが干渉する場合は、ワークと工具系とが干渉
する場合は、前記回転送り軸を両者が干渉しない方向へ
回転して干渉しなくなる干渉回避角度γを一定の論理に
従って求め、前記演算した平均傾き角度θと前記干渉回
避角度γとからワークと工具系とが干渉しない割り出し
角度δを演算し、その干渉しない割り出し角度δになる
ように前記回転送り軸を割り出し、前記直線送り軸の送
り動作によって前記ワークの当該加工曲面の加工を行う
ようにした加工方法が提供される。
In the above interference check, when the workpiece and the tool system interfere with each other, and when the workpiece and the tool system interfere with each other, the rotary feed shaft rotates in a direction in which the two do not interfere with each other, and the interference does not occur. Obtain the avoidance angle γ according to a certain logic, calculate the index angle δ at which the workpiece and the tool system do not interfere with each other from the calculated average inclination angle θ and the interference avoidance angle γ, so that the index angle δ does not interfere. A machining method is provided in which the rotary feed shaft is indexed, and the workpiece is processed by the feed operation of the linear feed shaft.

【0007】更に、上記干渉チェックにおいて、ワーク
と工具系とが干渉し、かつ両者が干渉しなくなる干渉回
避角度γが存在しない場合は、前記記憶した工具系形状
データの工具系の長さを長くする、工具系の太さを細く
する等のデータ変更指令を発し、前記工具系形状データ
を変更して記憶し、加工範囲の指定、平均傾き角度θの
演算、干渉チェック等の前記各ステップの処理を順次行
い、ワークと工具系とが干渉しない割り出し角度を求
め、当該割り出し角度になるように前記回転送り軸を割
り出し、前記直線送り軸の送り動作によって前記ワーク
の当該加工曲面の加工を行うようにした加工方法が提供
される。
Further, in the above interference check, if the workpiece and the tool system interfere with each other and there is no interference avoidance angle γ at which the two do not interfere with each other, the length of the tool system in the stored tool system shape data is increased. Issue a data change command such as reducing the thickness of the tool system, changing and storing the tool system shape data, designating a processing range, calculating an average inclination angle θ, checking the interference, and the like. The processing is sequentially performed, an index angle at which the workpiece and the tool system do not interfere is determined, the rotary feed shaft is determined so as to have the index angle, and the processing of the processing curved surface of the workpiece is performed by the feed operation of the linear feed axis. A processing method as described above is provided.

【0008】[0008]

【作用】指定した加工範囲におけるワークの加工曲面の
平均傾き角度θを演算し、加工曲面をその平均傾き角θ
にしたとき、ワークと工具系との干渉チェックを行い、
両者が干渉しない場合は、回転送り軸を実際にその平均
傾き角度θだけ割り出し、X,Y,Zの直線送り軸でワ
ークを加工する。ワークと工具系との干渉チェックを事
前に行っているので、実加工で両者が干渉するおそれは
ない。また干渉チェックでワークと工具系とが干渉する
と判定された場合、干渉回避角度γを求め、前もって求
めた平均傾き角度θとの間で、θ−γ=δなる計算を行
い、求めたδになるように回転送り軸を割り出すと干渉
することなく加工が行える。ここで干渉回避角度γの求
め方は、例えば、加工曲面の傾き角度を平均傾き角度θ
としたとき、指定した全加工範囲で干渉チェックを行
い、干渉するときは干渉しなくなる方向へ加工曲面を回
転し、干渉しなくなるθに最も近い角度を見つけ、これ
を干渉回避角度γとする。更に干渉回避角度γが存在し
ない、つまり干渉回避が行えない場合は、工具系の長さ
を長くする、工具系の太さを細くする、加工範囲の指定
を狭くする等の処置を施し、干渉チェックを再度行う。
このようにして回転送り軸を割り出すべき最適角度を決
定したら、NC加工プログラムを作成し、実加工を行う
のである。
[Function] An average inclination angle θ of a processing curved surface of a work in a specified processing range is calculated, and the processing curved surface is converted into the average inclination angle θ.
To check for interference between the workpiece and the tool system.
If they do not interfere with each other, the rotary feed axis is actually determined by its average inclination angle θ, and the workpiece is machined by the X, Y, and Z linear feed axes. Since the interference check between the workpiece and the tool system is performed in advance, there is no possibility that both will interfere in actual machining. When it is determined in the interference check that the workpiece and the tool system interfere with each other, an interference avoidance angle γ is determined, and a calculation of θ−γ = δ is performed between the average inclination angle θ determined in advance, and the calculated δ is calculated. If the rotary feed shaft is indexed so that machining can be performed without interference. Here, the method of obtaining the interference avoidance angle γ is, for example, by calculating the inclination angle of the machining curved surface by the average inclination angle θ.
, An interference check is performed over the entire designated processing range, and when interference occurs, the processing curved surface is rotated in a direction in which the interference does not occur, and an angle closest to θ at which the interference does not occur is determined as an interference avoidance angle γ. In addition, if the interference avoidance angle γ does not exist, that is, if the interference avoidance cannot be performed, take measures such as increasing the length of the tool system, reducing the thickness of the tool system, and narrowing the designation of the processing range, and performing interference. Check again.
After the optimum angle for determining the rotation feed axis is determined in this way, an NC machining program is created and actual machining is performed.

【0009】[0009]

【発明の実施の形態】次に、本発明について図面を参照
しながら説明する。図1は、本発明による加工方法のス
テップを示したフローチャートであり、図2は、ワーク
の凹部を5軸のマシニングセンタを用いて加工する場合
を例にした回転送り軸の割り出し角度決定の説明図であ
り、図3は、加工曲面の平均傾き角度を決定する手法の
1つである三角パッチ法の説明図である。
Next, the present invention will be described with reference to the drawings. FIG. 1 is a flowchart showing steps of a machining method according to the present invention, and FIG. 2 is an explanatory diagram of determining an index angle of a rotary feed shaft in a case where a concave portion of a workpiece is machined using a 5-axis machining center. FIG. 3 is an explanatory diagram of the triangular patch method, which is one of the methods for determining the average inclination angle of the processing curved surface.

【0010】図1を用いて、本発明による加工方法のス
テップを順に説明する。CAD・CAM装置に、加工形
状データ、ワークの形状データ、工具系(工具、工具ホ
ルダ、工具ホルダを把持する主軸および主軸頭の最外側
部等を含む)の形状データ等を予め入力し、ワークのモ
デリング、工具系のモデリングを行う(ステップS
1)。ワークのモデリング形状を表示装置に表示させ、
1工程で加工する加工曲面の加工範囲を画面で指定する
(ステップS2)。図2(a)は、5軸横形マシニング
センタ1でワーク3を加工する概略平面図を示したもの
である。マシニングセンタ1の主軸頭5に回転支持され
る主軸7が設けられ、主軸7の先端に工具ホルダ9を介
してボールエンドミル11が装着されている。5軸マシ
ニングセンタの形態はいろいろあるが、本実施例ではワ
ーク3側は固定で、主軸頭5が、X,Y,Z軸の直線3
軸方向およびA,B軸の回転2軸方向に送り移動できる
ものとする。図2(a)はA,B軸は0度の状態であ
る。ステップS2で指定された加工範囲が図示の加工範
囲とすると、CAD・CAM装置は、その指定された加
工範囲における加工曲面の平均傾き角度θを図示のよう
に演算する(ステップS3)。その平均傾き角度の演算
方法には、例えば図3に示す三角パッチ法なる手法があ
る。モデリングされた曲面Sを複数の三角パッチに分割
し、その1つに着目する。その三角パッチの各辺の長さ
はa,b,cであり、その面積Sijは、 Sij=[√{L(L−2a)(L−2b)(L−2
c)}]/4 ここでL=a+b+c と表される。この三角パッチをXY平面に投影した面積
SrをCAD・CAM装置で演算し、比Rij=Sr/
Sijをとる。この比Rijの大きさによって三角パッ
チとXY平面との傾き角度がわかる。これをYZ平面、
ZX平面に投影することによってそれぞれの平面との傾
き角度がわかる。更に全三角パッチについて傾き角度を
求め、それを平均化することによって上記平均傾き角度
θが求められる。
The steps of the processing method according to the present invention will be described in order with reference to FIG. The machining shape data, the shape data of the work, the shape data of the tool system (including the tool, the tool holder, the spindle holding the tool holder and the outermost portion of the spindle head, etc.) are input to the CAD / CAM device in advance, and the work Modeling and tool system modeling (step S
1). Display the modeling shape of the work on the display device,
The processing range of the processing curved surface to be processed in one process is specified on the screen (step S2). FIG. 2A is a schematic plan view of processing the work 3 by the 5-axis horizontal machining center 1. A spindle 7 rotatably supported by the spindle head 5 of the machining center 1 is provided, and a ball end mill 11 is mounted on a tip of the spindle 7 via a tool holder 9. Although there are various forms of the 5-axis machining center, in this embodiment, the work 3 side is fixed, and the spindle head 5 is a straight line 3 of X, Y, Z axes.
It is assumed that it can be fed and moved in the axial direction and the two rotation axes of the A and B axes. FIG. 2A shows a state in which the A and B axes are at 0 degrees. Assuming that the processing range specified in step S2 is the illustrated processing range, the CAD / CAM apparatus calculates the average inclination angle θ of the processing curved surface in the specified processing range as illustrated (step S3). As a method of calculating the average inclination angle, for example, there is a method such as a triangular patch method shown in FIG. The modeled surface S is divided into a plurality of triangular patches, and one of them is focused on. The length of each side of the triangular patch is a, b, c, and the area Sij is Sij = [√ {L (L-2a) (L-2b) (L-2
c)}] / 4 where L = a + b + c. The area Sr obtained by projecting this triangular patch on the XY plane is calculated by a CAD / CAM device, and the ratio Rij = Sr /
Take Sij. The inclination angle between the triangular patch and the XY plane can be determined from the magnitude of the ratio Rij. This is the YZ plane,
By projecting on the ZX plane, the inclination angle with each plane can be determined. Further, the inclination angles of all the triangular patches are obtained, and the angles are averaged to obtain the average inclination angle θ.

【0011】次にCAD・CAM装置内で、指定した加
工曲面を平均傾き角度θだけ仮想的に傾け、ワークと工
具系との干渉チェックの演算を指定した全範囲で行う
(ステップS4)。この干渉チェックの方法は、例えば
工具系を円錐形状に近似してモデリングし、ワークモデ
ルとの間で交点演算を行い、交点が存在するときは干渉
し、存在しないときは干渉しないとして、指定した全範
囲を所定のサンプリング間隔で演算すればよい。そして
干渉有無の判断を行い(ステップS5)、干渉しない場
合は回転送り軸(図2の例ではB軸)の割り出し角度を
θと決定する(ステップS6)。ステップS5で干渉す
ると判断された場合は、干渉回避角度γを求める(ステ
ップS7)。図2(b)にワークと工具系とが干渉する
例を示している。ステップS4の干渉チェックの演算の
際、回転送り軸(B軸)を時計方向にθ傾けてワークの
内奥部を加工しようとすると、主軸頭5がワーク3と干
渉するので、B軸を反時計方向にγ傾けて干渉を回避す
る必要がある。通常このγは、幅を持った値となるが、
ここではθに最も近い値と決めることにより、1つの値
の角度として決定される。
Next, in the CAD / CAM apparatus, the designated processing curved surface is virtually inclined by the average inclination angle θ, and the calculation of interference check between the workpiece and the tool system is performed in the entire designated range (step S4). In this interference check method, for example, a tool system is modeled by approximating a conical shape, an intersection operation is performed with a work model, and it is specified that interference occurs when an intersection exists and does not interfere when the intersection does not exist. The whole range may be calculated at a predetermined sampling interval. Then, it is determined whether or not there is interference (step S5). If there is no interference, the index angle of the rotary feed axis (B axis in the example of FIG. 2) is determined as θ (step S6). If it is determined in step S5 that interference occurs, an interference avoidance angle γ is obtained (step S7). FIG. 2B shows an example in which the workpiece and the tool system interfere with each other. In the calculation of the interference check in step S4, if the rotary feed axis (B-axis) is inclined clockwise by θ to machine the inner part of the work, the spindle head 5 interferes with the work 3, so that the B-axis is It is necessary to tilt γ clockwise to avoid interference. Usually, this γ has a value with a width,
Here, an angle having one value is determined by determining the value closest to θ.

【0012】しかしγを求めようと回転送り軸を干渉し
ない方向に回しても、指定した加工領域の一部では干渉
回避できても、全領域ではどうしても干渉回避できない
場合がある。そこで干渉回避角度γが存在するか否かの
判断を行い(ステップS8)、存在する場合は、上記の
平均傾き角度θと干渉回避角度γとから回転送り軸の割
り出し角度δを決定する(ステップS9)。図2(b)
の例では、δ=θ−γとなる。つまりB軸を時計回りに
δだけ割り出して指定した加工範囲を加工すれば、ワー
クと工具系とは干渉することはない。ステップS8でγ
が存在しない場合は、このままの状態では干渉回避でき
ないので、工具系の長さを長くする、工具系の太さを細
くする、加工範囲の指定を狭くする等のデータ変更を行
う必要がある。図1の例では工具長を長くし(ステップ
S10)、ステップS1へ戻る。
However, even if the rotary feed shaft is turned in a direction that does not interfere to obtain γ, interference may be avoided in a part of the designated machining region but may not be avoided in the entire region. Then, it is determined whether or not the interference avoidance angle γ exists (step S8). If there is, the index angle δ of the rotary feed shaft is determined from the average inclination angle θ and the interference avoidance angle γ (step S8). S9). FIG. 2 (b)
In the example, δ = θ−γ. In other words, if the B-axis is calculated clockwise by δ to machine the designated machining range, the workpiece and the tool system do not interfere. In step S8, γ
If there is no data, interference cannot be avoided in this state, and it is necessary to change data such as increasing the length of the tool system, reducing the thickness of the tool system, and narrowing the designation of the processing range. In the example of FIG. 1, the tool length is increased (step S10), and the process returns to step S1.

【0013】このようにしてワークの加工すべき全領域
を複数の工程に分け、その全工程について加工範囲の指
定を行い、割り出し角度の決定を完了したかの確認を行
い(ステップS11)、完了していない場合はステップ
S1から上記ステップを繰り返す。全工程の割り出し角
度が決定したら、その各工程のNC加工プログラムをC
AD・CAM装置のNCプログラム作成機能で作成し
(ステップS12)、そのNC加工プログラムに基づい
た加工が行われる(ステップS13)。この加工はまず
回転送り軸が割り出され、回転送り軸はその位置を保っ
たまま、X,Y,Z軸の直線送り軸で加工が進められ、
1つの加工範囲、つまり第1工程の加工が終わると第2
工程の加工が同様に行われ、全工程が完了するのであ
る。
In this manner, the entire area of the workpiece to be machined is divided into a plurality of processes, the machining range is designated for all the processes, and it is confirmed whether the determination of the index angle has been completed (step S11). If not, the above steps are repeated from step S1. Once the index angles for all processes are determined, the NC machining program for each process is
It is created by the NC program creation function of the AD / CAM device (step S12), and machining is performed based on the NC machining program (step S13). In this processing, first, the rotary feed axis is indexed, and the rotary feed axis is processed with the X, Y, Z axis linear feed axes while maintaining its position.
One processing range, that is, the second
The processing of the process is performed in the same manner, and the entire process is completed.

【0014】なお本実施例では、1軸方向の回転送り軸
についてのみ説明したが、ワークの凹部は三次元形状を
しているので、他の方向の干渉チェックも行い、その結
果に応じて他の回転送り軸の割り出し角度を同様に求め
ればよい。また図2ではX,Y,Z,A,B軸を有する
5軸マシニングセンタを例示したが、更にC軸を有した
6軸NC工作機械でも良いし、また回転送り軸は1つだ
けの4軸NC工作機械でも良い。
In this embodiment, only the rotation feed shaft in one axis direction has been described. However, since the concave portion of the work has a three-dimensional shape, interference check in other directions is also performed. The index angle of the rotary feed shaft may be similarly obtained. In FIG. 2, a 5-axis machining center having X, Y, Z, A, and B axes is illustrated, but a 6-axis NC machine tool having a C-axis may be used, or a 4-axis machine having only one rotary feed axis. An NC machine tool may be used.

【0015】[0015]

【発明の効果】以上説明したように本発明によれば、加
工範囲における加工曲面の平均傾き角度の演算、ワーク
と工具系との干渉チェック、干渉回避角度の演算を所定
の論理に従って順次行い、回転送り軸の最適割り出し角
度を自動的に求めているので、従来の熟練プログラマー
の勘と経験に頼る作業がほとんどなくなり、NCプログ
ラミング作成までの時間が大幅に短縮した。また結果と
して工程数(加工範囲の分割)も少なくなり、工具長さ
を過度に長くせず、ワークと工具系との干渉の心配もな
くなり、高能率で高精度な加工が行えるようになる。
As described above, according to the present invention, the calculation of the average inclination angle of the processing curved surface in the processing range, the interference check between the work and the tool system, and the calculation of the interference avoidance angle are sequentially performed according to a predetermined logic. Since the optimum indexing angle of the rotary feed shaft is automatically obtained, there is almost no work relying on the intuition and experience of a conventional skilled programmer, and the time required for creating NC programming has been greatly reduced. As a result, the number of steps (division of the processing range) is reduced, the tool length is not excessively increased, and there is no fear of interference between the work and the tool system, so that high-efficiency and high-precision processing can be performed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による加工方法のステップを示したフロ
ーチャートである。
FIG. 1 is a flowchart showing the steps of a processing method according to the present invention.

【図2】ワークの凹部を5軸マシニングセンタを用いて
加工する場合を例にした回転送り軸の割り出し角度決定
の説明図である。
FIG. 2 is an explanatory diagram of determining an index angle of a rotary feed shaft in a case where a concave portion of a workpiece is machined using a 5-axis machining center.

【図3】加工曲面の平均傾き角度を決定する手法の1つ
である三角パッチ法の説明図である。
FIG. 3 is an explanatory diagram of a triangular patch method which is one of methods for determining an average inclination angle of a processing curved surface.

【符号の説明】[Explanation of symbols]

1 5軸マシニングセンタ 3 ワーク 5 主軸頭 7 主軸 9 工具ホルダ 11 ボールエンドミル Reference Signs List 1 5-axis machining center 3 Work 5 Spindle head 7 Spindle 9 Tool holder 11 Ball end mill

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平9−26811(JP,A) 特開 平7−319527(JP,A) 特開 平6−254741(JP,A) 特開 平6−254742(JP,A) 特開 平6−254743(JP,A) 特開 平6−259123(JP,A) 特開 平6−259124(JP,A) (58)調査した分野(Int.Cl.7,DB名) B23Q 15/00 - 15/28 B23Q 17/00 - 23/00 G05B 19/18 - 19/46 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-9-26811 (JP, A) JP-A-7-319527 (JP, A) JP-A-6-254741 (JP, A) JP-A-6-254741 254742 (JP, A) JP-A-6-254743 (JP, A) JP-A-6-259123 (JP, A) JP-A-6-259124 (JP, A) (58) Fields investigated (Int. 7 , DB name) B23Q 15/00-15/28 B23Q 17/00-23/00 G05B 19/18-19/46

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 互いに直交するX,Y,Z軸の直線送り
軸と、A,B,C軸の回転送り軸のうち少なくとも1つ
の回転送り軸とを有するNC工作機械を用い、前記NC
工作機械の主軸に工具を装着してワークを加工する加工
方法において、 加工するワークの形状を表すワーク形状データを記憶
し、 前記工具、前記工具を把持する工具ホルダ、前記工具ホ
ルダを把持する主軸の最外側部等を含む工具系の形状を
表す工具系形状データを記憶し、 前記工具で加工するワークの加工曲面の加工範囲を指定
し、 前記記憶したワーク形状データから前記指定した加工範
囲におけるワークの加工曲面の平均傾き角度θを演算
し、 前記回転送り軸の割り出し角度を前記平均傾き角度θと
したとき、前記記憶したワーク形状データおよび工具系
形状データから前記加工範囲の全域にわたってワークと
工具系との干渉チェックを行い、 ワークと工具系とが干渉しない場合は、前記演算した平
均傾き角度θになるように前記回転送り軸を割り出し、
前記直線送り軸の送り動作によって前記ワークの当該加
工曲面の加工を行うことを特徴とした加工方法。
1. An NC machine tool having a linear feed axis of X, Y, and Z axes orthogonal to each other and at least one rotary feed axis of A, B, and C axes.
In a machining method for machining a workpiece by mounting a tool on a spindle of a machine tool, a workpiece shape data representing a shape of a workpiece to be machined is stored, the tool, a tool holder for gripping the tool, and a spindle for gripping the tool holder. Storing tool system shape data representing the shape of the tool system including the outermost portion of the workpiece, specifying a machining range of a machining curved surface of a workpiece to be machined by the tool, and from the stored workpiece shape data in the designated machining range. Calculate the average inclination angle θ of the machining curved surface of the work, and when the index angle of the rotary feed axis is the average inclination angle θ, the work and the workpiece shape data are stored over the entire machining range from the stored work shape data and tool system shape data. An interference check with the tool system is performed. If the work and the tool system do not interfere, the rotation is performed so that the calculated average inclination angle θ is obtained. Ri indexing axis,
A processing method, wherein the processing of the processing curved surface of the workpiece is performed by a feed operation of the linear feed shaft.
【請求項2】 互いに直交するX,Y,Z軸の直線送り
軸と、A,B,C軸の回転送り軸のうち少なくとも1つ
の回転送り軸とを有するNC工作機械を用い、前記NC
工作機械の主軸に工具を装着してワークを加工する加工
方法において、 加工するワークの形状を表すワーク形状データを記憶
し、 前記工具、前記工具を把持する工具ホルダ、前記工具ホ
ルダを把持する主軸の最外側部等を含む工具系の形状を
表す工具系形状データを記憶し、 前記工具で加工するワークの加工曲面の加工範囲を指定
し、 前記記憶したワーク形状データから前記指定した加工範
囲におけるワークの加工曲面の平均傾き角度θを演算
し、 前記回転送り軸の割り出し角度を前記平均傾き角度θと
したとき、前記記憶したワーク形状データおよび工具系
形状データから前記加工範囲の全域にわたってワークと
工具系との干渉チェックを行い、 ワークと工具系とが干渉する場合は、前記回転送り軸を
両者が干渉しない方向へ回転して干渉しなくなる干渉回
避角度γを一定の論理に従って求め、 前記演算した平均傾き角度θと前記干渉回避角度γとか
らワークと工具系とが干渉しない割り出し角度δを演算
し、 その干渉しない割り出し角度δになるように前記回転送
り軸を割り出し、前記直線送り軸の送り動作によって前
記ワークの当該加工曲面の加工を行うことを特徴とした
加工方法。
2. An NC machine tool, comprising: an NC machine tool having X, Y, and Z axis linear feed axes orthogonal to each other and at least one of A, B, and C axis rotary feed axes.
In a machining method for machining a workpiece by mounting a tool on a spindle of a machine tool, a workpiece shape data representing a shape of a workpiece to be machined is stored, the tool, a tool holder for gripping the tool, and a spindle for gripping the tool holder. Storing tool system shape data representing the shape of the tool system including the outermost portion of the workpiece, specifying a machining range of a machining curved surface of a workpiece to be machined by the tool, and from the stored workpiece shape data in the designated machining range. Calculate the average inclination angle θ of the machining curved surface of the work, and when the index angle of the rotary feed axis is the average inclination angle θ, the work and the workpiece shape data are stored over the entire machining range from the stored work shape data and tool system shape data. A check is made for interference with the tool system. If the workpiece and the tool system interfere with each other, the rotary feed shaft is rotated in a direction where they do not interfere with each other, and An interference avoidance angle γ at which interference does not occur is obtained according to a certain logic, and an index angle δ at which the workpiece and the tool system do not interfere is calculated from the calculated average inclination angle θ and the interference avoidance angle γ. A machining method, wherein the rotary feed shaft is indexed so that the workpiece is processed by the feed operation of the linear feed shaft.
【請求項3】 互いに直交するX,Y,Z軸の直線送り
軸と、A,B,C軸の回転送り軸のうち少なくとも1つ
の回転送り軸とを有するNC工作機械を用い、前記NC
工作機械の主軸に工具を装着してワークを加工する加工
方法において、 加工するワークの形状を表すワーク形状データを記憶
し、 前記工具、前記工具を把持する工具ホルダ、前記工具ホ
ルダを把持する主軸の最外側部等を含む工具系の形状を
表す工具系形状データを記憶し、 前記工具で加工するワークの加工曲面の加工範囲を指定
し、 前記記憶したワーク形状データから前記指定した加工範
囲におけるワークの加工曲面の平均傾き角度θを演算
し、 前記回転送り軸の割り出し角度を前記平均傾き角度θと
したとき、前記記憶したワーク形状データおよび工具系
形状データから前記加工範囲の全域にわたってワークと
工具系との干渉チェックを行い、 ワークと工具系とが干渉し、かつ両者が干渉しなくなる
干渉回避角度γが存在しない場合は、前記記憶した工具
系形状データの工具系の長さを長くする、工具系の太さ
を細くする等のデータ変更指令を発し、 前記工具系形状データを変更して記憶し、加工範囲の指
定、平均傾き角度θの演算、干渉チェック等の前記各ス
テップの処理を順次行い、ワークと工具系とが干渉しな
い割り出し角度を求め、 当該割り出し角度になるように前記回転送り軸を割り出
し、前記直線送り軸の送り動作によって前記ワークの当
該加工曲面の加工を行うことを特徴とした加工方法。
3. An NC machine tool having an X, Y, and Z linear feed axes orthogonal to each other and at least one of A, B, and C rotary feed axes.
In a machining method for machining a workpiece by mounting a tool on a spindle of a machine tool, a workpiece shape data representing a shape of a workpiece to be machined is stored, the tool, a tool holder for gripping the tool, and a spindle for gripping the tool holder. Storing tool system shape data representing the shape of the tool system including the outermost portion of the workpiece, specifying a machining range of a machining curved surface of a workpiece to be machined by the tool, and from the stored workpiece shape data in the designated machining range. Calculate the average inclination angle θ of the machining curved surface of the work, and when the index angle of the rotary feed axis is the average inclination angle θ, the work and the workpiece shape data are stored over the entire machining range from the stored work shape data and tool system shape data. Check the interference with the tool system.If the workpiece and the tool system interfere and there is no interference avoidance angle γ at which both do not interfere, Issue a data change command such as increasing the length of the tool system of the stored tool system shape data, thinning the thickness of the tool system, changing and storing the tool system shape data, specifying a machining range, Calculation of the average inclination angle θ, processing of each of the steps such as interference check, etc. are sequentially performed to determine an index angle at which the workpiece and the tool system do not interfere with each other. A machining method, characterized in that machining of the machining curved surface of the work is performed by a feed operation of a shaft.
JP07221098A 1995-08-07 1995-08-07 Processing method Expired - Lifetime JP3116129B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07221098A JP3116129B2 (en) 1995-08-07 1995-08-07 Processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07221098A JP3116129B2 (en) 1995-08-07 1995-08-07 Processing method

Publications (2)

Publication Number Publication Date
JPH0947939A JPH0947939A (en) 1997-02-18
JP3116129B2 true JP3116129B2 (en) 2000-12-11

Family

ID=16761466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07221098A Expired - Lifetime JP3116129B2 (en) 1995-08-07 1995-08-07 Processing method

Country Status (1)

Country Link
JP (1) JP3116129B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2937752A2 (en) 2014-04-24 2015-10-28 Star Micronics Co., Ltd. Machine tool and interpretive program

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4580048B2 (en) * 1999-07-22 2010-11-10 東芝機械株式会社 Automatic measuring method and automatic measuring apparatus for ball end mill tool
ITMI20021876A1 (en) * 2002-09-03 2004-03-04 Nuovo Pignone Spa IMPROVED PROCEDURE FOR MAKING A ROTOR OF ONE
JP4544152B2 (en) * 2005-12-22 2010-09-15 マツダ株式会社 Tool machining orientation setting method
US20130006394A1 (en) * 2010-03-24 2013-01-03 Mitsubishi Electric Corporation Numerical control device and numerical control method
US10018989B2 (en) 2013-03-29 2018-07-10 Makino Milling Machine Co., Ltd. Method of evaluating a machined surface of a workpiece, a controlling apparatus and a machine tool
WO2018179401A1 (en) * 2017-03-31 2018-10-04 株式会社牧野フライス製作所 Tool path generation method and device
WO2024047698A1 (en) * 2022-08-29 2024-03-07 ファナック株式会社 Processing device, program, and processing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2937752A2 (en) 2014-04-24 2015-10-28 Star Micronics Co., Ltd. Machine tool and interpretive program
US9904273B2 (en) 2014-04-24 2018-02-27 Star Micronics Co., Ltd. Machine tool and interpretive program

Also Published As

Publication number Publication date
JPH0947939A (en) 1997-02-18

Similar Documents

Publication Publication Date Title
EP1195665B1 (en) Apparatus and method for setting control parameters of machining apparatus
Warkentin et al. Computer aided 5-axis machining
JP3116129B2 (en) Processing method
JPS6318404A (en) Position controlling method
JP4503326B2 (en) Tool path data generation device and control device including the same
JP4531297B2 (en) 6-axis control NC program generation method and generation apparatus, 6-axis control NC program generation program, and computer-readable recording medium storing the program
JP3173808B2 (en) Tool attitude control data generator
JP3093080B2 (en) Tool path data creation method
JP2002304203A (en) Nc machine tool and machining method
US5654618A (en) Process for the two-dimensional determination of a work-area contour for lathes
JP3085339B2 (en) Machining method
JP3085340B2 (en) Machining method and equipment
JPH07261815A (en) Method and device for generating tool machining path for nc machining
JP3248081B2 (en) Automatic program creation device with automatic cutting axis change function
JP2845711B2 (en) Machining method of work with character line
JP2845710B2 (en) Machining method
JPH11165239A (en) Numerical control data editing device and editing method of numerical control data
JPH09123038A (en) Machining device
JP3019262B2 (en) Method and apparatus for numerically controlled machining in machine tools
JP2898162B2 (en) Character line processing method
JP2001034318A (en) Method for preparing working pass, method for automatically preparing nc program, cad/cam system, nc working system, and storage medium
JPH08249036A (en) Nc data preparation method
JP4778610B2 (en) Grasping position control method and apparatus for workpiece gripping device for shearing machine
JPH03157707A (en) Checking system for nc data executing five-axis working
JPH04267403A (en) Interference prevention method for automatic machine equipment

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081006

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081006

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091006

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091006

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101006

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111006

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111006

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121006

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121006

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131006

Year of fee payment: 13

EXPY Cancellation because of completion of term