JP3116084B2 - Turbulent structure boron nitride (αtBN) and method for producing the same - Google Patents

Turbulent structure boron nitride (αtBN) and method for producing the same

Info

Publication number
JP3116084B2
JP3116084B2 JP09209675A JP20967597A JP3116084B2 JP 3116084 B2 JP3116084 B2 JP 3116084B2 JP 09209675 A JP09209675 A JP 09209675A JP 20967597 A JP20967597 A JP 20967597A JP 3116084 B2 JP3116084 B2 JP 3116084B2
Authority
JP
Japan
Prior art keywords
boron nitride
αtbn
less
lines
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP09209675A
Other languages
Japanese (ja)
Other versions
JPH1135309A (en
Inventor
忠夫 佐藤
憲 伊與田
Original Assignee
科学技術庁無機材質研究所長
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 科学技術庁無機材質研究所長 filed Critical 科学技術庁無機材質研究所長
Priority to JP09209675A priority Critical patent/JP3116084B2/en
Publication of JPH1135309A publication Critical patent/JPH1135309A/en
Application granted granted Critical
Publication of JP3116084B2 publication Critical patent/JP3116084B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、潤滑材、離型材、
耐食性被服材、焼結体製造原料、高圧相合成原料、層間
化物合成原料等に用いられる乱層構造窒化ほう素(αt
BN)及びその製造法に関する。
TECHNICAL FIELD The present invention relates to a lubricant, a release material,
Turbine-structured boron nitride (αt) used in corrosion-resistant clothing materials, raw materials for sintered compacts,
BN) and a method for producing the same.

【0002】[0002]

【従来技術】窒化ほう素(BN)は、耐熱、耐食、絶
縁、潤滑性材料として工業に用いられ極めて優れた特性
を有する。その優れた特性を十分発揮させて活用するに
は六方晶(hBN)、菱面体晶(rBN)等の結晶質で
あることが望ましい。これらの結晶性BNの積層構造を
図2に示す。他方、窒化ほう素は黒鉛に似た層状の結晶
構造を有しているが、層間の結合力が極めて弱いため、
層の積み重なり方が乱れた、いわゆる、乱層構造BNと
して得られやすい。乱層構造BN粉末は一般に酸素等の
不純物や層の平行性の乱れを含むため不安定で、反応性
に富むため、従来焼結体原料などに用途が限られてい
る。しかし、乱層構造BNの合成温度が1300℃以下
と、結晶性BNの製造に必要な1800℃以上に比べて
低いという製造上の大きな利点があることから、不純物
が少なく層間隔の揃った安定な乱層構造BNが開発され
れば、結晶性BNと同様な広範な応用が期待される。
2. Description of the Related Art Boron nitride (BN) is used in industry as a heat-resistant, corrosion-resistant, insulating and lubricating material and has extremely excellent properties. In order to sufficiently exhibit and utilize the excellent characteristics, it is desirable that the material be crystalline such as hexagonal (hBN) and rhombohedral (rBN). FIG. 2 shows a laminated structure of these crystalline BNs. On the other hand, although boron nitride has a layered crystal structure similar to graphite, the bonding force between layers is extremely weak.
It is easy to obtain a so-called turbostratic structure BN in which the layer stacking is disturbed. The BN powder having a turbostratic structure is generally unstable because it contains impurities such as oxygen and disorder in the parallelism of the layer, and has high reactivity. However, since the synthesis temperature of the turbostratic structure BN is 1300 ° C. or less, which is lower than 1800 ° C. or more required for the production of crystalline BN, there is a great advantage in production. If a random layer structure BN is developed, it can be expected to be applied to a wide range of applications similar to crystalline BN.

【0003】本発明者は乱層構造BNに対して2種類の
基本構造を提案している。一つは、層は互いに平行であ
るが並進・回転に関して全く無秩序なもので広い0.3
46nmの層面間隔を持つβtBNである。他は、隣接
層関係は図2に示した結晶性BNと同様で、AA’、A
B、AC等であるが、その組み合わせが無秩序で、結晶
性BNに近い層間隔0.333nmをもつαtBNであ
る。βtBNの純粋物質の合成法は、本発明者によって
既に報告されている(科学技術庁無機材質研究所研究報
告第89号“炭窒化ホウ素に関する研究”3.4熱処理
の効果2:βtBNの分解生成参照)。αtBNの化学
的性質は結晶性BNと類似して安定であり、機械的性質
はAB、AC型構造を持つことから、hBNに比べてよ
り潤滑性に富むと考えられるが、まだ純粋なものは得ら
れていない。本発明はαtBNの製造に関する。
The present inventors have proposed two basic structures for the turbostratic structure BN. One is that the layers are parallel to each other but completely disordered with respect to translation and rotation.
ΒtBN having a layer spacing of 46 nm. Other than that, the relationship between adjacent layers is the same as that of the crystalline BN shown in FIG.
B, AC, etc., but the combination is disordered and αtBN having a layer spacing of 0.333 nm close to crystalline BN. A method for synthesizing a pure substance of βtBN has already been reported by the present inventor (Science and Technology Agency, Research Institute for Inorganic Materials, Research Report No. 89, “Research on Boron Carbonitride” 3.4 Effect of Heat Treatment 2: Decomposition Formation of βtBN reference). The chemical properties of αtBN are stable, similar to crystalline BN, and the mechanical properties are AB and AC type structures, so it is considered to be richer in lubricity than hBN. Not obtained. The present invention relates to the production of αtBN.

【0004】従来、乱層構造BNの製造は一般的には、
酸化ホウ素、ホウ酸等を、尿素、メラミン、ジシアンジ
アミド等の含窒素有機化合物と共に800℃以上の非酸
化性雰囲気下で反応させて還元窒化する方法で行われて
いる。この方法では、合成温度が低い段階では、層が未
発達であり、酸化物が多く残存する。また、1000℃
以上2200℃以下の高温に加熱すると、次第に層が発
達して整列し、酸素の分離が起こるが、同時にhBNへ
の結晶化が進む。例えば前者では層の発達の度合いを示
す10回折線の位置がCuKα、2θ値で42.6°で
層面間隔が0.34nm以上と、層形成及び層の整列が
進んでいないもの、後者では、10線が41.7°程度
と層がよく発達し層間隔も0.335nm以下と狭い
が、hBNの101線を10%以上含むものなどが得ら
れている。
Conventionally, the production of a turbostratic structure BN is generally performed by:
It is carried out by a method in which boron oxide, boric acid or the like is reacted with a nitrogen-containing organic compound such as urea, melamine, dicyandiamide or the like in a non-oxidizing atmosphere at 800 ° C. or more to perform reductive nitriding. In this method, at a stage where the synthesis temperature is low, the layer is underdeveloped, and a large amount of oxide remains. 1000 ° C
When heated to a high temperature of 2200 ° C. or lower, layers gradually develop and align, and oxygen is separated, but crystallization to hBN proceeds at the same time. For example, in the former case, the position of 10 diffraction lines indicating the degree of layer development is CuKα, 22.6 ° in 42.6 °, and the spacing between layers is 0.34 nm or more. Although the layer is well developed with 10 lines of about 41.7 ° and the layer interval is as narrow as 0.335 nm or less, it is possible to obtain a layer containing 10% or more of 101 hBN lines.

【0005】[0005]

【発明が解決しようとする課題】以上述べたように、従
来、乱層構造窒化ホウ素の合成原料として酸化物が用い
られ、工業的にはホウ酸と尿素とから乱層構造BNが合
成されているが、低温合成では層が未発達で不安定であ
り、酸素の残存による特性の低下があるため用途が限ら
れ、高温処理ではhBN混入による性質の変化に加え
て、熱源の問題や加熱部材の消耗等の問題があるため、
層間隔が0.333nm近くに揃いながらhBNを含ま
ない、高純度なαtBNは得られ難いと云う問題があっ
た。そこで、本発明者は、上記の従来技術の問題点を解
決して純粋な乱層構造窒化ホウ素を得るために探索研究
を行った結果、本発明者が長年に渡り高純度BN及びr
BNの合成のために研究を重ねてきた非酸化物原料によ
る合成技術を応用することにより、hBNの混在や酸化
物の残存のない、純粋なαtBNを得るための合成条件
を見出し、本発明を完成したもので、本発明は、上記の
従来技術の問題点を解決し、高純度なαtBN及び該化
合物を簡便に合成する方法を提供することを目的とす
る。
As described above, conventionally, an oxide has been used as a raw material for forming a turbostratic structure boron nitride, and industrially, a turbostratic structure BN is synthesized from boric acid and urea. However, in low-temperature synthesis, the layer is undeveloped and unstable, and its properties are degraded due to the residual oxygen, which limits its application. Due to problems such as exhaustion of
There is a problem that it is difficult to obtain high-purity αtBN that does not contain hBN and has a layer spacing close to 0.333 nm. Thus, the present inventor conducted an exploratory study to solve the problems of the prior art described above and obtain a pure turbostratic boron nitride. As a result, the inventor has found that high purity BN and r
By applying the synthesis technology using non-oxide raw materials, which has been studied repeatedly for the synthesis of BN, the synthesis conditions for obtaining pure αtBN without the mixture of hBN and remaining oxides were found, and the present invention was developed. The object of the present invention, which has been completed, is to solve the above-mentioned problems of the prior art and to provide a method for easily synthesizing high-purity αtBN and the compound.

【0006】[0006]

【課題を解決するための手段】本発明の要旨は層面間隔
が0.34nm以下、銅Kα線によるX線回折の乱層構
造10線のピーク位置が2θで41.6以上42°以
下、hBN101回折線のピーク強度が10線に対し1
0%以下で、且つ、酸素残留量が0.1%以下であるこ
とを特徴とする乱層構造窒化ホウ素であり、該乱層構造
窒化ホウ素の製造方法として、金属元素のホウ水素化物
とハロゲン化アンモニウムとを非酸化性雰囲気下で40
0℃〜650℃に加熱して得た反応生成物からを除去
し、さらに1000℃〜1500℃に加熱することを特
徴とする、乱層構造窒化ホウ素の製造法である。
The gist of the present invention is that the layer spacing is 0.34 nm or less, the peak position of 10 lines of the turbostratic structure in X-ray diffraction by copper Kα radiation is 41.6 or more and 42 ° or less in 2θ, hBN101 Peak intensity of diffraction line is 1 for 10 lines
A turbostratic boron nitride characterized in that the boron content is 0% or less and the oxygen residual amount is 0.1% or less. As a method for producing the turbostratic boron nitride, a borohydride metal and a halogen Ammonium fluoride under a non-oxidizing atmosphere
A method for producing a turbostratic boron nitride, comprising removing a salt from a reaction product obtained by heating to 0 ° C to 650 ° C, and further heating to 1000 ° C to 1500 ° C.

【0007】そして、本発明では、金属元素のホウ水素
化物とハロゲン化アンモニウムとを加熱反応させること
によって窒化ホウ素を得る本発明者による従来技術(例
えば特公昭60−59166号、63−16324号参
照)を利用し、新たな加熱条件を選択することによって
αtBNを得るのである。
In the present invention, the prior art by the present inventors to obtain boron nitride by heating and reacting a borohydride of a metal element with ammonium halide (for example, see Japanese Patent Publication Nos. 60-59166 and 63-16324). ) Is used to obtain αtBN by selecting new heating conditions.

【0008】[0008]

【発明の実施の形態】以下、実施例1に従ってホウ水素
化ナトリウムと塩化アンモニウムを用いた合成法を例に
説明する。本発明で使用する金属元素のホウ水素化物に
おける金属元素はハロゲン元素と反応して塩を形成する
ものであればよく、例えばアルカリ金属元素及びアルカ
リ土類金属元素はハロゲン元素として反応して安定な塩
を形成するので都合がよい。他方、ハロゲン化アンモニ
ウム塩のハロゲン元素については、塩素>臭素>沃素の
順に結晶性BN生成の傾向が増大するが、実用上問題が
無いのでその種類は問わない。実施例では安価で廃棄物
処理の問題が少ないことから塩素を用いている。 金属
元素のホウ水素化物とハロゲン化アンモニウム塩との混
合割合は金属元素のホウ水素化物1モルに対してハロゲ
ン化アンモニウム塩を1モル以上過剰に用いることが好
ましい。実施例ではホウ水素化ナトリウム(NaB
4)1モルに対し塩化アンモニウム(NH4Cl)1.
1モルを加える。この混合物を溶剤、例えばヘキサンを
加えて遊星型ミルにて粉砕、均一に混合する。反応は塩
化アンモニウムの昇華点近傍で開始するので、塩化アン
モニウム混合比は飛散を見込んでやや過剰であることが
望ましく、大過剰でも昇華し去るので問題はないが無駄
であり、モル比で1.01以上1.2以下が適当であ
る。混合は、大気中の水分との反応をさける必要があ
り、実施例では一貫して窒素気流中で行っている。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, a synthesis method using sodium borohydride and ammonium chloride according to Example 1 will be described as an example. The metal element in the borohydride of the metal element used in the present invention may be any as long as it reacts with a halogen element to form a salt.For example, an alkali metal element and an alkaline earth metal element react as a halogen element and are stable. It is convenient because it forms a salt. On the other hand, as for the halogen element of the ammonium halide salt, the tendency of the formation of crystalline BN increases in the order of chlorine>bromine> iodine, but there is no problem in practical use, and the type is not limited. In the embodiment, chlorine is used because it is inexpensive and has little problem of waste disposal. As for the mixing ratio of the metal borohydride and the ammonium halide salt, it is preferable to use the ammonium halide salt in excess of 1 mol or more per 1 mol of the metal borohydride. In the embodiment, sodium borohydride (NaB
H 4 ) per mole of ammonium chloride (NH 4 Cl)
Add 1 mole. This mixture is added with a solvent, for example, hexane, pulverized by a planetary mill and uniformly mixed. Since the reaction starts near the sublimation point of ammonium chloride, the mixing ratio of ammonium chloride is desirably slightly excessive in anticipation of scattering. It is suitably from 01 to 1.2. It is necessary to avoid the reaction with the moisture in the atmosphere, and the mixing is performed in a nitrogen stream consistently in the embodiment.

【0009】窒素気流中でヘキサンを蒸発除去した後、
BNるつぼにいれ、窒素気流中で600℃に昇温、30
分保持後、冷却する。坩堝は黒鉛、ステンレス、モネル
メタル等が可能でより安価であるが、実施例では化学的
に最も安定であることからBNを用いた。加熱は非酸化
性雰囲気で行うことが好ましい。加熱温度は、低いと反
応中間生成物が多く残存して不安定であり、高いと結晶
性BNの生成が促進されるので400℃〜650℃が好
ましく、さらに好ましくは550℃〜650℃がよい。
保持時間は適当でよいが坩堝内温度の均一化時間等を考
慮すれば10分以上の保持が安全である。得られた反応
生成物は、水で洗浄してを除去した後エタノールで洗
浄後乾燥する。これをBNるつぼに入れ黒鉛発熱体を用
いて窒素気流中高周波炉で、毎分10℃で1300℃ま
昇温し、1時間保持した。加熱温度が低いと生成物は
不安定で反応性に富み、高温ほど安定化するが、130
0℃以上の加熱ではhBNが生成するので、目的に応じ
て最終処理温度を選択する。
After evaporating and removing hexane in a nitrogen stream,
Put in a BN crucible and raise the temperature to 600 ° C in a nitrogen stream.
After holding for a minute, cool. The crucible can be made of graphite, stainless steel, monel metal or the like and is less expensive, but in the examples, BN was used because it is most chemically stable. Heating is preferably performed in a non-oxidizing atmosphere. When the heating temperature is low, a large amount of the reaction intermediate product remains and is unstable, and when the heating temperature is high, the formation of crystalline BN is promoted. Therefore, the heating temperature is preferably 400 ° C to 650 ° C, more preferably 550 ° C to 650 ° C. .
The holding time may be appropriate, but it is safe to hold for 10 minutes or more in consideration of the time for equalizing the temperature in the crucible. The obtained reaction product is washed with water to remove salts , washed with ethanol and dried. This in a nitrogen stream a high-frequency furnace with a graphite heating element placed in a BN crucible, the temperature was raised to 1300 ° C. per minute 10 ° C., and held for 1 hour. If the heating temperature is low, the product is unstable and highly reactive, and the product is stabilized at a high temperature.
Since hBN is generated by heating at 0 ° C. or higher, the final processing temperature is selected according to the purpose.

【0010】得られたBNは純度99.9%以上であ
り、26.4°及び41.7に鋭いX線回折線を示し
た。前者は層面間隔0.337nmの001線に、後者
は高角側に尾を引く典型的な2次元回折線の形状を示す
ことから乱層構造の10線に帰される。また、結晶性B
Nによる回折線は認められない。これらの特徴からほぼ
純粋なαtBNであることがわかった。図1には本発明
の物質を従来の酸化物原料によるtBN及び結晶性BN
との比較で示した。従来法ではhBN101線に相当す
る43°付近の回折線が観察されることから、hBNの
混入が認められる。
The obtained BN had a purity of 99.9% or more, and exhibited sharp X-ray diffraction lines at 26.4 ° and 41.7. The former is attributable to the 001 line with a layer spacing of 0.337 nm, and the latter is attributable to the ten lines of the turbostratic structure because it exhibits a typical two-dimensional diffraction line shape with a trailing high angle. In addition, crystalline B
No diffraction line due to N is observed. From these characteristics, it was found that it was almost pure αtBN. FIG. 1 shows that the substance of the present invention is made of tBN and crystalline BN using a conventional oxide raw material.
It was shown in comparison with. In the conventional method, a diffraction line near 43 ° corresponding to the hBN101 line is observed, so that hBN contamination is recognized.

【0011】[0011]

【実施例及び比較例】 実施例1 ホウ水素化ナトリウムと塩化アンモニウム(1:1.1
モル)にヘキサンを加えて遊星型ミルにて粉砕混合し
た。ヘキサンを蒸発した後、BNるつぼにいれ、600
℃まで昇温し10分間保持後冷却、得られた反応生成物
を水で洗浄して食塩を除去した後エタノール洗浄乾燥し
た。これを黒鉛るつぼに入れ高周波炉で毎分10℃で1
300℃まで昇御し、1時間保持した。全ての操作は窒
素気流中で行った。得られたBNは純度99.9%以上
であり、26.4°及び41.7に鋭いX線回折線を示
した。後者は高角側に尾を引く典型的な2次元回折線の
形状を示すことから10線に帰されと、典型的な乱層構
造BNであり、層面間隔が結晶性BNに近いことから、
結晶性BNによる回折線は認められないことから、ほぼ
純粋なαtBNであることがわかった。
Examples and Comparative Examples Example 1 Sodium borohydride and ammonium chloride (1: 1.1
Mol) was added to the mixture and crushed and mixed with a planetary mill. After evaporating the hexane, put it in a BN crucible,
The resulting mixture was heated to 10 ° C., kept for 10 minutes, cooled, and the obtained reaction product was washed with water to remove salt and then washed with ethanol and dried. Put this in a graphite crucible and place it in a high-frequency furnace at 10 ° C / min.
The temperature was raised to 300 ° C. and maintained for 1 hour. All operations were performed in a nitrogen stream. The obtained BN had a purity of 99.9% or more and showed sharp X-ray diffraction lines at 26.4 ° and 41.7. The latter is a typical turbostratic structure BN because it shows a typical two-dimensional diffraction line shape with a tail on the high-angle side.
Since no diffraction line due to crystalline BN was observed, it was found to be almost pure αtBN.

【0012】比較例1 比較実験として、ホウ酸と尿素をモル比で1:1.75
で混合し200℃に保持3時間保持した後、窒素気流中
で1100℃にて2時間保持、エタノール洗浄により酸
化物を処理後、高周波炉にて窒素気流中で1300℃で
30分間保持した。生成物のX線回折図は、26.7度
の001線及び乱層構造の10線相当する41.6°の
線のほかに、hBN101線に相当する43°付近の回
折ピーク及び50°にhBN102線に相当する盛り上
がりがみられることから、hBNの混入が認められる。
Comparative Example 1 As a comparative experiment, boric acid and urea were mixed at a molar ratio of 1: 1.75.
And kept at 200 ° C. for 3 hours, then kept at 1100 ° C. for 2 hours in a nitrogen stream, treated with an oxide by washing with ethanol, and kept at 1300 ° C. for 30 minutes in a nitrogen stream in a high frequency furnace. The X-ray diffraction pattern of the product shows a diffraction peak near 43 ° corresponding to the hBN101 line and a diffraction peak around 50 ° in addition to the 001 line at 26.7 ° and the line at 41.6 ° corresponding to 10 lines of the turbostratic structure. Since a bulge corresponding to the hBN102 line is observed, hBN contamination is recognized.

【0013】[0013]

【発明の効果】以上説明したように、本発明によれば、
簡単な操作により比較的低温加熱で、hBNや酸素等の
不純物の混入の少ない、ほぼ純粋なαtBNを得ること
ができるため、実用上の効果は顕著である。
As described above, according to the present invention,
With a simple operation and relatively low-temperature heating, almost pure αtBN containing little impurities such as hBN and oxygen can be obtained, so that the practical effect is remarkable.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1で得られた窒化ホウ素のX線回折図FIG. 1 is an X-ray diffraction diagram of boron nitride obtained in Example 1.

【図2】結晶性BNの積層構造を示す図FIG. 2 is a diagram showing a stacked structure of crystalline BN.

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 層面間隔が0.34nm以下、銅Kα線
によるX線回折の乱層構造10線のピーク位置が2θで
41.6以上42°以下、hBN101回折線のピーク
強度が10線に対し10%以下で、且つ、酸素残留量が
0.1%以下であることを特徴とする乱層構造窒化ホウ
素。
1. The layer spacing is 0.34 nm or less, the peak position of 10 lines of the turbostratic structure in X-ray diffraction by copper Kα ray is 41.6 or more and 42 ° or less at 2θ, and the peak intensity of hBN101 diffraction line is 10 lines. A boron nitride having a turbostratic structure, characterized in that the content is 10% or less and the amount of residual oxygen is 0.1% or less.
【請求項2】金属元素のホウ水素化物とハロゲン化アン
モニウムとを非酸化性雰囲気下で400℃〜650℃に
加熱して得た反応生成物からを除去し、さらに100
0℃〜1500℃に加熱することを特徴とする、請求項
1記載の乱層構造窒化ホウ素の製造法。
2. A salt is removed from a reaction product obtained by heating a metal borohydride and an ammonium halide to 400 ° C. to 650 ° C. in a non-oxidizing atmosphere.
The method for producing boron nitride having a turbostratic structure according to claim 1, wherein the method is heated to 0 ° C to 1500 ° C.
【請求項3】 金属元素のホウ水素化物がアルカリ金属
ホウ水素化物であり、ハロゲン化アンモニウムが塩化ア
ンモニウムである、請求項2記載の乱層構造窒化ホウ素
の製造法。
3. The method of claim 2, wherein the borohydride of the metal element is an alkali metal borohydride and the ammonium halide is ammonium chloride.
JP09209675A 1997-07-18 1997-07-18 Turbulent structure boron nitride (αtBN) and method for producing the same Expired - Lifetime JP3116084B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09209675A JP3116084B2 (en) 1997-07-18 1997-07-18 Turbulent structure boron nitride (αtBN) and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09209675A JP3116084B2 (en) 1997-07-18 1997-07-18 Turbulent structure boron nitride (αtBN) and method for producing the same

Publications (2)

Publication Number Publication Date
JPH1135309A JPH1135309A (en) 1999-02-09
JP3116084B2 true JP3116084B2 (en) 2000-12-11

Family

ID=16576758

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09209675A Expired - Lifetime JP3116084B2 (en) 1997-07-18 1997-07-18 Turbulent structure boron nitride (αtBN) and method for producing the same

Country Status (1)

Country Link
JP (1) JP3116084B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111777047A (en) * 2020-07-13 2020-10-16 丹东市化工研究所有限责任公司 Preparation method of nano-submicron sphere-like boron nitride
CN114538390B (en) * 2022-02-16 2023-06-23 桂林理工大学 Boron nitride hollow tube with lamellar directional coverage forming tube wall and preparation method thereof

Also Published As

Publication number Publication date
JPH1135309A (en) 1999-02-09

Similar Documents

Publication Publication Date Title
KR890002543B1 (en) Method for preparation of hexagonal boron nitride powder
JP2723099B2 (en) Clathrate compound and method for producing the same
Ye et al. Facile synthesis of hexagonal boron nitride nanoplates via molten-salt-mediated magnesiothermic reduction
JPS60151202A (en) Manufacture of boron nitride
JPS6112844B2 (en)
USRE41575E1 (en) Crystalline turbostratic boron nitride powder and method for producing same
JPH1059702A (en) Boron nitride and its production
JP3116084B2 (en) Turbulent structure boron nitride (αtBN) and method for producing the same
JPH1072205A (en) Fine disk-like hexagonal boron nitride powder and its production
Purdy et al. Synthesis of GaN by high-pressure ammonolysis of gallium triiodide
US5053365A (en) Method for the low temperature preparation of amorphous boron nitride using alkali metal and haloborazines
US4810479A (en) Preparation of cubic boron nitride using as a flux a fluoronitride
US4913887A (en) Production of boron nitride
JP6751043B2 (en) Tantalum nitride manufacturing method
JPS63319299A (en) Aluminum borate whisker and production thereof
JPH0421640B2 (en)
JP3099060B2 (en) Method for producing turbostratic boron nitride (βtBN)
JP3951005B2 (en) Rare earth borocarbide and its production method
JPH0524849B2 (en)
JPH0647446B2 (en) Boron Nitride Manufacturing Method
JPH01203205A (en) Production of boron nitride powder
Maghsoodi et al. Characterization of Al18B4O33 ceramic synthesized by the sol‐gel, precipitation, and combustion methods
JP3896452B2 (en) Method for producing silicon magnesium nitride powder and product thereof
JPH0327390A (en) Manufacture of high purity copper alkoxido
JPS6316324B2 (en)

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term