JP3114312B2 - Tissue oxygen flow meter - Google Patents

Tissue oxygen flow meter

Info

Publication number
JP3114312B2
JP3114312B2 JP03356814A JP35681491A JP3114312B2 JP 3114312 B2 JP3114312 B2 JP 3114312B2 JP 03356814 A JP03356814 A JP 03356814A JP 35681491 A JP35681491 A JP 35681491A JP 3114312 B2 JP3114312 B2 JP 3114312B2
Authority
JP
Japan
Prior art keywords
tissue
blood cells
laser
red blood
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03356814A
Other languages
Japanese (ja)
Other versions
JPH05176916A (en
Inventor
進 鹿嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Advance KK
Original Assignee
Advance KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advance KK filed Critical Advance KK
Priority to JP03356814A priority Critical patent/JP3114312B2/en
Publication of JPH05176916A publication Critical patent/JPH05176916A/en
Application granted granted Critical
Publication of JP3114312B2 publication Critical patent/JP3114312B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、生体組織の血流量及び
該血液量中の酸化赤血球の割合を同時に測定する組織酸
素流量計に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a tissue oxygen flowmeter for simultaneously measuring the blood flow of a living tissue and the ratio of oxidized red blood cells in the blood volume.

【0002】[0002]

【従来の技術】現在、レーザ光を用いて血流量を測定す
る装置として図5に示す様な装置が提案されている。レ
ーザ発振器(51)から出力されたレーザ光を送光用光ファ
イバ(52)に導光し、プローブ(53)を通じて組織(54)に照
射する。組織(54)によって散乱された光の一部をプロー
ブ中で送光ファイバと対になっている受光ファイバ(55)
で受光する。この光が光検出器(56)に導かれ、増幅器(5
7)で増幅された後に演算回路(58)で組織血流量(5a)と
して∫ωP(ω)dω、組織血液量(5b)として∫P
(ω)dωが計算される。この装置においては、レーザ
発振器(51)の光の波長は赤血球による吸収が少ないもの
が使用されている。
2. Description of the Related Art At present, an apparatus as shown in FIG. 5 has been proposed as an apparatus for measuring a blood flow using a laser beam. The laser light output from the laser oscillator (51) is guided to the light transmitting optical fiber (52), and is applied to the tissue (54) through the probe (53). A receiving fiber (55) paired with a transmitting fiber in the probe for a part of the light scattered by the tissue (54)
To receive light. This light is guided to the photodetector (56), and the amplifier (5
After being amplified in 7), the arithmetic circuit (58) generates ΔωP (ω) dω as the tissue blood flow (5a) and ΔP as the tissue blood volume (5b).
(Ω) dω is calculated. In this device, the wavelength of the light of the laser oscillator (51) is used which is less absorbed by red blood cells.

【0003】また、動脈血液中の酸素飽和度を測定する
装置として、図6に示す様にパルスオキシメータが提案
されている。赤色LED(62)近赤外線LED(63)のドラ
イバー(61)によって、赤色LED(62)と近赤外LED(6
3)が交互に点灯される。これらの光が送光ファイバ(64)
を通って指などに照射され、その透過光が受光ファイバ
(65)で取り込まれて光検出器(66)に導かれる。これを増
幅器(67)で増幅し、演算回路(68)で演算を行い動脈血の
酸素飽和度(6a)として出力する。赤色波長は約660
nm付近のものを用い、近赤外波長は約805nm付近
のものを用いる。これは等吸収点(805nm)と異等
吸収点(660nm)に当たる。
As an apparatus for measuring the oxygen saturation in arterial blood, a pulse oximeter has been proposed as shown in FIG. The red LED (62) and the near infrared LED (6) are driven by the driver (61) of the red LED (62) and the near infrared LED (63).
3) lights up alternately. These lights are transmitted light fiber (64)
The light is radiated to a finger or the like through the
It is taken in at (65) and guided to the photodetector (66). This is amplified by an amplifier (67), operated by an operation circuit (68), and output as arterial blood oxygen saturation (6a). The red wavelength is about 660
The near-infrared wavelength is about 805 nm. This corresponds to the isosbestic point (805 nm) and the unequal absorption point (660 nm).

【0004】[0004]

【発明が解決しようとする課題】従来のレーザ血流計で
は組織中の血液量、血流量を測定することができるが、
酸化赤血球の割合が不明である。
The conventional laser blood flow meter can measure the blood volume and blood flow in the tissue.
The percentage of oxidized red blood cells is unknown.

【0005】パルスオキシメータは動脈血液中の酸素飽
和度を測定することができるがLEDを使用しているた
め血流速度を計測することができないので、単位時間当
たりの運搬量として測定することができない。また、実
際の組織中の酸素飽和度ではないので、心臓や肺の機能
を確認することができるが、末端の組織まで酸素が送り
込まれているかどうかは不明である。
[0005] The pulse oximeter can measure the oxygen saturation in arterial blood, but cannot measure the blood flow velocity due to the use of an LED. Therefore, the pulse oximeter can be measured as the amount of transport per unit time. Can not. In addition, since it is not the actual oxygen saturation in the tissue, the function of the heart and lungs can be confirmed, but it is unknown whether oxygen is delivered to the terminal tissue.

【0006】[0006]

【課題を解決する為の手段】上記に鑑み本発明は、異な
る波長を有するレーザ光を合成して1つの合成レーザ光
として組織へ出力し、組織から散乱反射したレーザ光を
分波して相互に演算処理を施すことにより、組織血液量
と血流量とを抽出し、尚且つ、酸素血液量、組織酸素血
流量が求められる装置を実現した。
SUMMARY OF THE INVENTION In view of the above, the present invention combines laser beams having different wavelengths, outputs the combined laser beams to a tissue, and separates the laser light scattered and reflected from the tissue to create a combined laser beam. By performing the arithmetic processing, a blood volume and a blood flow are extracted, and an apparatus for obtaining the oxygen blood volume and the tissue oxygenated blood flow is realized.

【0007】本発明の特徴は次の通りである。レーザ光
を用いた血流計は組織血流量を連続で無侵襲に測定する
事ができるため、広く利用されている。しかし血液中に
は酸素化されたヘモグロビンを含む赤血球(酸化赤血
球)と酸素化されていないヘモグロビンを含む赤血球
(還元赤血球)が同時に含まれている。この酸化赤血球
と還元赤血球の割合を2波長レーザ光を用いて測定し、
今まで1波長で測定されていた組織血液量と血流量との
関係から、酸化血液量と酸化血流量つまり組織酸素含有
量や酸素流量を求める。
The features of the present invention are as follows. Blood flow meters using laser light are widely used because they can continuously and noninvasively measure tissue blood flow. However, blood contains red blood cells containing oxygenated hemoglobin (oxidized red blood cells) and red blood cells containing non-oxygenated hemoglobin (reduced red blood cells) at the same time. The ratio of the oxidized red blood cells to the reduced red blood cells is measured using a two-wavelength laser beam,
The oxidized blood volume and the oxidized blood flow, that is, the tissue oxygen content and the oxygen flow, are determined from the relationship between the tissue blood volume and the blood flow which have been measured at one wavelength.

【0008】血液循環の目的の1つは、組織への酸素運
搬であり、この流量を測定するための装置である。脳な
どの血流量は、そこへ送り込む酸素量によっても制御さ
れる。通常空気中の酸素の割合が減少すると、脳への酸
素量を確保するため血流量が増加する。この場合血流量
の変化だけを測定していたのではその変化の原因をつか
むことができない。しかし酸化赤血球の割合を同時に測
定すれば、血流変化の1つの要因を調べることができ
る。この測定を行うために、酸化赤血球と還元赤血球の
吸収断面積が波長によって異なる点(異吸収点)と同じ
点(等吸収点)があるので、LEDの代わりに等吸収点
のレーザ光を用いて全体の組織血液量と組織血流量を求
め、異吸収点と等吸収点の関係から酸化赤血球の割合を
求める。これらの吸収断面積と散乱断面積は、あらかじ
め別の方法で測定しておくか、既に公表されているデー
タの値を用いる。
[0008] One of the purposes of blood circulation is the transport of oxygen to the tissue, a device for measuring this flow. Blood flow to the brain and the like is also controlled by the amount of oxygen sent into it. Normally, as the proportion of oxygen in the air decreases, the blood flow increases in order to secure oxygen to the brain. In this case, the cause of the change cannot be grasped only by measuring the change in the blood flow. However, by simultaneously measuring the percentage of oxidized red blood cells, one factor of blood flow change can be examined. In order to perform this measurement, there is a point where the absorption cross-sections of oxidized red blood cells and reduced red blood cells differ depending on the wavelength (different absorption point) and the same point (equi-absorption point). To obtain the total tissue blood volume and tissue blood flow, and the ratio of oxidized red blood cells is determined from the relationship between the different absorption points and the equal absorption points. These absorption cross-section and scattering cross-section are measured in advance by another method or the values of data which have already been published are used.

【0009】[0009]

【実施例】(11)はレーザ発振器Aであり、赤血球の等吸
収点波長と同一波長のレーザ光を発振する。(12)はレー
ザ発振器Bであり、レーザ発振器A(1)とは異なる吸収
点波長を有するレーザ光を発振する。(13)は合波器であ
り、2以上のレーザ入力を混合合波して1つのレーザ光
として出力する。(14)は送光ファイバであり光ファイバ
よりなる。(15)は受光ファイバであり、送光ファイバと
同様光ファイバよりなる。(16)はプローブであり送光フ
ァイバの出力口、受光ファイバ入力口を束ねたものであ
って、且つ、生体組織との接触面を形成するものであ
る。プローブ(16)は測定部位に応じて測定しやすい形状
になっている。(17)は分波器であり、1つのレーザ入力
[受光ファイバ(15)を介して伝送されたレーザ]を波長
ごとに割けて出力するものである。(18)はフィルタAで
あり、目的とする波長を有するレーザ光を濾波検出する
ものである。フィルタA(18)は分波器(17)の出力の1つ
に接続している。(19)はフィルタBであり、目的とする
波長を有するレーザ光を濾波検出するものである。フィ
ルタB(19)は分波器(17)の他の出力に接続している。(2
0)(21)は、増幅器であり光電変換後、電気増幅を行うも
のである。増幅器(20)の入力はフィルタA(18)の出力
と、増幅器(21)の入力はフィルタB(19)の出力と接続し
ている。(22)は演算回路Aであり、増幅器(20)の出力と
接続し組織血流量Aを出力端(a)に出力し、組織血液量
Aを出力端(b)に出力する。(23)は演算回路Bであり、
増幅器(21)の出力と接続し組織血液量Bを出力する。(2
4)は演算回路Cであり、組織血液量Aと組織血液量Bか
ら酸化赤血球の割合を示す信号(e)を出力する。(25)は
演算手段Dであり、組織血液量Aを示す信号と酸化赤血
球の割合を示す信号(e)より、組織酸素含有量を示す信
号(c)を出力する。(26)は演算回路Eであり、組織血液
量A及び酸化赤血球の割合を示す信号(e)より組織酸素
流量信号(d)を出力する。
Embodiment (11) is a laser oscillator A which oscillates a laser beam having the same wavelength as the isosbestic point wavelength of red blood cells. A laser oscillator B (12) oscillates a laser beam having an absorption point wavelength different from that of the laser oscillator A (1). (13) is a multiplexer, which mixes and multiplexes two or more laser inputs and outputs one laser light. (14) is a light transmitting fiber, which is composed of an optical fiber. (15) is a light receiving fiber, which is made of an optical fiber like the light transmitting fiber. (16) is a probe which bundles the output port of the light transmitting fiber and the input port of the light receiving fiber and forms a contact surface with the living tissue. The probe (16) has a shape that can be easily measured according to the measurement site. (17) is a demultiplexer, which divides one laser input [laser transmitted via the light receiving fiber (15)] for each wavelength and outputs the divided laser input. (18) is a filter A for filtering and detecting a laser beam having a target wavelength. Filter A (18) is connected to one of the outputs of duplexer (17). (19) is a filter B for filtering and detecting a laser beam having a target wavelength. The filter B (19) is connected to another output of the duplexer (17). (2
0) and (21) are amplifiers for performing electrical amplification after photoelectric conversion. The input of the amplifier (20) is connected to the output of the filter A (18), and the input of the amplifier (21) is connected to the output of the filter B (19). (22) is an arithmetic circuit A, which is connected to the output of the amplifier (20), outputs the tissue blood flow A to the output terminal (a), and outputs the tissue blood volume A to the output terminal (b). (23) is an arithmetic circuit B,
It is connected to the output of the amplifier (21) and outputs the tissue blood volume B. (2
4) is an arithmetic circuit C, which outputs a signal (e) indicating the ratio of oxidized red blood cells from the tissue blood volume A and the tissue blood volume B. (25) is an arithmetic means D, which outputs a signal (c) indicating the tissue oxygen content from the signal indicating the tissue blood volume A and the signal (e) indicating the ratio of oxidized red blood cells. An arithmetic circuit E (26) outputs a tissue oxygen flow rate signal (d) from a signal (e) indicating the tissue blood volume A and the ratio of oxidized red blood cells.

【0010】赤血球の等吸収点波長のレーザ光発振器A
(11)と、異吸収点波長のレーザ発振器B(12)から出力さ
れた2つのレーザ光はそれぞれ光ファイバを通った後、
合波器(13)で1本の送光ファイバ(14)に導光されてプロ
ーブ(16)によって組織(MM)に照射される。組織によっ
て散乱された光の一部が、プローブ中の受光ファイバ(1
5)を通り分波器(17)によって2本の光ファイバに分けら
れる。その後それぞれが、等吸収点のレーザ波長を通過
させるフィルタA(18)と異吸収点のレーザ波長を通過さ
せるフィルタB(19)を通過した後、増幅器(20)、(21)で
光電変換後に増幅される。等吸収点の波長の信号は演算
回路A(22)によって演算されて、組織血流量Aと組織血
液量Aが得られる。演算回路B(23)によって演算され
た、異吸収点波長の信号から組織血液量Bが得られ、組
織血液量AとBから演算回路C(24)によって酸化赤血球
の割合が求められる。この割合と組織血液量Aから組織
酸素含有量が演算回路D(25)から求められ、組織血流量
Aとから演算回路E(26)によって組織酸素流量が求めら
れる。
[0010] Laser light oscillator A having a wavelength equal to the absorption point of red blood cells
(11) and two laser beams output from the laser oscillator B (12) having different absorption point wavelengths respectively pass through optical fibers,
The light is guided to one light transmitting fiber (14) by the multiplexer (13), and is irradiated on the tissue (MM) by the probe (16). Some of the light scattered by the tissue is received by the receiving fiber (1
The optical fiber passes through 5) and is split into two optical fibers by a splitter (17). After that, each passes through a filter A (18) that passes a laser wavelength at an equal absorption point and a filter B (19) that passes a laser wavelength at a different absorption point, and after photoelectric conversion by amplifiers (20) and (21). Amplified. The signal of the wavelength at the isosbestic point is calculated by the arithmetic circuit A (22) to obtain the tissue blood flow A and the tissue blood volume A. The tissue blood volume B is obtained from the signal of the different absorption point wavelength calculated by the arithmetic circuit B (23), and the ratio of the oxidized red blood cells is obtained from the tissue blood volumes A and B by the arithmetic circuit C (24). From this ratio and the tissue blood volume A, the tissue oxygen content is obtained from the arithmetic circuit D (25), and the tissue oxygen flow rate is obtained from the tissue blood flow A by the arithmetic circuit E (26).

【0011】次に上記演算手段の具体的アルゴリズムの
一例を次に示す。散乱光のパワースペクトルの積分強度
(IIPS)はmを光子と赤血球の平均衡突回数で組織
中の赤血球量の割合に比例するとすると、(1)式で表さ
れる。 IIPS=∫S(ω)dω=I−exp(−m) (1)ここでmは次のようにも表される。
Next, an example of a specific algorithm of the arithmetic means will be described below. The integrated intensity (IIPS) of the power spectrum of the scattered light is expressed by equation (1), where m is the average number of collisions between photons and red blood cells and is proportional to the ratio of the amount of red blood cells in the tissue. IIPS = ∫S (ω) dω = I-exp (−m) (1) where m is also expressed as follows.

【数1】 (2)数密度ρは単位組織体積当たりの赤血球の数で、(Equation 1) (2) Number density ρ is the number of red blood cells per unit tissue volume,

【外1】 は赤血球の散乱断面積、Lは光路長である。(1)式には
吸収の影響が考慮されていないので、吸収の影響を考え
ると(3)式のようになる。
[Outside 1] Is the scattering cross section of red blood cells, and L is the optical path length. Since the effect of absorption is not taken into account in equation (1), equation (3) is obtained when the effect of absorption is considered.

【数2】 (3)ここで、(Equation 2) (3) where

【外2】 は赤血球の呼吸断面積である。酸化赤血球と還元赤血球
の等吸収点の波長のレーザ光(例805nm)と、吸収
が異なる波長のレーザ光(例633nm)を用いると、
それぞれのIIPSは次式のように表される。
[Outside 2] Is the respiratory cross section of red blood cells. When laser light (e.g., 805 nm) having a wavelength at an equal absorption point of oxidized red blood cells and reduced red blood cells and laser light (e.g., 633 nm) having different absorptions are used,
Each IIPS is represented by the following equation.

【数3】 (Equation 3)

【数4】 (4)ここで、(Equation 4) (4) where

【外3】 :異吸収波長で測定されたIIPS[Outside 3] : IIPS measured at different absorption wavelengths

【外4】 :等吸収波長で測定されたIIPS[Outside 4] : IIPS measured at equal absorption wavelength

【外5】 :酸化赤血球の数密度[Outside 5] : Number density of oxidized red blood cells

【外6】 :異吸収波長での酸化赤血球の吸収断面積[Outside 6] : Absorption cross section of oxidized red blood cells at different absorption wavelengths

【外7】 :異吸収波長での還元赤血球での吸収断面積[Outside 7] : Absorption cross section of reduced erythrocytes at different absorption wavelengths

【外8】 :等吸収波長での赤血球の吸収断面積[Outside 8] : Absorption cross section of erythrocytes at equal absorption wavelength

【外9】 :異吸収波長での赤血球の散乱断面積[Outside 9] : Red blood cell scattering cross section at different absorption wavelengths

【外10】 :等吸収波長での赤血球の散乱断面積である。赤血球の
散乱断面積は600nmから1000nmの間では酸化
の程度に依存しないので、1波長につき1つの散乱断面
積を用いる。近赤外波長の範囲では、
[Outside 10] : Scattering cross section of red blood cells at an equal absorption wavelength. Since the scattering cross section of red blood cells does not depend on the degree of oxidation between 600 nm and 1000 nm, one scattering cross section is used per wavelength. In the near infrared wavelength range,

【外11】 の値は小さいのでρは次式で与えられる。[Outside 11] Is small, ρ is given by the following equation.

【数5】 (5)もし、2波長の間隔が小さくまた、(Equation 5) (5) If the interval between two wavelengths is small,

【外12】 ならば、酸化赤血球の割合[Outside 12] If so, the percentage of oxidized red blood cells

【外13】 は、[Outside 13] Is

【数6】 で求められる。この割合と組織血液量から、組織酸化血
液量又は組織酸素含有量は、
(Equation 6) Is required. From this ratio and tissue blood volume, tissue oxidized blood volume or tissue oxygen content is

【数7】 で求められることができ、さらに組織酸素流量は、(Equation 7) In addition, tissue oxygen flow can be determined by

【数8】 で求められることができる。ここで<ω>は信号のパワ
ースペクトルの1次モーメントで、平均血流速度に比例
する。
(Equation 8) Can be sought. Where <ω> is the first moment of the power spectrum of the signal and is proportional to the average blood flow velocity.

【0012】次に本発明の一実施例を使用して行った実
験の一例について説明する。図2に組織血流のモデルシ
ステムの図を示す。図3はX−X’の断面図である。こ
のモデルシステムはポリエチレンチューブ(215)とポリ
アセタール(213)(214)板から構成されており、チューブ
(215)の外径は0.8mmで内径は0.5mmである。こ
のチューブ(215)の中に直系0.8μmの赤と青のポリス
チレン粒子分散液をマイクロフィーダー(212)によって
流した。赤い粒子と青い粒子は近赤外光領域では吸収断
面積がほぼ同じで、赤い光では大きく異なるため、赤い
粒子は酸化赤血球のモデルとして用い、青い粒子は還元
赤血球のモデルとして用いた。両方の粒子を混ぜてその
比を10:0.8:2.5:5.2:8.0:10とし、そ
の全体の粒子分散液濃度を0.064%と0.13%に調
整した。組織への光の照射と散乱光の一部を受光してフ
ォトダイオードに導くために、光ファイバプローブ(16)
を使用した。プローブ(16)には平行に照射用(14)と受光
用(15)の光ファイバが入っており、その中心間隔は0.
5mmである。光ファイバのコア径は100μmであ
る。出力約2mWのHeNeレーザ光(632.8n
m)と、半導体レーザ光(780nm)が照射ファイバ
(14)を通じてモデルシステムに照射される。モデルシス
テムからの散乱光は、受光ファイバ(15)を通じてフォト
ダイオードに導かれ、増幅後に0.25Hzから20K
Hzまでのパワースペクトルの積分強度(IIPS)と
1次モーメント<ω>がFFTアナライザー(211)から
得られる。散乱断面積、吸収断面積は分光光度計と積分
球を用いて測定した。この実験の結果得られた図を図4
に示す。青粒子数割合(横軸)と測定結果から求めた。
Next, an example of an experiment performed using one embodiment of the present invention will be described. FIG. 2 shows a model of a tissue blood flow model system. FIG. 3 is a sectional view taken along line XX ′. This model system consists of a polyethylene tube (215) and a polyacetal (213) (214) plate.
(215) has an outer diameter of 0.8 mm and an inner diameter of 0.5 mm. Through this tube (215), a 0.8 μm-diameter red and blue polystyrene particle dispersion was flowed through a microfeeder (212). Since red and blue particles have almost the same absorption cross section in the near-infrared light region and differ greatly in red light, the red particle was used as a model for oxidized red blood cells, and the blue particle was used as a model for reduced red blood cells. Both particles were mixed and the ratio was 10: 0.8: 2.5: 5.2: 8.0: 10, and the total particle dispersion concentration was adjusted to 0.064% and 0.13%. . Fiber optic probe (16) to irradiate tissue and receive part of scattered light and guide it to photodiode
It was used. The probe (16) contains an optical fiber for irradiation (14) and a light for reception (15) in parallel, and the center interval is 0.
5 mm. The core diameter of the optical fiber is 100 μm. HeNe laser light (632.8 n
m) and a semiconductor laser beam (780 nm) irradiated fiber
The model system is irradiated through (14). The scattered light from the model system is guided to the photodiode through the receiving fiber (15), and is amplified from 0.25 Hz to 20K after amplification.
The integrated intensity (IIPS) of the power spectrum up to Hz and the first moment <ω> are obtained from the FFT analyzer (211). The scattering cross section and the absorption cross section were measured using a spectrophotometer and an integrating sphere. FIG. 4 shows the diagram obtained as a result of this experiment.
Shown in It was determined from the blue particle number ratio (horizontal axis) and the measurement results.

【外14】 (縦軸)の関係は比例関係であった。[Outside 14] The relationship (vertical axis) was a proportional relationship.

【0013】[0013]

【発明の効果】上記詳述の通り本発明はレーザ光により
正確な組織酸素流量を検出することができる等の効果を
有する。
As described above in detail, the present invention has an effect that an accurate tissue oxygen flow rate can be detected by a laser beam.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例を示す図。FIG. 1 is a diagram showing one embodiment of the present invention.

【図2】FIG. 2

【図3】本発明の一実施例を用いた実験を説明する図。FIG. 3 is a diagram illustrating an experiment using one embodiment of the present invention.

【図4】図2で示した実験の結果を示す図。FIG. 4 is a diagram showing the results of the experiment shown in FIG.

【図5】FIG. 5

【図6】従来例を示す図。FIG. 6 is a diagram showing a conventional example.

【符号の説明】[Explanation of symbols]

11 レーザ発振器A 12 レーザ発振器B 13 合波器 14 送光ファイバ 15 受光ファイバ 16 プローブ 17 分波器 18 フィルタA 19 フィルタB 20,21 増幅器 22 演算回路A 23 演算回路B 24 演算回路C 25 演算回路D 26 演算回路E MM 生体組織 Reference Signs List 11 laser oscillator A 12 laser oscillator B 13 multiplexer 14 light transmitting fiber 15 light receiving fiber 16 probe 17 duplexer 18 filter A 19 filter B 20, 21 amplifier 22 operation circuit A 23 operation circuit B 24 operation circuit C 25 operation circuit D 26 arithmetic circuit E MM living tissue

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】各々異なる波長を有する複数のレーザ光を
出力するレーザ光出力手段、前記レーザ光出力手段を生
体組織に照射し、該組織から散乱反射したレーザ光を検
出する為のプローブ、前記プローブにて検出されたレー
ザ光を分波する分波手段、前記分波したレーザ光の各々
から、組織血流量、組織血液量、組織酸素含有量、組織
酸素流量を検出する検出手段よりなることを特徴とする
組織酸素流量計。
1. A laser light output means for outputting a plurality of laser lights each having a different wavelength, a probe for irradiating the laser light output means to a living tissue and detecting laser light scattered and reflected from the tissue, Demultiplexing means for demultiplexing the laser light detected by the probe, and detecting means for detecting tissue blood flow, tissue blood volume, tissue oxygen content, and tissue oxygen flow from each of the split laser light. A tissue oxygen flowmeter.
JP03356814A 1991-12-26 1991-12-26 Tissue oxygen flow meter Expired - Fee Related JP3114312B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03356814A JP3114312B2 (en) 1991-12-26 1991-12-26 Tissue oxygen flow meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03356814A JP3114312B2 (en) 1991-12-26 1991-12-26 Tissue oxygen flow meter

Publications (2)

Publication Number Publication Date
JPH05176916A JPH05176916A (en) 1993-07-20
JP3114312B2 true JP3114312B2 (en) 2000-12-04

Family

ID=18450912

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03356814A Expired - Fee Related JP3114312B2 (en) 1991-12-26 1991-12-26 Tissue oxygen flow meter

Country Status (1)

Country Link
JP (1) JP3114312B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8616263B2 (en) 2009-12-08 2013-12-31 Sintokogio, Ltd. Molding machine and molding process

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6361193B2 (en) * 2014-03-14 2018-07-25 富士通株式会社 LIGHT SOURCE DEVICE, LIGHT EMITTING METHOD, AND TERMINAL DEVICE
WO2018194093A1 (en) * 2017-04-19 2018-10-25 学校法人関西大学 Biological information estimation device
EP3917389A4 (en) * 2019-01-31 2022-11-02 Flow CPR Inc. Apparatus and method for calculating a volume flow rate of oxygenated blood
CN112067534B (en) * 2020-09-26 2023-07-14 宁波大学 Single cell mass spectrometry system and method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8616263B2 (en) 2009-12-08 2013-12-31 Sintokogio, Ltd. Molding machine and molding process

Also Published As

Publication number Publication date
JPH05176916A (en) 1993-07-20

Similar Documents

Publication Publication Date Title
Zourabian et al. Trans-abdominal monitoring of fetal arterial blood oxygenation using pulse oximetry
JP3625475B2 (en) Non-intrusive system for monitoring hematocrit values
US6064474A (en) Optical measurement of blood hematocrit incorporating a self-calibration algorithm
JP3433498B2 (en) Method and apparatus for measuring internal information of scattering medium
US8788004B2 (en) Method for spectrophotometric blood oxygenation monitoring
US5253646A (en) Diagnostic apparatus for measuring changes of arterial and venous blood volumes in brain with respiration signal modulation
AU597792B2 (en) Tissue metabolism measuring apparatus
EP0691820B1 (en) Quantitative and qualitative in vivo tissue examination using time resolved spectroscopy
US8352005B2 (en) Noninvasive blood analysis by optical probing of the veins under the tongue
US5187672A (en) Phase modulation spectroscopic system
KR20070032643A (en) Photometers with spatially uniform multi-color sources
US4303336A (en) Method and apparatus for making a rapid measurement of the hematocrit of blood
US10925525B2 (en) Combined pulse oximetry and diffusing wave spectroscopy system and control method therefor
JP3114312B2 (en) Tissue oxygen flow meter
US20050277817A1 (en) Noninvasive measurement system for monitoring activity condition of living body
Takatani et al. Optical oximetry sensors for whole blood and tissue
RU2040912C1 (en) Optical method and device for determining blood oxygenation
EP0059032A1 (en) Measurement of dye concentration in the bloodstream
EP0484547A1 (en) Catheter for measurement and method of measuring oxygen saturation degree or flow speed of blood
JPH11169361A (en) Biological photometer
KR900000843B1 (en) Tissue metabolism measuring apparatus
JPH11104114A (en) Measuring device of blood characteristics
JP2006158611A (en) Indocyanine green quantitative catheter system
CN112957037A (en) DCS-NIRS-based multi-modal brain function measuring method and device
JPS6241639A (en) Near infrared living body spectroscopic measuring apparatus

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees