JP3112115B2 - Manufacturing method of optical waveguide - Google Patents

Manufacturing method of optical waveguide

Info

Publication number
JP3112115B2
JP3112115B2 JP5497892A JP5497892A JP3112115B2 JP 3112115 B2 JP3112115 B2 JP 3112115B2 JP 5497892 A JP5497892 A JP 5497892A JP 5497892 A JP5497892 A JP 5497892A JP 3112115 B2 JP3112115 B2 JP 3112115B2
Authority
JP
Japan
Prior art keywords
cladding layer
tapered
upper cladding
optical waveguide
waveguide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP5497892A
Other languages
Japanese (ja)
Other versions
JPH05257018A (en
Inventor
和利 加藤
進 秦
淳一 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP5497892A priority Critical patent/JP3112115B2/en
Publication of JPH05257018A publication Critical patent/JPH05257018A/en
Application granted granted Critical
Publication of JP3112115B2 publication Critical patent/JP3112115B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/1228Tapered waveguides, e.g. integrated spot-size transformers

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Integrated Circuits (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、半導体あるいは誘電体
基板上の光導波路に属するものであり、さらに具体的に
は上部クラッド層の厚さが導波路面内で徐々に変化した
構成を有する光導波路の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention belongs to an optical waveguide on a semiconductor or dielectric substrate, and more specifically, has a structure in which the thickness of an upper cladding layer is gradually changed in the plane of the waveguide. it relates manufacturing method of the optical waveguide.

【0002】[0002]

【従来の技術】レーザ、変調器、方向性結合器、受光器
などの光素子を一つの結晶基板上に形成し、各素子間を
光導波路で光学的に結合した半導体光集積回路は、各素
子間を光ファイバなどで結合するハイブリッド光回路に
比べて、素子間の光軸合わせが不必要でかつ回路全体の
面積が極めて小さいという利点を有している。しかし各
素子の構造は互いに異なるため、光導波路による効率的
な光結合は困難であり、また半導体光集積回路への光入
力端あるいはここからの光出力端では光ファイバとの結
合による光損失が生じる。この問題を回避するため、コ
ア層の厚さを除々に変化させたテーパー導波路が用いら
れて提案されている(G.Muller他、Elect
ronics Letters, Vol.27,N
o.20,p1836(1991年)参照)。
2. Description of the Related Art A semiconductor optical integrated circuit in which optical elements such as a laser, a modulator, a directional coupler, and a light receiver are formed on a single crystal substrate and each element is optically coupled by an optical waveguide, Compared with a hybrid optical circuit in which elements are coupled by an optical fiber or the like, there is an advantage that optical axis alignment between elements is unnecessary and the area of the entire circuit is extremely small. However, since the structure of each element is different from each other, it is difficult to efficiently couple the light with an optical waveguide.At the optical input end to the semiconductor optical integrated circuit or the optical output end therefrom, optical loss due to coupling with the optical fiber is reduced. Occurs. To avoid this problem, it has been proposed to use a tapered waveguide in which the thickness of the core layer is gradually changed (G. Muller et al., Elect).
ronics Letters, Vol. 27, N
o. 20, p 1836 (1991)).

【0003】この従来技術に係るコア層の厚さを徐々に
変化させたテーパー導波路の一例を図4に示す。同図に
示すように、従来のテーパ導波路はInP基板である下
部クラッド層11の上部にエッチングによって長手方向
の一端が他端より厚みを有し且つ導波方向に沿ってその
厚さが漸大するテーパ形状のInGaAsPコア12が
形成されており、さらにこのコア12の上面にはInP
上部クラッド層13を均一に再成長させている。
FIG. 4 shows an example of a tapered waveguide in which the thickness of a core layer according to the prior art is gradually changed. As shown in the figure, in the conventional tapered waveguide, one end in the longitudinal direction has a thickness greater than the other end by etching on the upper part of the lower cladding layer 11 which is an InP substrate, and the thickness gradually increases along the waveguide direction. An InGaAsP core 12 having a large taper shape is formed.
The upper cladding layer 13 is uniformly regrown.

【0004】このテーパー導波路の入射端に入射された
光ビームは、導波路のコア層厚さの変化とともにその広
がりが変化して出射端より出射される。
The light beam incident on the incident end of the tapered waveguide changes its spread as the core layer thickness of the waveguide changes, and is emitted from the output end.

【0005】[0005]

【発明が解決しようとする課題】しかし、従来のテーパ
ー導波路は、コア層をテーパー形状にエッチングするこ
とが困難であるのみならず、上部クラッド層を再成長に
より形成するため、上部クラッド層の結晶性あるいは再
成長界面の平滑性が劣化しやすく、テーパー導波路内で
の導波損失が大きいという問題があった。
However, in the conventional tapered waveguide, not only is it difficult to etch the core layer into a tapered shape, but also because the upper cladding layer is formed by regrowth, the upper cladding layer is not formed. There is a problem that the crystallinity or the smoothness of the regrowth interface is easily deteriorated, and the waveguide loss in the tapered waveguide is large.

【0006】本発明は、上記従来技術の問題点を解消
し、製作が容易でかつ導波損失の小さいテーパー状の光
導波路の製造方法を提供することを目的とする。
[0006] The present invention is to solve the problems of the prior art, fabrication and has an object to provide an easy and small tapered manufacturing method of the optical waveguide path of the waveguide loss.

【0007】[0007]

【0008】[0008]

【課題を解決するための手段】 前記目的を達成する本発
明に係る光導波路の製造方法は、 半導体あるいは誘電体
基板上に下部クラッド層、コア層及び上部クラッド層を
順次積層し、次いで、導波方向に亙って漸次その幅が変
化してなるテーパ状のエッチングマスクを用い、前記上
部クラッド層を選択エッチングし、当該上部クラッド層
の一部を上記エッチングマスクと同形のテーパ状リッジ
部に加工した後、該エッチングマスクを除去し、その
後、当該リッジ形状部を有する上部クラッド層を無選択
的にエッチング加工することを特徴とする。
In order to achieve the object of the present onset to achieve the above purpose
According to the method for manufacturing an optical waveguide according to the present invention , a lower clad layer, a core layer, and an upper clad layer are sequentially laminated on a semiconductor or dielectric substrate, and then the taper whose width gradually changes in the waveguide direction is obtained. The upper cladding layer is selectively etched by using an etching mask having a shape, a part of the upper cladding layer is processed into a tapered ridge portion having the same shape as the etching mask, and then the etching mask is removed. An upper clad layer having a shape portion is non-selectively etched.

【0009】[0009]

【作用】基板上に下部クラッド層、コア層、上部クラッ
ド層を順次エピタキシャル成長する。次に、CVD法を
用いて上部クラッド層上部全面に窒化硅素膜を推積し、
その後テーパー状のエッチングマスクとしての窒化硅素
膜を形成する。さらにテーパ状エッチングマスクと同形
の、テーパ状リッジ部を有する上部クラッド層を形成す
る。その後、窒化硅素マスクを除去し、テーパ状リッジ
部を有する上部クラッド層の全面をエッチングし、リッ
ジの上面だけでなく側面からもエッチングを施し、リッ
ジの幅が狭い場所ほどエッチング量が増える結果、テー
パー状に厚さが変化する上部クラッド層を形成する。
The lower clad layer, the core layer, and the upper clad layer are sequentially grown on the substrate by epitaxial growth. Next, a silicon nitride film is deposited on the entire upper surface of the upper cladding layer using a CVD method,
Thereafter, a silicon nitride film is formed as a tapered etching mask. Further, an upper clad layer having a tapered ridge portion having the same shape as the tapered etching mask is formed. After that, the silicon nitride mask was removed, the entire surface of the upper cladding layer having the tapered ridge was etched, and the etching was performed not only on the upper surface but also on the side surfaces. An upper cladding layer having a tapered thickness is formed.

【0010】[0010]

【実施例】以下、本発明に係る光導波路の好適な一実施
例を図面を参照して説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A preferred embodiment of the optical waveguide according to the present invention will be described below with reference to the drawings.

【0011】図1及び図2は本実施例に係る光導波路の
形成過程を示す概略図を各々示す。図2に示すように、
本実施例に係る光導波路100は、InP半導体基板1
01上にInP下部クラッド層102、InGaAsP
コア層103及びInP上部クラッド層104が順次積
層されてなる光導波路において、InP上部クラッド層
104の一部を導波方向に沿ってその幅及び高さが漸次
増大したテーパ状リッジ部106に形成してなるもので
ある。
FIGS. 1 and 2 are schematic views showing a process of forming an optical waveguide according to this embodiment. As shown in FIG.
The optical waveguide 100 according to the present embodiment includes the InP semiconductor substrate 1
01, an InP lower cladding layer 102, InGaAsP
In an optical waveguide in which a core layer 103 and an InP upper cladding layer 104 are sequentially laminated, a part of the InP upper cladding layer 104 is formed in a tapered ridge portion 106 whose width and height gradually increase along the waveguide direction. It is made.

【0012】よって、InP上部クラッド層104の一
部を導波方向に沿ったテーパ状リッジ部106とするこ
とにより、導波路の両端(A端及びB端)における導波
光の基板垂直方向の強度分布が大小異なるものとしてい
る。この結果、テーパ状に厚さが変化するテーパ状リッ
ジ部106を有するInP上部クラッド層104に光を
導波させることで、基板垂直方向に導波光が漸次増大又
は減少する導波光分布を形成することができ、高効率な
光結合を可能としている。
Accordingly, by forming a part of the InP upper cladding layer 104 as the tapered ridge portion 106 along the waveguide direction, the intensity of the guided light at both ends (A end and B end) of the waveguide in the direction perpendicular to the substrate. The distribution is assumed to be different in size. As a result, by guiding the light to the InP upper cladding layer 104 having the tapered ridge portion 106 having a tapered thickness, a guided light distribution is formed in which the guided light gradually increases or decreases in the direction perpendicular to the substrate. This enables highly efficient optical coupling.

【0013】以下、本実施例に係る光導波路の形成方法
を説明する。
Hereinafter, a method for forming an optical waveguide according to this embodiment will be described.

【0014】工程1 図1(A)に示すように、InP基板101上にMOV
PE(有機金属気相エピタキシャル法)法を用いて厚さ
0.5μmのInPからなる下部クラッド層102、厚
さ0.1μmのInGaAsPからなるコア層103、
厚さ5μmのInPからなる上部クラッド層104を順
次エピタキシャル成長する。
Step 1 As shown in FIG. 1A, an MOV is formed on an InP substrate 101.
A lower cladding layer 102 made of InP having a thickness of 0.5 μm, a core layer 103 made of InGaAsP having a thickness of 0.1 μm,
An upper cladding layer 104 of InP having a thickness of 5 μm is sequentially epitaxially grown.

【0015】工程2 図1(B)に示すように、CVD法を用いて上部クラッ
ド層104の上部全面に厚さ0.2μmの窒化硅素膜1
05を推積し、その後のフォトプロセスおよびフッ素系
RIE法により、長さ(L)500μm,一方の端(A
端)での幅(D 1)10μm、他方の端(B端)での幅
(D2)2μmのテーパー状のエッチングマスクとしての
窒化硅素膜105を形成する。さらに図1(C)に示す
ように、塩素系RIE法を用いてInP上部クラッド層
104をエッチングし、テーパ状エッチングマスク10
5と同形の、テーパ状リッジ部106を有するInP上
部クラッド層104を形成する。
[0015]Step 2 As shown in FIG. 1B, the upper cladding is formed by using the CVD method.
Silicon nitride film 1 having a thickness of 0.2 μm
05 and then photo process and fluorine system
According to the RIE method, the length (L) is 500 μm, and one end (A
Width at end (D 1) 10 μm, width at the other end (end B)
(DTwo) 2 μm tapered etching mask
A silicon nitride film 105 is formed. Further shown in FIG.
As described above, an InP upper cladding layer is formed by using a chlorine-based RIE method.
104 is etched to form a tapered etching mask 10
5 on InP having a tapered ridge 106 having the same shape as
A partial cladding layer 104 is formed.

【0016】工程3 図2(A)に示すように、緩衝フッ酸により窒化硅素マ
スクを除去した後、塩素系RIE法を用いてテーパ状リ
ッジ部106を有する上部クラッド層104の全面をエ
ッチングする。上記工程(3)におけるエッチングで
は、工程(2)のエッチングと異なりエッチングマスク
を用いないため、リッジの上面だけでなく側面からのエ
ッチングが顕著になる。したがってリッジの幅が狭い場
所(図中B端側)ほどエッチング量が増えるため、テー
パー状に厚さが変化する(リッジ部の高さが漸次変化す
ると共に、リッジ部上面106bが屋根型で且つ傾斜が
変化する)テーパ状リッジ部106を有する上部クラッ
ド層が形成される。
Step 3 As shown in FIG. 2A, after the silicon nitride mask is removed with buffered hydrofluoric acid, the entire surface of the upper cladding layer 104 having the tapered ridge portion 106 is etched by chlorine-based RIE. . In the etching in the step (3), unlike the etching in the step (2), an etching mask is not used, so that not only the upper surface but also the side surface of the ridge becomes remarkable. Therefore, the etching amount increases as the width of the ridge becomes narrower (the end B in the figure), so that the thickness changes in a tapered shape (the height of the ridge portion gradually changes, and the upper surface 106b of the ridge portion has a roof-like shape). An upper cladding layer having a tapered ridge 106 (with varying slope) is formed.

【0017】この結果、導波路のA点のリッジ部の高さ
(H1 )が3μmでB点のリッジ部の高さ(H2 )が
0.1μmとなる幅及び高さ並びにそのリッジ部上面1
06bがB端からA端に向って漸次増大したテーパ状リ
ッジ部106が形成される。
As a result, the height and height of the ridge at point A (H 1 ) of the waveguide are 3 μm and the height (H 2 ) of the ridge at point B is 0.1 μm and the ridge. Top 1
The tapered ridge portion 106b gradually increases from the B end to the A end.

【0018】この光導波路の端部A端とB端における導
波光の基板垂直方向の強度分布を図2に示す。端面Aで
は上部クラッド層が厚いため導波光が上部クラッド層側
に広く分布しているのに対して、端面Bでは上部クラッ
ド層が薄いため導波光の分布は狭くなっており、この導
波路AからBへあるいはBからAへ光を導波させること
で基板垂直方向に導波光の分布の分布を大小させる機能
を有している。
FIG. 2 shows the intensity distribution of the guided light at the ends A and B of the optical waveguide in the direction perpendicular to the substrate. On the end face A, the guided light is widely distributed on the upper clad layer side because the upper clad layer is thick, whereas on the end face B, the distribution of the guided light is narrow because the upper clad layer is thin. Has a function of increasing or decreasing the distribution of the guided light in the direction perpendicular to the substrate by guiding the light from the substrate to B or from B to A.

【0019】このように本実施例に係る光導波路は、光
の導波方向に沿って厚さがテーパ状に変化した上部クラ
ッド層を有する光導波路の構成を特徴とするものであ
り、従来の厚さがテーパ状に変化したコア層を有する光
導波路と比べて、上部クラッド層を再成長する必要がな
いため、製作が容易でかつ導波損失が小さいという利点
がある。
As described above, the optical waveguide according to the present embodiment is characterized by the configuration of the optical waveguide having the upper clad layer whose thickness changes in a tapered shape along the light guiding direction. Compared with an optical waveguide having a core layer having a tapered thickness, there is no need to regrow the upper cladding layer, so that there is an advantage that the fabrication is easy and the waveguide loss is small.

【0020】本実施例においては、上部クラッド層の加
工に二回のエッチングを用いた例を示したが、これを、
サイドエッチング効果、あるいは結晶方位に依存したエ
ッチングの異方性を利用した一回のエッチングで行なう
ことも可能である。またマスクとしては窒化硅素以外に
も例えば酸化硅素やレジストなどを用いることができ
る。
In this embodiment, an example in which the etching of the upper cladding layer is performed twice is shown.
It is also possible to carry out a single etching utilizing the side etching effect or the anisotropy of etching depending on the crystal orientation. In addition to the silicon nitride, for example, silicon oxide or resist can be used as the mask.

【0021】[0021]

【発明の効果】以上説明したように本発明によれば、半
導体基板上あるいは誘電体基板上に、テーパ状に上部ク
ラッド層の厚さが変化する光導波路を形成することによ
り、製作が容易でかつ高性能な光集積回路を実現できる
という利点がある。
As described above, according to the present invention, an optical waveguide in which the thickness of an upper cladding layer changes in a tapered shape is formed on a semiconductor substrate or a dielectric substrate, thereby facilitating the fabrication. In addition, there is an advantage that a high-performance optical integrated circuit can be realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本実施例に係る光導波路の形成過程を示す概略
図である。
FIG. 1 is a schematic view illustrating a process of forming an optical waveguide according to an embodiment.

【図2】本実施例に係る光導波路の形成過程を示す概略
図である。
FIG. 2 is a schematic view illustrating a process of forming an optical waveguide according to the present embodiment.

【図3】本実施例に係る光導波路の導波光分布図であ
る。
FIG. 3 is a waveguide light distribution diagram of the optical waveguide according to the present embodiment.

【図4】従来技術に係る光導波路の斜視図である。FIG. 4 is a perspective view of an optical waveguide according to the related art.

【符号の説明】[Explanation of symbols]

100 光導波路 101 InP半導体基板 102 InP下部クラッド層 103 InGaAsPコア層 104 InP上部クラッド層 105 窒化硅素膜 106 テーパ状リッジ部 REFERENCE SIGNS LIST 100 Optical waveguide 101 InP semiconductor substrate 102 InP lower cladding layer 103 InGaAsP core layer 104 InP upper cladding layer 105 Silicon nitride film 106 Tapered ridge portion

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平3−10207(JP,A) (58)調査した分野(Int.Cl.7,DB名) G02B 6/12 - 6/14 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-3-10207 (JP, A) (58) Field surveyed (Int. Cl. 7 , DB name) G02B 6/12-6/14

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 半導体あるいは誘電体基板上に下部クラ
ッド層、コア層及び上部クラッド層を順次積層し、次い
で、導波方向に亙って漸次その幅が変化してなるテーパ
状のエッチングマスクを用い、前記上部クラッド層を選
択エッチングし、当該上部クラッド層の一部を上記エッ
チングマスクと同形のテーパ状リッジ部に加工した後、
該エッチングマスクを除去し、その後、当該テーパ状リ
ッジ部を有する上部クラッド層を無選択的にエッチング
加工することを特徴とする光導波路の製造方法。
1. A tapered etching mask in which a lower cladding layer, a core layer and an upper cladding layer are sequentially laminated on a semiconductor or dielectric substrate, and the width thereof gradually changes in the waveguide direction. Using, selective etching of the upper cladding layer, after processing a part of the upper cladding layer into a tapered ridge having the same shape as the etching mask,
A method for manufacturing an optical waveguide, comprising: removing the etching mask; and thereafter, non-selectively etching the upper cladding layer having the tapered ridge portion.
JP5497892A 1992-03-13 1992-03-13 Manufacturing method of optical waveguide Expired - Fee Related JP3112115B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5497892A JP3112115B2 (en) 1992-03-13 1992-03-13 Manufacturing method of optical waveguide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5497892A JP3112115B2 (en) 1992-03-13 1992-03-13 Manufacturing method of optical waveguide

Publications (2)

Publication Number Publication Date
JPH05257018A JPH05257018A (en) 1993-10-08
JP3112115B2 true JP3112115B2 (en) 2000-11-27

Family

ID=12985742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5497892A Expired - Fee Related JP3112115B2 (en) 1992-03-13 1992-03-13 Manufacturing method of optical waveguide

Country Status (1)

Country Link
JP (1) JP3112115B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9939582B2 (en) 2011-04-21 2018-04-10 Lionix International Bv Layer having a non-linear taper and method of fabrication
EP2942652B1 (en) * 2014-05-05 2018-10-10 LioniX International B.V. Layer having a non-linear taper and method of fabrication

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3758258B2 (en) * 1996-11-29 2006-03-22 富士通株式会社 Optical coupling device
JP3682367B2 (en) 1998-01-28 2005-08-10 パイオニア株式会社 Distributed feedback laser diode
JP4066670B2 (en) 2002-02-19 2008-03-26 オムロン株式会社 Light switch

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9939582B2 (en) 2011-04-21 2018-04-10 Lionix International Bv Layer having a non-linear taper and method of fabrication
EP2942652B1 (en) * 2014-05-05 2018-10-10 LioniX International B.V. Layer having a non-linear taper and method of fabrication

Also Published As

Publication number Publication date
JPH05257018A (en) 1993-10-08

Similar Documents

Publication Publication Date Title
US5078516A (en) Tapered rib waveguides
US7359593B2 (en) Integrated optical mode shape transformer and method of fabrication
US5574742A (en) Tapered beam expander waveguide integrated with a diode laser
US6571039B1 (en) Optical waveguide having a weakly-confining waveguide section and a strongly-confining waveguide section optically coupled by a tapered neck
US5703895A (en) Opto-electronic semiconductor device including an integrated mode transformer
EP1356327B1 (en) Optical mode size converter with vertical and horizontal mode shaping
EP0645650B1 (en) Integrated optical polarization converter with enhanced periodic coupling
US7079727B1 (en) Integrated optical mode shape transformer and method of fabrication
JP2001174658A (en) Double core spot size converter using selection region growing method and its manufacturing method
JP2004133446A (en) Optical module and its manufacturing method
JP3178565B2 (en) Semiconductor optical device
JP3112115B2 (en) Manufacturing method of optical waveguide
JP2002503393A (en) Waveguide
Brenner et al. Vertically tapered InGaAsP/InP waveguides for highly efficient coupling to flat‐end single‐mode fibers
JP3074885B2 (en) Optical waveguide formation method
JP2752851B2 (en) Manufacturing method of optical waveguide
JP3019271B2 (en) Optical waveguide formation method
JP2742391B2 (en) Method of manufacturing semiconductor optical integrated circuit
JPH0667043A (en) Spot conversion element and its production
CN114649745A (en) Buried structure semiconductor laser and preparation method thereof
JP2601173B2 (en) Semiconductor optical waveguide and method of manufacturing the same
JP3112114B2 (en) Method for manufacturing semiconductor optical waveguide
US6944368B2 (en) Waveguide-to-semiconductor device coupler
JP2002217446A (en) Optical semiconductor integrated device and method of manufacturing the same
US6607933B2 (en) Double layer beam expander for device-to-fiber coupling

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000822

LAPS Cancellation because of no payment of annual fees