JP3111817B2 - Proton conductive polymer solid electrolyte - Google Patents

Proton conductive polymer solid electrolyte

Info

Publication number
JP3111817B2
JP3111817B2 JP06179484A JP17948494A JP3111817B2 JP 3111817 B2 JP3111817 B2 JP 3111817B2 JP 06179484 A JP06179484 A JP 06179484A JP 17948494 A JP17948494 A JP 17948494A JP 3111817 B2 JP3111817 B2 JP 3111817B2
Authority
JP
Japan
Prior art keywords
group
proton
block
polymerization
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP06179484A
Other languages
Japanese (ja)
Other versions
JPH0820704A (en
Inventor
暢 中西
純 尾崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP06179484A priority Critical patent/JP3111817B2/en
Publication of JPH0820704A publication Critical patent/JPH0820704A/en
Application granted granted Critical
Publication of JP3111817B2 publication Critical patent/JP3111817B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、燃料電池、センサー等
の各種固体電気化学素子等に好適に用いることができる
プロトン導電性高分子固体電解質に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a proton conductive polymer solid electrolyte which can be suitably used for various solid electrochemical devices such as fuel cells and sensors.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】高分子
固体電解質(SPE)を用いた燃料電池(SPFC)
は、従来開発されていたりん酸型、溶融塩型、固体電解
質(SO)型に比べてそのセル構造が単純かつコンパク
トであり、高いエネルギー密度が期待できることから電
気自動車用電源等への応用が考えられ、近年、活発な研
究開発が行われるようになってきている。
2. Description of the Related Art A fuel cell (SPFC) using a solid polymer electrolyte (SPE)
Has a simpler and more compact cell structure than conventional phosphoric acid type, molten salt type, and solid electrolyte (SO) types, and can be expected to have a high energy density. It is considered, and in recent years, active research and development has been performed.

【0003】SPFCに用いられるSPEとしては、米
デュポン社の商品名Nafion(米国特許第3282
875号に記載)が既に公知であり、以前から主に用い
られてきた。この電解質は、ポリテトラフルオロエチレ
ンを骨格とし、フッ素化したスルホン酸を側鎖に持つも
ので、水分共存下でプロトン導電性を示すポリマーであ
る。その後、米ダウケミカル社で開発された電解質(W
O/86/06879に記載)は、上記ポリマーのポリ
マー重量当たりのスルホン酸基の数を増加させたもので
あり、同様の構造を持っている。
[0003] As SPE used for SPFC, there is Nafion (trade name of US Pat.
875) is already known and has been mainly used for a long time. This electrolyte has a polytetrafluoroethylene skeleton and has a fluorinated sulfonic acid in a side chain, and is a polymer having proton conductivity in the presence of moisture. Later, an electrolyte (W) developed by Dow Chemical
O / 86/06879) is an increase in the number of sulfonic acid groups per polymer weight of the above polymer, and has a similar structure.

【0004】しかしながら、ポリテトラフルオロエチレ
ンは、基本的に疎水性であるため、SPFCとして使用
した場合、電池作動中に常に加湿を行って電解質の吸水
状態を保ち、イオン導電性の低下を防がなければなら
ず、この点がSPFC研究における問題点の一つとなっ
ていた(なお、一般的なSPFCの運転温度は80℃程
度である。)。
However, since polytetrafluoroethylene is basically hydrophobic, when used as an SPFC, humidification is always performed during operation of the battery to maintain a water-absorbing state of the electrolyte, thereby preventing a decrease in ionic conductivity. This has been one of the problems in SPFC research (the operating temperature of a general SPFC is about 80 ° C.).

【0005】上記問題点の解決手段として、加湿方法の
改良が例えばJ.Electrochem.Soc.,
140,3190〜3193,1993に提案されてい
るが、この方法はセル構造が複雑になるという欠点を有
していた。更に、ポリマーの自重に対して100%の水
分を吸収するSPEが米ダウケミカル社により開発さ
れ、特開平4−366137号公報に提案されている。
しかし、このSPEは、70%以上の水分を吸収すると
電解質膜の機械的強度が低下し、電池作動時に膜に発生
したしわによって発電効率が低下するという問題があっ
た。
[0005] As a means for solving the above-mentioned problems, improvement of the humidification method has been disclosed in, for example, J. Mol. Electrochem. Soc. ,
140 , 3190-3193, 1993, this method has the disadvantage that the cell structure is complicated. Further, an SPE that absorbs 100% of water with respect to the weight of the polymer has been developed by Dow Chemical Company in the United States and proposed in Japanese Patent Application Laid-Open No. 4-366137.
However, this SPE has a problem that when 70% or more of water is absorbed, the mechanical strength of the electrolyte membrane is reduced, and the power generation efficiency is reduced due to wrinkles generated in the membrane during the operation of the battery.

【0006】従って、SPFC用SPEにおいては、プ
ロトン導電性の維持と同時に膜強度の向上が要求されて
いる。
[0006] Therefore, in the SPE for SPFC, it is required to maintain the proton conductivity and at the same time to improve the membrane strength.

【0007】本発明は上記要望に応えるためになされた
もので、電気化学素子、特にSPFCの電解質に用いた
場合に十分なプロトン導電性と膜強度とを有するプロト
ン導電性SPEを提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to meet the above-mentioned demand, and an object of the present invention is to provide a proton conductive SPE having sufficient proton conductivity and membrane strength when used for an electrolyte of an electrochemical device, particularly an SPFC. Aim.

【0008】[0008]

【課題を解決するための手段及び作用】本発明者は上記
目的を達成するため鋭意検討を行った結果、下記一般式
(1)で表される繰り返し単位からなる少なくとも一種
の重合度10以上の重合体のブロック鎖Aと、下記一般
式(2)で表される繰り返し単位からなる少なくとも一
種の重合度が300以上の重合体のブロック鎖Bとから
構成され、ブロック鎖Aとブロック鎖Bとの重量比が
1:30〜30:1である重合度310以上のブロック
−グラフト共重合体と、プロトン含有化合物とを組み合
せて固体電気化学素子用プロトン導電性SPEを形成し
た場合、高いプロトン導電性と膜強度とを示すことを見
い出した。
The present inventors have conducted intensive studies to achieve the above object, and as a result, have found that at least one kind of a repeating unit represented by the following general formula (1) having a degree of polymerization of 10 or more. It is composed of a block chain A of a polymer and a block chain B of a polymer having a degree of polymerization of at least one of 300 or more composed of a repeating unit represented by the following general formula (2). When the proton conductive SPE for a solid electrochemical element is formed by combining a block-graft copolymer having a degree of polymerization of 310 or more having a weight ratio of 1:30 to 30: 1 with a proton-containing compound, high proton conductivity is obtained. It has been found that it exhibits properties and film strength.

【0009】[0009]

【化4】 Embedded image

【0010】[0010]

【化5】 (式中、R4は水素原子、メチル基又はエチル基、Mは
−CH=CH2、−CH(CH3)=CH2、−COOC
3、−COOC25、フェニル基又は置換フェニル基
である。)
Embedded image (Wherein, R 4 is a hydrogen atom, a methyl group or an ethyl group, M is —CH = CH 2 , —CH (CH 3 ) = CH 2 , —COOC)
H 3 , —COOC 2 H 5 , a phenyl group or a substituted phenyl group. )

【0011】即ち、上記ブロック−グラフト共重合体
は、ポリエチレンオキサイド誘導体がグラフト鎖、ブロ
ック共重合体が幹分子となり、幹分子のブロック共重合
体の限定された部分にポリエチレンオキサイド誘導体が
集中的にグラフトしたものであり、分子構造が高度に規
制されているためにグラフト鎖ドメインと幹分子ドメイ
ンとにミクロ相分離を起こすという特徴を有する。更
に、この幹分子ドメインとグラフト鎖ドメインがミクロ
層分離構造を示すブロック−グラフト共重合体の作用に
より、イオン拡散のためのエチレンオキサイド誘導体の
連続層が形成され、このため多量のプロトン含有化合物
の溶解、拡散が容易になり、それ故、高いプロトン導電
性が発現する。
That is, in the block-graft copolymer, the polyethylene oxide derivative is a graft chain, the block copolymer is a stem molecule, and the polyethylene oxide derivative is concentrated on a limited portion of the block copolymer of the stem molecule. It is grafted, and has a feature that microphase separation occurs between a graft chain domain and a stem molecule domain because the molecular structure is highly regulated. Furthermore, a continuous layer of an ethylene oxide derivative for ion diffusion is formed by the action of the block-graft copolymer in which the stem molecule domain and the graft chain domain exhibit a micro-layer-separated structure. Dissolution and diffusion are facilitated, and therefore high proton conductivity is exhibited.

【0012】また、上記幹分子ドメインは、フェニル基
を含むために高い強度、弾性を示し、上記のようにプロ
トン含有化合物を多量に可溶化した場合でも電解質膜の
強度低下を引き起こさないものである。
The stem molecule domain exhibits high strength and elasticity because it contains a phenyl group, and does not cause a decrease in the strength of the electrolyte membrane even when a large amount of the proton-containing compound is solubilized as described above. .

【0013】従って、上記ブロック−グラフト共重合体
及びプロトン含有化合物を混合して固体電気化学素子用
電解質を形成した場合、高いプロトン導電性を示すと共
に電解質膜の強度が増大することを知見し、本発明をな
すに至ったものである。
Therefore, it was found that when the block-graft copolymer and the proton-containing compound were mixed to form an electrolyte for a solid electrochemical device, high proton conductivity was exhibited and the strength of the electrolyte membrane was increased. The present invention has been accomplished.

【0014】従って、本発明は、 (イ)上記一般式(1)で表される繰り返し単位からな
る少なくとも一種の重合度10以上の重合体のブロック
鎖Aと、上記一般式(2)で表される繰り返し単位から
なる少なくとも一種の重合度が300以上の重合体のブ
ロック鎖Bとから構成され、ブロック鎖Aとブロック鎖
Bとの重量比が1:30〜30:1である重合度310
以上のブロック−グラフト共重合体、及び、 (ロ)上記ブロック−グラフト共重合体に対して100
〜400重量%のプロトン含有化合物を配合してなるこ
とを特徴とするプロトン導電性SPEを提供する。
Accordingly, the present invention provides: (a) a block chain A of at least one polymer having a degree of polymerization of 10 or more, comprising a repeating unit represented by the above general formula (1); And at least one kind of a repeating unit having a degree of polymerization of 300 or more and a block chain B of a polymer, wherein the weight ratio of the block chain A to the block chain B is 1:30 to 30: 1.
(B) 100 to the block-graft copolymer
Provided is a proton conductive SPE, which is characterized by containing a proton-containing compound in an amount of up to 400% by weight.

【0015】以下、本発明につき更に詳しく説明する
と、本発明のプロトン導電性SPEは、下記一般式
(1)で表される繰り返し単位からなる少なくとも一種
の重合度10以上の重合体のブロック鎖Aと、下記一般
式(2)で表される繰り返し単位からなる少なくとも一
種の重合度が300以上の重合体のブロック鎖Bとから
構成され、ブロック鎖Aとブロック鎖Bとの重量比が
1:30〜30:1である重合度310以上のブロック
−グラフト共重合体を主成分とするものであり、このブ
ロック−グラフト共重合体は、上述したようにミクロ相
分離構造を示すものである。
Now, the present invention will be described in further detail. The proton conductive SPE of the present invention comprises at least one block chain A of a polymer having a degree of polymerization of at least 10 and comprising a repeating unit represented by the following general formula (1). And at least one block chain B of a polymer having a degree of polymerization of 300 or more, which is composed of a repeating unit represented by the following general formula (2), and the weight ratio of the block chain A to the block chain B is 1: The main component is a block-graft copolymer having a degree of polymerization of 30 to 30: 1 and a degree of polymerization of 310 or more. This block-graft copolymer has a microphase-separated structure as described above.

【0016】[0016]

【化6】 Embedded image

【0017】式(1)中、R1は水素原子、メチル基又
はエチル基、R2は水素原子又はメチル基、R3は水素原
子、メチル基,エチル基,プロピル基等の炭素数1〜1
0のアルキル基、フェニル基,トリル基等の炭素数6〜
10のアリール基、アセチル基,ベンゾイル基等の炭素
数2〜9のアシル基又はシリル基である。シリル基とし
ては、−SiR3(Rは水素原子又はメチル、フェニル
等の炭素数1〜18の置換又は非置換の一価炭化水素基
で、各Rは互いに同一でも異なっていてもよい)で示さ
れるものが挙げられる。また、nは1〜45の整数であ
る。
In the formula (1), R 1 is a hydrogen atom, a methyl group or an ethyl group, R 2 is a hydrogen atom or a methyl group, R 3 is a hydrogen atom, a methyl group, an ethyl group, a propyl group, etc. 1
0 to 6 carbon atoms such as an alkyl group, a phenyl group and a tolyl group
It is an acyl group having 2 to 9 carbon atoms such as an aryl group, an acetyl group, and a benzoyl group having 10 or a silyl group. The silyl group, -SiR 3 (R is a hydrogen atom or a methyl, a substituted or unsubstituted monovalent hydrocarbon group having 1 to 18 carbon atoms such as phenyl, each R may be the same or different from each other) in What is shown is mentioned. N is an integer of 1 to 45.

【0018】[0018]

【化7】 で示されるグラフト鎖の数平均分子量は45以上200
0以下であるが、特に100〜1500であることが好
ましい。
Embedded image The number average molecular weight of the graft chain represented by
0 or less, and particularly preferably 100 to 1500.

【0019】また、上記式(2)中、R4は水素原子、
メチル基又はエチル基、Mは−CH=CH2、−CH
(CH3)=CH2、−COOCH3、−COOC25
フェニル基又はトリル基等の置換フェニル基である。
In the above formula (2), R 4 is a hydrogen atom,
Methyl or ethyl, M is -CH = CH 2, -CH
(CH 3) = CH 2, -COOCH 3, -COOC 2 H 5,
It is a substituted phenyl group such as a phenyl group or a tolyl group.

【0020】このブロック共重合体を得るには、まず下
記一般式(3)で表される繰り返し単位からなる少なく
とも一種の重合度10以上の重合体のブロック鎖Cと、
上記一般式(2)で表される繰り返し単位からなる少な
くとも一種の重合度300以上の重合体のブロック鎖B
とが重量比1:30〜30:1で構成されている、重合
度310以上のブロック共重合体Tを公知の方法で合成
する。次に、このブロック共重合体Tが持つ側鎖のヒド
ロキシル基に一般式R8Me(ここにR8はt−ブチルエ
ーテル,ジフェニルエチレン,ベンジル,ナフタレン又
はクミル基、Meはナトリウム,カリウム又はセシウム
原子である)で表される有機アルカリ金属を反応させて
カルバニオン化し、これに下記一般式(4)で表される
アルキレンオキサイドを加えてグラフト鎖を成長させ、
次いで酸又は一般式R9X(R9はR3で説明したアルキ
ル基、アリール基、アシル基又はシリル基、Xはハロゲ
ン原子である)を加えて重合を停止することによって製
造することができる。
In order to obtain the block copolymer, first, a block chain C of at least one polymer having a degree of polymerization of 10 or more, which is composed of a repeating unit represented by the following general formula (3):
Block chain B of at least one polymer having a degree of polymerization of 300 or more, which is composed of a repeating unit represented by the general formula (2).
And a weight ratio of 1:30 to 30: 1, and a block copolymer T having a degree of polymerization of 310 or more is synthesized by a known method. Next, a hydroxyl group of a side chain of the block copolymer T has a general formula R 8 Me (where R 8 is a t-butyl ether, diphenylethylene, benzyl, naphthalene or cumyl group, and Me is a sodium, potassium or cesium atom). Is reacted with an organic alkali metal represented by the formula (1) to form a carbanion, and an alkylene oxide represented by the following general formula (4) is added thereto to grow a graft chain.
Then, an acid or a general formula R 9 X (R 9 is an alkyl group, an aryl group, an acyl group or a silyl group described for R 3 , and X is a halogen atom) is added to terminate the polymerization, whereby the compound can be produced. .

【0021】[0021]

【化8】 (式中、R1は上記と同様の意味を示す。)Embedded image (In the formula, R 1 has the same meaning as described above.)

【0022】[0022]

【化9】 (式中、R2は上記と同様の意味を示す。)Embedded image (In the formula, R 2 has the same meaning as described above.)

【0023】このようにして得られるブロック−グラフ
ト共重合体は、それぞれ上記一般式(1)及び(2)で
表される同種又は異種の繰り返し単位からなる少なくと
も一種のブロック鎖AとBが、例えばAB、BAB、B
AB’、BAB’ABというように任意に配列されてな
るものである。
The block-graft copolymer thus obtained has at least one block chain A and B comprising the same or different types of repeating units represented by the above general formulas (1) and (2), respectively. For example, AB, BAB, B
AB 'and BAB'AB are arranged arbitrarily.

【0024】重合体のブロック鎖Aの重合度は、10以
上、好ましくは7500〜150万、同じくブロック鎖
Bの重合度は、300以上、好ましくは2500〜50
万であり、また、この両重合体のブロック鎖A、Bの重
量比は、A:Bが1:30〜30:1、好ましくは1:
10〜10:1である。更に、得られるブロック−グラ
フト共重合体の重合度は310以上、好ましくは1万〜
200万である。
The degree of polymerization of the block chain A of the polymer is 10 or more, preferably 75 to 1.5 million, and the degree of polymerization of the block chain B is 300 or more, preferably 2500 to 50
The weight ratio of the block chains A and B of both polymers is such that A: B is from 1:30 to 30: 1, preferably 1: 1.
10 to 10: 1. Furthermore, the degree of polymerization of the obtained block-graft copolymer is 310 or more, preferably 10,000 to
2 million.

【0025】重合体のブロック鎖Aは高分子電解質とし
ての機能を果たすため、重合度が10未満ではこのポリ
マーの特長であるミクロ相分離構造を示さず、またブロ
ック鎖Bは機械的強度を保持する部分であるため、重合
度が300未満ではポリマーの機械的強度が低下してし
まう。更に、ブロック鎖Aとブロック鎖Bの重量比が
1:30未満ではグラフト部分が少なすぎるため、高分
子電解質としての機能を保つことが難しくなり、また、
30:1を越えるとグラフト鎖の幹分子としての機械的
強度が保持しにくくなる。
Since the block chain A of the polymer functions as a polymer electrolyte, if the degree of polymerization is less than 10, it does not show the microphase separation structure characteristic of this polymer, and the block chain B retains the mechanical strength. When the degree of polymerization is less than 300, the mechanical strength of the polymer is reduced. Further, when the weight ratio of the block chain A to the block chain B is less than 1:30, the graft portion is too small, and it is difficult to maintain the function as a polymer electrolyte.
If the ratio exceeds 30: 1, it becomes difficult to maintain the mechanical strength of the graft chain as a stem molecule.

【0026】次に、本発明に用いるプロトン含有化合物
としては、りん酸基、カルボン酸基、スルホン酸基、フ
ェノール基、その他の水酸基を持つプロティック溶媒、
例えば水、りん酸等や、プロトン化合物含有固体、例え
ば亜りん酸等が好適に用いられる。
Next, as the proton-containing compound used in the present invention, a protic solvent having a phosphoric acid group, a carboxylic acid group, a sulfonic acid group, a phenol group and other hydroxyl groups,
For example, water, phosphoric acid, or the like, or a solid containing a proton compound, such as phosphorous acid, is suitably used.

【0027】プロトン含有化合物の配合量は、上記ブロ
ック−グラフト共重合体に対して5〜500%(重量
%、以下同様)、特に100〜400%、とりわけ15
0〜300%の範囲で混合することができる。5%に満
たないと十分なプロトン導電性が得られない場合があ
り、500%を超えると膜強度が著しく低下する場合が
ある。なお、本発明のプロトン導電性SPEは、上記ブ
ロック−グラフト共重合体をマトリクス成分とし、その
マトリクス中においてプロトン導電性の連続層と膜強度
を保つ相とがミクロ相分離構造を持つために、連続層に
プロトン含有化合物が吸収、可溶化されプロトン導電性
を示すものであり、ミクロ相分離構造のために多量のプ
ロトン含有化合物を吸収しても膜強度の低下をきたさな
い。
The compounding amount of the proton-containing compound is 5 to 500% (% by weight, the same applies hereinafter), particularly 100 to 400%, especially 15 to the above-mentioned block-graft copolymer.
It can be mixed in the range of 0 to 300%. If it is less than 5%, sufficient proton conductivity may not be obtained, and if it exceeds 500%, the membrane strength may be significantly reduced. The proton-conductive SPE of the present invention has the block-graft copolymer as a matrix component, and in the matrix, a proton-conductive continuous layer and a phase that maintains membrane strength have a microphase-separated structure. The proton-containing compound is absorbed and solubilized in the continuous layer to exhibit proton conductivity. Even if a large amount of the proton-containing compound is absorbed due to the microphase-separated structure, the film strength does not decrease.

【0028】本発明のプロトン導電性SPEを用いた電
解質膜の作製方法としては、上記ブロック−グラフト共
重合体とプロトン含有化合物とを適当な溶剤に溶かした
後に基板上に展開、溶剤を蒸発させてもよいし、予め上
記ブロック−グラフト共重合体を上記と同様の方法で単
独で成膜させてからプロトン含有化合物を適当な方法で
液体化させて添加し、一体化させてもよい。また、上述
の二つの方法を組み合わせて電解質膜を作製してもよ
い。
As a method for producing an electrolyte membrane using the proton-conductive SPE of the present invention, the block-graft copolymer and the proton-containing compound are dissolved in an appropriate solvent, then developed on a substrate, and the solvent is evaporated. Alternatively, the block-graft copolymer may be formed into a single film in advance by the same method as described above, and then the proton-containing compound may be liquefied by an appropriate method and added to be integrated. Further, an electrolyte membrane may be manufactured by combining the above two methods.

【0029】ここで用いられる溶剤としては、上記の溶
質成分が溶解されるものであれば特に制約はないが、具
体的にはテトラヒドロフラン、1,4−ジオキサン、
1,3−ジオキソラン等の環状エーテル類、ベンゼン、
トルエン等の芳香族類、四塩化炭素、クロロホルム、ト
リクロルエチレン、塩化メチレン等の塩素系溶剤、エタ
ノール、メタノール、IPA(イソプロピルアルコー
ル)等のアルコ−ル類、n−ヘキサン、シクロヘキサン
等の飽和炭化水素類、アセトニトリル、アセトンなどが
挙げられる。
The solvent used here is not particularly limited as long as it can dissolve the above-mentioned solute components. Specifically, tetrahydrofuran, 1,4-dioxane,
Cyclic ethers such as 1,3-dioxolane, benzene,
Aromatic compounds such as toluene, chlorinated solvents such as carbon tetrachloride, chloroform, trichloroethylene, and methylene chloride; alcohols such as ethanol, methanol, and IPA (isopropyl alcohol); and saturated hydrocarbons such as n-hexane and cyclohexane , Acetonitrile, acetone and the like.

【0030】[0030]

【発明の効果】本発明のプロトン導電性SPEは、固体
電気化学素子、特にSPFCに好適な高プロトン導電性
及び高膜強度のプロトン導電性SPE膜を与える。
The proton conductive SPE of the present invention provides a proton conductive SPE film having high proton conductivity and high film strength, which is suitable for solid-state electrochemical devices, particularly SPFC.

【0031】[0031]

【実施例】以下、実施例及び比較例を示し、本発明を具
体的に説明するが、本発明は下記の実施例に制限される
ものではない。
The present invention will be described in detail below with reference to examples and comparative examples, but the present invention is not limited to the following examples.

【0032】〔実施例1〕B−A−B型トリブロック共
重合体(A:ポリヒドロキシスチレン、B:ポリスチレ
ン)のA部分にポリエチレンオキサイドをグラフトさせ
たブロック−グラフト共重合体(数平均分子量35×1
4、1本のグラフト鎖の分子量1200、ポリエチレ
ンオキサイド含量65%)1部、亜りん酸0.25部、
1,4−ジオキサン10部、エタノール2部を混合し、
均一溶液とし、これをテフロンシャーレに展開し、溶媒
を蒸発させて厚み60μmの膜を得た。次に、この膜を
20%りん酸水溶液の入ったビーカーに入れた後、その
ビーカーを75℃ホットプレート上で3時間放置した。
このようにして得られた膜について濾紙上で余分な水分
等を除去したところ、厚み190μmのプロトン導電性
SPE膜が得られた。りん酸水溶液浸漬前後の膜重量測
定よりトリブロック共重合体とプロトン含有化合物との
重量比は100:173であった。
Example 1 Block-graft copolymer (number average molecular weight) obtained by grafting polyethylene oxide to part A of a BAB type triblock copolymer (A: polyhydroxystyrene, B: polystyrene) 35 × 1
0 4 , molecular weight of one graft chain: 1200, polyethylene oxide content: 65%) 1 part, phosphorous acid: 0.25 part,
10 parts of 1,4-dioxane and 2 parts of ethanol are mixed,
A uniform solution was prepared and spread on a Teflon dish, and the solvent was evaporated to obtain a film having a thickness of 60 μm. Next, the film was placed in a beaker containing a 20% phosphoric acid aqueous solution, and the beaker was left on a hot plate at 75 ° C. for 3 hours.
When excess moisture and the like were removed from the thus obtained membrane on filter paper, a proton conductive SPE membrane having a thickness of 190 μm was obtained. The weight ratio of the triblock copolymer to the proton-containing compound was determined to be 100: 173 based on the film weight measurement before and after the immersion in the phosphoric acid aqueous solution.

【0033】〔実施例2〕実施例1と同様のポリスチレ
ンとポリエチレンオキサイドのB−A−B型トリブロッ
ク共重合体(数平均分子量35×104、1本のグラフ
ト鎖の分子量2500、ポリエチレンオキサイド含量7
0%)1部、エタンスルホン酸0.2部、テトラヒドロ
フラン10部、エタノール2部を混合し、均一溶液と
し、これをテフロンシャーレに展開し、溶媒を蒸発させ
て厚み55μmの膜を得た。次に、この膜を50%りん
酸水溶液の入ったビーカーに移し、このビーカーを10
0℃ホットプレート上で3時間放置した。このようにし
て得られた膜について濾紙上で余分な水分等を除去した
ところ、厚み150μmのプロトン導電性SPE膜が得
られた。りん酸水溶液浸漬前後の膜重量測定よりトリブ
ロック共重合体とプロトン含有化合物との重量比は10
0:210であった。
Example 2 BAB type triblock copolymer of polystyrene and polyethylene oxide as in Example 1 (number average molecular weight 35 × 10 4 , molecular weight of one graft chain 2500, polyethylene oxide Content 7
(0%), 1 part of ethanesulfonic acid, 0.2 part of ethanesulfonic acid, 10 parts of tetrahydrofuran, and 2 parts of ethanol to form a uniform solution, which was developed on a Teflon dish, and the solvent was evaporated to obtain a film having a thickness of 55 μm. Next, the membrane was transferred to a beaker containing a 50% phosphoric acid aqueous solution, and
It was left on a 0 ° C. hot plate for 3 hours. When excess water and the like were removed from the thus obtained membrane on filter paper, a 150 μm-thick proton conductive SPE membrane was obtained. The weight ratio between the triblock copolymer and the proton-containing compound was found to be 10 based on the weight of the membrane before and after the immersion in the phosphoric acid aqueous solution.
0: 210.

【0034】〔比較例〕米ジュポン社製プロトン導電性
膜Nafion117(ポリテトラフルオロエチレンを
骨格とし、フッ素化したスルホン酸を側鎖に持つ電解
質)を100℃の水中で5時間水和させた後、余分の水
分を濾紙で除去してプロトン導電性SPE膜を得た。水
和前後の重量変化よりNafion117とプロトン含
有化合物(この場合は水のみ)との重量比は100:2
0であった。
[Comparative Example] A proton conductive membrane Nafion 117 (an electrolyte having polytetrafluoroethylene as a skeleton and fluorinated sulfonic acid in a side chain) manufactured by DuPont of the United States was hydrated in water at 100 ° C. for 5 hours. Then, excess water was removed with a filter paper to obtain a proton conductive SPE membrane. From the weight change before and after hydration, the weight ratio of Nafion 117 to the proton-containing compound (in this case, only water) is 100: 2.
It was 0.

【0035】得られたプロトン導電性SPE膜の比イオ
ン導電率及び膜引っ張り強度を下記方法で測定した。結
果を表1,2に示す。 プロトン導電性SPEの評価(測定温度25℃) (1)比イオン導電率(κ) 得られたSPE膜をステンレス電極で挟み、交流インピ
ーダンス法にて測定した。 (2)膜引っ張り強度 得られたSPE膜を3×7cmの大きさにカットして試
験片とした。
The specific ionic conductivity and the tensile strength of the obtained proton conductive SPE film were measured by the following methods. The results are shown in Tables 1 and 2. Evaluation of proton conductive SPE (measuring temperature 25 ° C.) (1) Specific ionic conductivity (κ) The obtained SPE film was sandwiched between stainless steel electrodes, and measured by an alternating current impedance method. (2) Film tensile strength The obtained SPE film was cut into a size of 3 x 7 cm to obtain a test piece.

【0036】[0036]

【表1】 [Table 1]

【0037】[0037]

【表2】 [Table 2]

【0038】表1,2の結果より、本発明のプロトン導
電性SPEは、良好なプロトン含有化合物の保持能力を
有する上、膜強度の点でも優れたSPE膜を与えること
がわかり、固体電気化学素子用電解質、特にSPEFC
用電解質として有用であることが明らかになった。
From the results shown in Tables 1 and 2, it was found that the proton conductive SPE of the present invention not only has a good ability to retain a proton-containing compound but also gives an excellent SPE membrane in terms of membrane strength. Electrolyte for devices, especially SPEFC
It was revealed that it was useful as an electrolyte for use.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI C08L 53/00 C08L 53/00 71/00 71/00 Y (56)参考文献 特開 平5−120912(JP,A) 特開 平2−229826(JP,A) 特開 平1−289011(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01B 1/06 C08F 8/00 C08F 297/02 C08G 65/08 C08K 3/00 C08L 53/00 C08L 71/00 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification code FI C08L 53/00 C08L 53/00 71/00 71/00 Y (56) References JP-A-5-120912 (JP, A) JP-A-2-229826 (JP, A) JP-A-1-289011 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01B 1/06 C08F 8/00 C08F 297/02 C08G 65/08 C08K 3/00 C08L 53/00 C08L 71/00

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 (イ)下記一般式(1) 【化1】 (式中、R1は水素原子、メチル基又はエチル基、R2
水素原子又はメチル基、R3は水素原子、アルキル基、
アリール基、アシル基又はシリル基、nは1〜45の整
数であり、式中 【化2】 で示されるグラフト鎖の数平均分子量は45以上200
0以下である。)で表される繰り返し単位からなる少な
くとも一種の重合度10以上の重合体のブロック鎖A
と、 下記一般式(2) 【化3】 (式中、R4は水素原子、メチル基又はエチル基、Mは
−CH=CH2、−CH(CH3)=CH2、−COOC
3、−COOC25、フェニル基又は置換フェニル基
である。)で表される繰り返し単位からなる少なくとも
一種の重合度が300以上の重合体のブロック鎖Bとか
ら構成され、ブロック鎖Aとブロック鎖Bとの重量比が
1:30〜30:1である重合度310以上のブロック
−グラフト共重合体、及び(ロ)上記ブロック−グラフ
ト共重合体に対して100〜400重量%のプロトン含
有化合物を配合してなることを特徴とするプロトン導電
性高分子固体電解質。
(1) The following general formula (1): (Wherein, R 1 is a hydrogen atom, a methyl group or an ethyl group, R 2 is a hydrogen atom or a methyl group, R 3 is a hydrogen atom, an alkyl group,
An aryl group, an acyl group or a silyl group, n is an integer of 1 to 45; The number average molecular weight of the graft chain represented by
0 or less. A) a block chain A of at least one type of polymer having a degree of polymerization of 10 or more, comprising a repeating unit represented by
And the following general formula (2): (Wherein, R 4 is a hydrogen atom, a methyl group or an ethyl group, M is —CH = CH 2 , —CH (CH 3 ) = CH 2 , —COOC)
H 3 , —COOC 2 H 5 , a phenyl group or a substituted phenyl group. And at least one block chain B of a polymer having a degree of polymerization of 300 or more, which is composed of a repeating unit represented by the formula (1), wherein the weight ratio of the block chain A to the block chain B is 1:30 to 30: 1. A block-graft copolymer having a degree of polymerization of 310 or more; and (b) a proton-conducting polymer comprising 100 to 400% by weight of a proton-containing compound with respect to the block-graft copolymer. Solid electrolyte.
JP06179484A 1994-07-07 1994-07-07 Proton conductive polymer solid electrolyte Expired - Fee Related JP3111817B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06179484A JP3111817B2 (en) 1994-07-07 1994-07-07 Proton conductive polymer solid electrolyte

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06179484A JP3111817B2 (en) 1994-07-07 1994-07-07 Proton conductive polymer solid electrolyte

Publications (2)

Publication Number Publication Date
JPH0820704A JPH0820704A (en) 1996-01-23
JP3111817B2 true JP3111817B2 (en) 2000-11-27

Family

ID=16066645

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06179484A Expired - Fee Related JP3111817B2 (en) 1994-07-07 1994-07-07 Proton conductive polymer solid electrolyte

Country Status (1)

Country Link
JP (1) JP3111817B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5643689A (en) * 1996-08-28 1997-07-01 E.C.R.-Electro-Chemical Research Ltd. Non-liquid proton conductors for use in electrochemical systems under ambient conditions
JP4539896B2 (en) 1999-09-17 2010-09-08 独立行政法人産業技術総合研究所 Proton conductive membrane, method for producing the same, and fuel cell using the same
DE10258175A1 (en) 2002-12-12 2004-07-08 General Motors Corp., Detroit Block copolymers for use as solid polymer electrolytes e.g. in fuel cells have a segment with acidic substituents for proton transport and an acid-free segment giving mechanical integrity
JP4696441B2 (en) * 2003-01-31 2011-06-08 住友化学株式会社 Polymer electrolyte membrane and use thereof
US7459505B2 (en) 2005-05-03 2008-12-02 General Motors Corporation Block copolymers with acidic groups
US7977394B2 (en) 2005-05-03 2011-07-12 GM Global Technology Operations LLC Triblock copolymers with acidic groups
EP2348512A1 (en) * 2006-07-20 2011-07-27 Sumitomo Chemical Co., Ltd. Evaluation method of ionic conductivity of a polymer electrolyte membrane
US7993792B2 (en) 2006-07-26 2011-08-09 GM Global Technology Operations LLC Polymer blocks for PEM applications
US8492460B2 (en) 2006-07-28 2013-07-23 GM Global Technology Operations LLC Fluorinated polymer blocks for PEM applications

Also Published As

Publication number Publication date
JPH0820704A (en) 1996-01-23

Similar Documents

Publication Publication Date Title
Carretta et al. Ionomeric membranes based on partially sulfonated poly (styrene): synthesis, proton conduction and methanol permeation
US7285612B2 (en) Partially fluorinated copolymer based on trifluorostyrene and substituted vinyl compound and ionic conductive polymer membrane formed therefrom
US8241770B2 (en) Process or producing hybrid ion-exchange membranes comprising functional inorganics and graft polymer and electrolyte membranes for use in fuel cells comprising the hybrid ion-exchange membranes
KR101150017B1 (en) High stability membrane for proton exchange membrane fuel cells
Chen et al. Robust poly (aryl piperidinium)/N-spirocyclic poly (2, 6-dimethyl-1, 4-phenyl) for hydroxide-exchange membranes
JP2001348439A (en) Ion-exchange membrane of fluororesin having widely ranging ion-exchange capacity, and process for preparation thereof
Yang et al. Formation and investigation of dual cross-linked high temperature proton exchange membranes based on vinylimidazolium-functionalized poly (2, 6-dimethyl-1, 4-phenylene oxide) and polystyrene
WO2006068279A1 (en) Ion-conductive binder, membrane-electrode assembly and fuel cell
CA2622234A1 (en) Polymer electrolyte, and polymer electrolyte membrane, membrane-electrode assembly and fuel cell that are using the polymer electrolyte
EP0525728A1 (en) Lithium battery
US20230038279A1 (en) Novel polyfluorene-based ionomer, anion exchange membrane, method for preparing the polyfluorene-based ionomer and method for fabricating the anion exchange membrane
JP3111817B2 (en) Proton conductive polymer solid electrolyte
TW442520B (en) A polymer electrolyte membrane, a blend ion-exchange membrane, and a solid polymer electrolyte fuel cell and a process for making said fuel cell
JP2007294408A (en) Polyparaphenylene hydrocarbon electrolyte, manufacture method therefor, polyparaphenylene, and electrolyte membrane, catalyst layer and polymer electrolyte fuel cell using polyparaphenylene hydrocarbon electrolyte
JPWO2002062896A1 (en) Proton conductive polymer membrane and method for producing the same
JP5032843B2 (en) Solid polymer electrolyte membrane, production method thereof, and solid polymer fuel cell
US4888257A (en) Solid electrolyte
JP3384173B2 (en) Polymer solid electrolyte
Enomoto et al. Synthesis of copolymer grafts containing sulfoalkyl and hydrophilic groups in polymer electrolyte membranes
KR100843569B1 (en) Proton conductive composite triblock polymer electrolyte membrane and preparation method thereof
JP2000223135A (en) Solid polymer electrolyte film and fuel cell
JPWO2010047329A1 (en) Organic-inorganic composite electrolyte, electrolyte membrane, membrane-electrode assembly, and fuel cell
Gourdoupi et al. New high temperature polymer electrolyte membranes. Influence of the chemical structure on their properties
JP2009238460A (en) Electrolyte membrane for fuel cell
CN102643443B (en) Poly(perfluorocyclobutane) ionomer with phosphonic acid groups for high temperature fuel cells

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees