JP3109773B2 - Single crystallization equipment for evaporated thin film - Google Patents

Single crystallization equipment for evaporated thin film

Info

Publication number
JP3109773B2
JP3109773B2 JP04306103A JP30610392A JP3109773B2 JP 3109773 B2 JP3109773 B2 JP 3109773B2 JP 04306103 A JP04306103 A JP 04306103A JP 30610392 A JP30610392 A JP 30610392A JP 3109773 B2 JP3109773 B2 JP 3109773B2
Authority
JP
Japan
Prior art keywords
thin film
ecr
magnetic field
deposited thin
vapor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04306103A
Other languages
Japanese (ja)
Other versions
JPH06128072A (en
Inventor
浅川俊文
Original Assignee
株式会社ニューラルシステムズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニューラルシステムズ filed Critical 株式会社ニューラルシステムズ
Priority to JP04306103A priority Critical patent/JP3109773B2/en
Publication of JPH06128072A publication Critical patent/JPH06128072A/en
Application granted granted Critical
Publication of JP3109773B2 publication Critical patent/JP3109773B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Recrystallisation Techniques (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は,半導体や3次元LS
I,液晶パネル等の薄膜を,複数方向からの中性原子ビ
ーム照射によって結晶の方位を揃える,蒸着薄膜の単結
晶化装置に関する。
BACKGROUND OF THE INVENTION The present invention relates to a semiconductor or three-dimensional LS
I. The present invention relates to a single crystallizing apparatus for a vapor-deposited thin film, in which a thin film of a liquid crystal panel or the like is oriented in a crystal direction by irradiating a neutral atom beam from a plurality of directions.

【0002】[0002]

【従来の技術】蒸着に際して高エネルギーイオンビーム
を蒸着面に複数方向から照射し,単結晶化する方法を発
明者は既に開発している(特開平2-184594号, 特開平2-
196086号) 。イオンビーム照射方向に直交する面が,結
晶核の最稠密面になるという法則を利用するもので,所
望の結晶方向が有する2つ以上の最稠密面に直交する方
向から,それぞれイオンビームを照射することで結晶方
向を揃え,単結晶を粒成長させる。高エネルギーイオン
ビームを平行にするのは不可能であり,また,格子欠陥
や帯電によるイオン粒阻止等の不都合がある。薄膜形成
時に高エネルギーイオンビームを直接照射するのでな
く,ターゲットに反射させて低エネルギーな中性原子ビ
ームとし,この中性原子ビームをフィルターにて平行流
にし蒸着されつつある薄膜に照射する方法を発明者は開
発した(特開平2-229792号) 。
2. Description of the Related Art The inventors of the present invention have already developed a method of irradiating a deposition surface with a high-energy ion beam from a plurality of directions to perform single crystallization (see JP-A-2-184594, JP-A-2-184594).
196086). The method uses the rule that the plane perpendicular to the ion beam irradiation direction becomes the densest plane of the crystal nucleus, and irradiates the ion beam from the direction perpendicular to two or more dense planes in the desired crystal direction. By doing so, the crystal directions are aligned, and single crystals are grown. It is impossible to make a high-energy ion beam parallel, and there are inconveniences such as lattice defects and blocking of ion particles due to charging. Rather than directly irradiating a high-energy ion beam when forming a thin film, the target is reflected to a target to form a low-energy neutral atom beam, and this neutral atom beam is parallel-flowed by a filter to irradiate the thin film being deposited. The inventor has developed it (JP-A-2-229792).

【0003】[0003]

【発明が解決しようとする課題】KAFFMAN 製のイオンソ
ースは,導入したアルゴンガスを電子線によってイオン
化しプラズマにして,アルゴンイオンのみを引出電極に
よって取り出す。このイオン流は平行にしにくいと共に
蒸着薄膜をイオン化し格子欠陥を招く。このため,シリ
コン等のターゲットにこのイオン流を一旦反射させて中
性化し,フィルター(コリメーター)で平行度の低下し
た中性原子流を平行にしている。本来はターゲットやフ
ィルターを使用しないで済む構成が好ましい。また,KA
FFMAN 製イオンソースは放射エネルギー密度が低く,蒸
着薄膜の単結晶化処理には時間が掛かる。液晶パネルや
太陽電池パネル等の大面積処理には不向きである。
The ion source manufactured by KAFFMAN ionizes the introduced argon gas with an electron beam to generate plasma, and extracts only argon ions with an extraction electrode. This ion flow is difficult to make parallel and ionizes the deposited thin film, causing lattice defects. For this reason, the ion stream is once reflected and neutralized by a target such as silicon, and the neutral atom stream having reduced parallelism is made parallel by a filter (collimator). Originally, a configuration in which a target and a filter need not be used is preferable. Also, KA
The FFMAN ion source has a low radiant energy density, and it takes time to single-crystallize the deposited thin film. It is not suitable for large-area processing of liquid crystal panels and solar cell panels.

【0004】[0004]

【発明が解決しようとする課題】マイクロ波と高磁場に
よってプラズマ領域を保ち磁場方向に低エネルギーの大
イオン流を放射するECR発生器を複数配置し,薄膜結
晶の異なる最稠密面に直交する方向に夫々の大イオン流
が照射されるように,蒸着薄膜に対して複数のECR発
生器を傾けて配置する。ECR発生器から放出されるA
rイオンが中性化された頃に蒸着薄膜に達するように,
このECR発生器と蒸着薄膜との距離を設定する。シリ
コン等の蒸着素材のターゲットをこのECR発生器内に
配置するが,予め形成された蒸着薄膜を再結晶化する時
はこのターゲットはなくとも良い。
A plurality of ECR generators for maintaining a plasma region by microwaves and a high magnetic field and radiating a low-energy large ion flow in the direction of the magnetic field are arranged, and are arranged in a direction perpendicular to different dense surfaces of the thin film crystal. A plurality of ECR generators are arranged at an angle with respect to the vapor-deposited thin film so that each large ion stream is irradiated. A released from the ECR generator
As the r ions reach the deposited thin film when they are neutralized,
The distance between the ECR generator and the deposited thin film is set. A target made of a deposition material such as silicon is placed in the ECR generator, but this target may be omitted when recrystallizing a deposited thin film formed in advance.

【0005】[0005]

【作用】ECR発生器内にマイクロ波とアルゴンガスが
供給されてプラズマ状態に保たれる。このプラズマはマ
イクロ波と磁場によりサイクロトロンの原理で螺旋運動
する高エネルギーの電子によって作られる。この電子は
反磁性特性を持つので,磁場の弱い方に移動し,磁場方
向への電子流を形成する。発生したArイオンはターゲ
ットから珪素原子等をスパッターする。引出口からの電
子流にはその電気的中性を維持するためにArイオンも
共に引き出される。このArイオン流は磁気コイルの軸
に沿って発散する磁界方向に流れるが,電子流と並行し
て流れるので,消イオン時間が経過すると中性原子にな
る。この中性原子流が蒸着薄膜に到達する。中性原子流
の照射方向に直交する面には,優先的にその結晶の最稠
密面が形成される。結晶が有する複数の最稠密面は,珪
素では70.5度の角度を有する。従って,70.5度の角度を
有する二方向の中性原子流をその蒸着薄膜に照射すれ
ば,粒成長する各結晶の方位は一義的に定まり,結晶方
向の揃った単結晶が成長する。第1図に於いて,角度θ
を70.5度に採れば良く,二台のECR発生器の相対傾き
角度は70.5度になる。
The microwave and the argon gas are supplied into the ECR generator to maintain the plasma state. This plasma is created by high-energy electrons that spirally move on the principle of cyclotron by means of microwaves and magnetic fields. Since these electrons have diamagnetic properties, they move to the weaker magnetic field and form an electron flow in the direction of the magnetic field. The generated Ar ions sputter silicon atoms or the like from the target. Ar ions are also extracted together with the electron flow from the outlet to maintain its electrical neutrality. This Ar ion flow flows in the direction of the magnetic field diverging along the axis of the magnetic coil, but flows in parallel with the electron flow, so that after the deionization time has elapsed, it becomes a neutral atom. This neutral atom stream reaches the deposited thin film. The densest surface of the crystal is preferentially formed on the surface orthogonal to the irradiation direction of the neutral atom flow. The densest planes of the crystal have an angle of 70.5 degrees in silicon. Therefore, when a neutral atom flow in two directions having an angle of 70.5 degrees is irradiated on the deposited thin film, the orientation of each crystal growing is uniquely determined, and a single crystal having a uniform crystal direction is grown. In FIG. 1, the angle θ
May be set to 70.5 degrees, and the relative inclination angle of the two ECR generators becomes 70.5 degrees.

【0006】第3図ではTa反射板を55度傾けてある。
中性原子流は直下に直接照射すると共に, 反射板で反射
される中性原子流は30度( 蒸着薄膜の法線に対しては70
度)の角度で蒸着薄膜に照射する。
In FIG. 3, the Ta reflector is tilted 55 degrees.
The neutral atom flow is directly irradiated directly below, and the neutral atom current reflected by the reflector is 30 ° (70 ° for the normal of the deposited thin film).
Irradiate the deposited thin film at an angle of degrees.

【0007】[0007]

【実施例】基板2を中央に有する真空室1の上部左右に
ECR発生器を配置する。このECR発生器はマイクロ
波導波管3と不活性ガス導入管そしてチャンバーに高磁
場を印加する磁気コイル4とで構成される。左右のEC
R発生器の傾き角度(θ)は,薄膜結晶が有する異なる
最稠密面の角度によって設定される。ECR発生器内壁
面及びその出口部にターゲットを配置する。チャンバー
内のプラズマ領域からのArイオンによってターゲット
原子(珪素等)はスパッターされる。このスパッターさ
れた原子イオンは電子流にそって出口から放出され,蒸
着薄膜(基板2)に達する。電子流(イオン流)は消イ
オン時間経過後には中性原子流となり,基板2には平行
な中性原子流が到達する。左右ECR発生器の傾き角度
(θ)は,薄膜結晶が有する異なる最稠密面角度によっ
て決定される。基板2とECR発生器との距離は,放出
当初のイオン流が中性化されるのに必要な距離である。
ECR発生器から放出されるイオンエネルギーは10〜20
電子ボルト程度であるため,第2図のように4.5cm 走行
した頃には中性原子流に代わり始め,14cm では殆どが中
性原子流になる。Arイオンが電子により中性化される
のである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS ECR generators are arranged on the left and right of the upper part of a vacuum chamber 1 having a substrate 2 at the center. This ECR generator includes a microwave waveguide 3, an inert gas introduction pipe, and a magnetic coil 4 for applying a high magnetic field to the chamber. Left and right EC
The tilt angle (θ) of the R generator is set according to the angle of the different densest surfaces of the thin film crystal. The target is placed on the inner wall surface of the ECR generator and its outlet. Target atoms (such as silicon) are sputtered by Ar ions from the plasma region in the chamber. The sputtered atomic ions are emitted from the outlet along the electron flow, and reach the deposited thin film (substrate 2). The electron flow (ion flow) becomes a neutral atomic flow after the elapse of the deionization time, and the parallel neutral atomic flow reaches the substrate 2. The tilt angle (θ) of the left and right ECR generators is determined by different close-packed plane angles of the thin film crystal. The distance between the substrate 2 and the ECR generator is a distance required for neutralizing the ion flow at the time of emission.
The ion energy emitted from the ECR generator is 10-20
Since it is about electron volts, as shown in Fig. 2, it starts to replace the neutral atom flow when traveling 4.5 cm, and almost becomes the neutral atom flow at 14 cm. Ar ions are neutralized by electrons.

【0008】次に,予め形成された蒸着薄膜を再結晶化
するには,基板2を再結晶温度以下に保ち,左右のEC
R発生器から夫々の平行な中性原子流を照射する。シリ
コン蒸着薄膜は,非晶質特有の暗茶褐色から透明で幾分
黄色を帯びた色に変わった。中性原子流の強さは従来の
イオンソースに比べて桁違いの大きさであり,単結晶薄
膜製造時間は著しく短縮された。
Next, in order to recrystallize the vapor-deposited thin film formed in advance, the substrate 2 is kept at a temperature lower than the recrystallization temperature and the left and right ECs are kept.
Each parallel neutral atom stream is irradiated from the R generator. The silicon-deposited thin film changed from a dark brownish brown characteristic of amorphous to a transparent and somewhat yellowish color. The intensity of the neutral atom flow is orders of magnitude larger than that of the conventional ion source, and the time required to produce a single crystal thin film has been significantly reduced.

【0009】第3図では反射板8を基板2の近傍に傾け
て配置し,一台のECR発生器で済ます実施例である。
基板2の直上にECR発生器を配置し,蒸着薄膜に対し
て垂直に照射される平行な中性原子流の一部を,このT
a反射板にて反射し照射する。蒸着薄膜の法線に対して
70度の角度で照射するには,第3 図のように角度( θ)
を約55度に採る。ビームの平行度は鏡面反射方向に対し
てCOSINE法則に近い分布をするので, コリメーターが必
要になる。なお,2台のECR発生器を使用する実施例
でも必要に応じてコリメーターを配置する。
FIG. 3 shows an embodiment in which the reflection plate 8 is arranged in an inclined position near the substrate 2 and only one ECR generator is required.
An ECR generator is arranged directly above the substrate 2 and a part of the parallel neutral atom stream which is irradiated perpendicularly to the vapor-deposited thin film is used as the TCR.
a The light is reflected and reflected by the reflector. For the normal of the deposited thin film
To irradiate at an angle of 70 degrees, the angle (θ) as shown in Fig. 3
At about 55 degrees. A collimator is required because the parallelism of the beam has a distribution close to the COSINE law with respect to the direction of specular reflection. In the embodiment using two ECR generators, a collimator is arranged as necessary.

【0010】ターゲット或いは蒸着薄膜に珪素以外の元
素を採用されている時は,二台のECR発生器の傾き角
度は,その結晶が有する異なった最稠密面の角度に合わ
せて設定される。各最稠密面に直交する方向から平行な
中性原子流が照射されることで,結晶方位の揃った単結
晶が粒成長する。不活性ガス導入管からは,アルゴンガ
ス以外にはネオンや窒素ガス等が適宜供給される。蒸着
薄膜が窒化ホウ素の時は,窒素ガスを導入し,ターゲッ
トにはホウ素を採用する。
When an element other than silicon is used for the target or the vapor-deposited thin film, the inclination angles of the two ECR generators are set in accordance with the angles of different close-packed surfaces of the crystals. By irradiating a parallel neutral atom flow from a direction perpendicular to each of the densest surfaces, a single crystal having a uniform crystal orientation grows. From the inert gas introduction pipe, neon, nitrogen gas or the like is supplied as appropriate in addition to the argon gas. When the deposited thin film is boron nitride, nitrogen gas is introduced and boron is used as the target.

【0011】[0011]

【発明の効果】要するに,本発明はマイクロ波と高磁場
によってプラズマ領域を保ち磁場方向に低エネルギーの
大イオン流を放射するECR発生器を複数配置し,薄膜
結晶の異なる最稠密面に直交する方向に夫々の中性原子
流が照射されるように,蒸着薄膜に対して複数のECR
発生器を傾けて配置したため,平行度の優れた中性原子
流を二方向から照射でき,結晶方向の揃った単結晶の粒
成長を促進し空格子点の極めて少ない単結晶をえること
ができる。
In short, the present invention arranges a plurality of ECR generators that maintain a plasma region by microwaves and a high magnetic field and emits a large ion stream of low energy in the direction of the magnetic field, and are orthogonal to different dense surfaces of a thin film crystal. Multiple ECRs are applied to the deposited thin film so that each neutral atom stream is irradiated in each direction.
Since the generator is tilted, the neutral atom flow with excellent parallelism can be irradiated from two directions, and the grain growth of single crystal with uniform crystal direction can be promoted to obtain a single crystal with very few vacancies. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】二台のECR発生器を傾けて配置した実施例の
説明図である。
FIG. 1 is an explanatory diagram of an embodiment in which two ECR generators are arranged at an angle.

【図2】ECR発生器の出口から放射されるイオン流値
の距離に対するプロット図である。
FIG. 2 is a plot of ion flow values emitted from an ECR generator outlet versus distance.

【図3】一台のECR発生器と反射板を使用した実施例
の説明図である。
FIG. 3 is an explanatory diagram of an embodiment using one ECR generator and a reflector.

【符号の説明】[Explanation of symbols]

1 真空室 2 基板 3 マイクロ波導波管 4 磁気コイル 5 ターゲット 8 反射板 DESCRIPTION OF SYMBOLS 1 Vacuum chamber 2 Substrate 3 Microwave waveguide 4 Magnetic coil 5 Target 8 Reflector

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 マイクロ波と高磁場によってプラズマ領
域を保ち磁場方向に低エネルギーの大イオン流を放射す
るECR発生器を複数配置し,薄膜結晶の異なる最稠密
面に直交する方向に夫々の中性原子流が照射されるよう
に,蒸着薄膜に対して複数のECR発生器を傾けて配置
する,蒸着薄膜の単結晶化装置。
1. A plurality of ECR generators for maintaining a plasma region by a microwave and a high magnetic field and radiating a low-energy large ion flow in the direction of the magnetic field are arranged, and each of the ECR generators is arranged in a direction perpendicular to a different densest surface of a thin film crystal. A single crystallizer for vapor-deposited thin films, in which a plurality of ECR generators are arranged at an angle to the vapor-deposited thin films so that a stream of neutral atoms is irradiated.
【請求項2】 アルゴン等の不活性ガスをECR発生器
内に供給し,ターゲットをECR発生器内に配置し,こ
のターゲットからスパッターされる原子を薄膜結晶に積
層してなる,請求項1記載の蒸着薄膜の単結晶化装置。
2. The method according to claim 1, wherein an inert gas such as argon is supplied into the ECR generator, a target is arranged in the ECR generator, and atoms sputtered from the target are laminated on a thin film crystal. Single crystallizer for evaporated thin film.
【請求項3】 マイクロ波と高磁場によってプラズマ領
域を保ち磁場方向に低エネルギーの大イオン流を放射す
るECR発生器を複数配置し,基板上に予め形成された
蒸着薄膜を再結晶温度以下に保ち,薄膜結晶の異なる最
稠密面に直交する方向に夫々の中性原子流が照射される
ように,蒸着薄膜に対して複数のECR発生器を傾けて
配置する,蒸着薄膜の単結晶化装置。
3. A plurality of ECR generators which maintain a plasma region by microwaves and a high magnetic field and emit a low-energy large ion flow in the direction of the magnetic field are arranged, and a vapor-deposited thin film previously formed on a substrate is kept at a recrystallization temperature or lower. A single crystallizer for vapor-deposited thin films, in which a plurality of ECR generators are tilted with respect to the vapor-deposited thin film so that the neutral atomic flow is irradiated in a direction perpendicular to the different densest surfaces of the thin-film crystals. .
【請求項4】 マイクロ波と高磁場によってプラズマ領
域を保ち磁場方向に低エネルギーで大イオン流を放射す
るECR発生器を一台配置し,薄膜結晶の近傍に反射板
を配置し,薄膜結晶の異なる最稠密面に直交する方向
に,直接及び反射中性原子流が照射さるにように,この
ECR発生器及び反射板を蒸着薄膜に対して所定角度に
保つことを特徴とする,蒸着薄膜の単結晶化装置。
4. An ECR generator which maintains a plasma region by a microwave and a high magnetic field and emits a large ion current with low energy in a magnetic field direction, a reflector is arranged near the thin film crystal, Characterized in that the ECR generator and the reflector are maintained at a predetermined angle with respect to the deposited thin film so that the direct and reflected neutral atom streams are directed in a direction perpendicular to the different densest surfaces. Single crystallization equipment.
JP04306103A 1992-10-19 1992-10-19 Single crystallization equipment for evaporated thin film Expired - Fee Related JP3109773B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04306103A JP3109773B2 (en) 1992-10-19 1992-10-19 Single crystallization equipment for evaporated thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04306103A JP3109773B2 (en) 1992-10-19 1992-10-19 Single crystallization equipment for evaporated thin film

Publications (2)

Publication Number Publication Date
JPH06128072A JPH06128072A (en) 1994-05-10
JP3109773B2 true JP3109773B2 (en) 2000-11-20

Family

ID=17953078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04306103A Expired - Fee Related JP3109773B2 (en) 1992-10-19 1992-10-19 Single crystallization equipment for evaporated thin film

Country Status (1)

Country Link
JP (1) JP3109773B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5738731A (en) * 1993-11-19 1998-04-14 Mega Chips Corporation Photovoltaic device
JP3194674B2 (en) * 1994-10-25 2001-07-30 株式会社ニューラルシステムズ Crystalline thin film forming apparatus, crystalline thin film forming method, plasma irradiation apparatus, and plasma irradiation method
US6362097B1 (en) 1998-07-14 2002-03-26 Applied Komatsu Technlology, Inc. Collimated sputtering of semiconductor and other films
KR100683174B1 (en) * 2005-06-17 2007-02-15 삼성전자주식회사 Plasma accelerating apparatus and plasma processing system having the same

Also Published As

Publication number Publication date
JPH06128072A (en) 1994-05-10

Similar Documents

Publication Publication Date Title
US5126165A (en) Laser deposition method and apparatus
AU746645B2 (en) Method and apparatus for deposition of biaxially textured coatings
KR101239575B1 (en) Apparatus for forming gas barrier and method for forming thereof
JP3109773B2 (en) Single crystallization equipment for evaporated thin film
KR0164843B1 (en) Method for growing thin film by beam deposition and apparatus for practicing the same
US20090020415A1 (en) "Iontron" ion beam deposition source and a method for sputter deposition of different layers using this source
JPH02129361A (en) Forming of thin film
JPH02175864A (en) Thin-film forming device and formation of thin film by using this device
JP3227768B2 (en) Method for controlling crystal orientation of copper thin film
KR102579090B1 (en) Ion Beam Sputtering Apparatus for Manufacturing a Wire Grid Polarizer
JPH02275798A (en) Apparatus and method for forming diamond membrane
Sakai et al. Crystal structure of aluminum films prepared by ion beam assisted technology
JPH04285154A (en) Formation of carbon thin film
Christensen Physical Vapor Deposition
JPH03138363A (en) Plasma beam sputtering device
JP2583672B2 (en) Plasma / radiation assisted molecular beam epitaxy method and apparatus
US9879357B2 (en) Methods and systems for thin film deposition processes
KR20050109766A (en) Apparatus for depositing having curved surface target
JP3091466B2 (en) Thin film manufacturing method
JPH0758026A (en) Apparatus for manufacturing crystalline thin film
JPH11199377A (en) Formation of crystalline thin membrane
JPH06145979A (en) Film forming device
Ziegler et al. An Experimental Set-up for the Production of Large Size X-Ray Multilayer Structures
JPH04370A (en) Ion source and film formation apparatus
Seki et al. Development of a high energy large sheet ion beam system and a low energy ion beam deposition system

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070914

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080914

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090914

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090914

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100914

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110914

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120914

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees