JP3107228B2 - Superconducting magnet system - Google Patents

Superconducting magnet system

Info

Publication number
JP3107228B2
JP3107228B2 JP09512564A JP51256497A JP3107228B2 JP 3107228 B2 JP3107228 B2 JP 3107228B2 JP 09512564 A JP09512564 A JP 09512564A JP 51256497 A JP51256497 A JP 51256497A JP 3107228 B2 JP3107228 B2 JP 3107228B2
Authority
JP
Japan
Prior art keywords
superconducting
cooling
temperature
superconducting magnet
switch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP09512564A
Other languages
Japanese (ja)
Inventor
典英 佐保
武夫 根本
尚志 磯上
照広 滝沢
Original Assignee
株式会社 日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 日立製作所 filed Critical 株式会社 日立製作所
Application granted granted Critical
Publication of JP3107228B2 publication Critical patent/JP3107228B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • H01F6/04Cooling

Description

【発明の詳細な説明】 技術分野 本発明は、超電導磁石システムに係り、特に永久電流
維持モードで運転される伝導冷却型超電導磁石で使用す
る永久電流を生成する超電導スイッチに関する。
Description: TECHNICAL FIELD The present invention relates to a superconducting magnet system, and more particularly to a superconducting switch for generating a permanent current for use in a conduction-cooled superconducting magnet operated in a persistent current maintaining mode.

背景技術 特公平6−73334号公報に開示された従来の超電導磁
石システムは、超電導磁石を構成する超電導コイル(以
下、本明細書では特に断りのない限り超電導磁石と呼
ぶ)に永久電流を流すために、外部電源装置と超電導コ
イルとを電気的に接続し、これらに並列に接続された超
電導体と、この超電導体の超電導状態を絶つヒーターと
を備え、この超伝導体及びヒーターとから超電導スイッ
チを構成し、外部電源から超電導コイルに対して電流を
供給する際に、ヒーターによって超電導体を暖めてこの
抵抗値を増加させることによって外部電源と超電導コイ
ルを電気的に接続し、次にヒーターを切って超電導体の
超電導状態を回復させて超電導コイルの両端と超電導ス
イッチ巻に永久電流を流す技術が記載されている。すな
わち、冷凍機で超電導発生温度以下に冷却した超電導磁
石の励磁の時は、母線を介して外部電源から超電導コイ
ルに電流が供給されるが、この時超電導スイッチは「OF
F」の状態で、超電導スイッチのヒータは超電導体を加
熱している状態にあり、超電導体の温度が超電導発生温
度以上に上昇し、超電導体は常電導状態で電気抵抗が生
じている。したがって、電流は超電導体側にほとんど流
れず電気抵抗がゼロの超電導磁石に流れ、所望の電流値
まで所定の電流上昇速度で供給する。その後、超電導ス
イッチのヒータを切り超電導体を冷凍機の冷熱で冷却
し、超電導体の温度を超電導発生温度以下に冷却して超
電導状態にし、電気抵抗をゼロにする。これによって、
超電導磁石に流れる電流は、同じく超電導状態にある母
線、母線間にある電気抵抗ゼロの超電導体をつなぐ閉回
路内を永久電流として保持される。また、超電導スイッ
チが「ON」の永久電流保持運転状態から、何らかの原因
で超電導体が常電導状態に移行するクエンチが生じ、超
電導体で運転電流によるジュール熱が発生した場合、熱
による損傷を防止するに十分な熱容量をスイッチに付与
する。
2. Description of the Related Art A conventional superconducting magnet system disclosed in Japanese Patent Publication No. 6-73334 discloses a method for applying a permanent current to a superconducting coil (hereinafter referred to as a superconducting magnet unless otherwise specified) constituting a superconducting magnet. A superconducting switch electrically connected to an external power supply device and a superconducting coil, and a heater for cutting off the superconducting state of the superconducting conductor. When supplying current to the superconducting coil from an external power supply, the superconductor is heated by a heater to increase the resistance value, thereby electrically connecting the external power supply and the superconducting coil, and then the heater is turned on. A technique is described in which the superconducting state of the superconducting conductor is cut to recover the superconducting state, and a permanent current is applied to both ends of the superconducting coil and the superconducting switch winding. That is, when the superconducting magnet is cooled to a temperature not higher than the superconducting temperature by the refrigerator, current is supplied from the external power supply to the superconducting coil via the bus bar.
In the state “F”, the heater of the superconducting switch is heating the superconductor, the temperature of the superconductor rises above the superconducting generation temperature, and the superconductor is in a normal conducting state and has an electric resistance. Therefore, current hardly flows to the superconductor side, flows to the superconducting magnet having zero electrical resistance, and supplies a desired current value at a predetermined current rising speed. Thereafter, the heater of the superconducting switch is turned off, and the superconductor is cooled by the cold heat of the refrigerator, and the temperature of the superconductor is cooled to the superconducting generation temperature or lower to make the superconducting state, and the electric resistance is reduced to zero. by this,
The current flowing through the superconducting magnet is maintained as a permanent current in a closed circuit that connects a superconductor having a superconducting state and a superconductor having zero electrical resistance between the buses. In addition, the quench occurs when the superconductor switches to the normal conduction state for some reason from the permanent current holding operation state where the superconducting switch is `` ON '', preventing damage due to heat when Joule heat is generated by the operating current in the superconductor Enough heat capacity to the switch.

この超電導磁石システムでは、冷凍機の最も温度が低
い冷却ステーションに超電導磁石の一部を熱的に結合し
ている。そして、超電導磁石を冷却する同じ温度部位に
エポキシ樹脂等の熱電導率が小さなスペーサを介して超
電導体を超電導磁石の内部に取付け、超電導磁石を冷却
する膨張機の各冷却ステーションに熱的に接続した銅製
の母線を介して超電導体を冷却することが記載されてい
る。
In this superconducting magnet system, a part of the superconducting magnet is thermally coupled to a cooling station having the lowest temperature of the refrigerator. A superconductor is mounted inside the superconducting magnet via a spacer with a small thermal conductivity such as epoxy resin at the same temperature location where the superconducting magnet is cooled, and thermally connected to each cooling station of the expander that cools the superconducting magnet. It is described that a superconductor is cooled through a copper bus bar.

超電導スイッチが「OFF」状態では、超電導スイッチ
のヒータは超電導体を加熱している状態にあり、超電導
体の温度が超電導発生温度以上に上昇する。このため、
このヒータの熱エネルギーは先母線を通じて超電導磁石
を冷却する冷凍機に余分の熱負荷として作用し、これが
冷凍機の冷凍能力を超えると冷凍機で冷却できる温度が
上昇し、超電導磁石の温度が超電導発生温度以上となっ
て超電導状態が破壊する。また、超電導発生温度以上に
上昇した超電導体の熱の一部はスペーサを通じて直接超
電導磁石に伝わり、冷凍機の冷却ステーションに流れ
る。このため、熱の流れ流路にある超電導磁石の温度は
冷却ステーションの温度より高くなり、超電導磁石の温
度が超電導発生温度以上となって、超電導状態が破壊す
るという問題がある。
When the superconducting switch is in the “OFF” state, the heater of the superconducting switch is heating the superconductor, and the temperature of the superconductor rises above the superconducting generation temperature. For this reason,
The heat energy of this heater acts as an extra heat load on the refrigerator that cools the superconducting magnet through the tip bus, and when this exceeds the refrigerating capacity of the refrigerator, the temperature that can be cooled by the refrigerator rises, and the temperature of the superconducting magnet increases. The superconducting state is destroyed when the temperature exceeds the generation temperature. In addition, part of the heat of the superconductor that has risen to a temperature higher than the superconducting generation temperature is directly transmitted to the superconducting magnet through the spacer and flows to the cooling station of the refrigerator. For this reason, there is a problem that the temperature of the superconducting magnet in the heat flow channel becomes higher than the temperature of the cooling station, the temperature of the superconducting magnet becomes higher than the superconducting generation temperature, and the superconducting state is destroyed.

発明の開示 本発明の目的は、極力冷却用冷凍機に対して熱負担を
掛けない超電導スイッチを搭載した超電導磁石システム
を提供することにある。
DISCLOSURE OF THE INVENTION An object of the present invention is to provide a superconducting magnet system equipped with a superconducting switch that minimizes the heat load on a cooling refrigerator.

上記目的は、超電導磁石と、この超電導磁石に接続さ
れ電流を供給する電源と、前記超電導磁石に並列接続さ
れた超電導スイッチと、前記超電導磁石と前記超電導ス
イッチとを冷却する冷却手段とを備えた超電導システム
において、前記冷却手段は、前記超電導磁石と前記超電
導スイッチとを個別に冷却する手段であって、該個別に
冷却する手段は、複数温度レベルの冷却部位を有する冷
却手段であり、前記超電導磁石を冷却する冷却部位より
も、前記超電導スイッチを冷却する冷却部位の冷却温度
を高い冷却部位で冷却することによって達成される。
The object is provided with a superconducting magnet, a power supply connected to the superconducting magnet and supplying a current, a superconducting switch connected in parallel to the superconducting magnet, and cooling means for cooling the superconducting magnet and the superconducting switch. In the superconducting system, the cooling unit is a unit for individually cooling the superconducting magnet and the superconducting switch, and the unit for individually cooling is a cooling unit having a cooling portion having a plurality of temperature levels. This is achieved by cooling the superconducting switch at a higher cooling temperature than at the cooling portion that cools the magnets.

以上の本発明の構成により、例えば機械式膨張機等の
複数温度、例えば50Kと5Kの2温度レベルの冷却ステー
ションを有する冷凍機では、同じ熱負荷を冷凍機で吸収
する場合、より温度レベルが高い温度側のステーション
でその熱負荷を吸収する方が、低い温度側のステーショ
ンの温度をより低い温度状態に維持できることができ
る。すなわち熱的に干渉が少なくいわば独立した冷却器
であるため、超電導磁石をより低い温度状態に維持でき
るのでクエンチを防止することができる。したがって、
本構造により、超電導スイッチをオンオフさせるヒータ
の熱エネルギーは超電導磁石の超電導発生温度よりかな
り高い温度の冷却ステーションで冷凍機側に吸収できる
ので、超電導磁石に結合したより温度の低い冷却ステー
ションの熱負荷は小さくて済み、超電導スイッチOFF時
にも、温度の低い冷却ステーションで冷却する超電導磁
石の温度が上昇せず、超電導磁石の超電導状態を安定に
保持することができる。
According to the configuration of the present invention described above, in a refrigerator having a cooling station at a plurality of temperatures, such as a mechanical expander, for example, two temperature levels of 50K and 5K, when the same heat load is absorbed by the refrigerator, the temperature level becomes higher. Absorbing the heat load at the higher temperature station can maintain the temperature of the lower temperature station at a lower temperature state. In other words, since the cooler has little thermal interference and is an independent cooler, the superconducting magnet can be maintained at a lower temperature, so that quenching can be prevented. Therefore,
With this structure, the heat energy of the heater that turns on and off the superconducting switch can be absorbed by the refrigerator at the cooling station whose temperature is much higher than the superconducting temperature of the superconducting magnet. Is small, and even when the superconducting switch is OFF, the temperature of the superconducting magnet cooled in the cooling station having a low temperature does not rise, and the superconducting state of the superconducting magnet can be stably maintained.

また、スイッチ用超電導磁石で超電導体の超電導状態
が壊れる磁場を発生させることによって、超電導スイッ
チをOFFに操作できる。この時、スイッチ用超電導磁石
の熱負荷は、超電導磁石の超電導発生温度より高い冷却
ステーションで冷却できるので、超電導磁石に結合した
より温度の低い冷却ステーションの熱負荷は小さくな
り、超電導スイッチOFF時に超電導磁石の温度が上昇せ
ず、超電導磁石の超電導状態を保持することができる。
In addition, the superconducting switch can be turned off by generating a magnetic field that breaks the superconducting state of the superconductor with the switching superconducting magnet. At this time, the heat load of the superconducting magnet for the switch can be cooled at the cooling station higher than the superconducting temperature of the superconducting magnet, so the heat load of the cooling station with a lower temperature coupled to the superconducting magnet becomes smaller, and the superconducting switch is turned off when the superconducting switch is turned off. The superconducting state of the superconducting magnet can be maintained without the temperature of the magnet increasing.

図面の簡単な説明 第1図は本発明の一実施例の超電導磁石システムの構
造を説明する断面図であり、第2図は本発明の一実施例
に適用される冷凍機を説明する図であり、第3図は本発
明の他の実施例の超電導磁石システムの構造を説明する
断面図であり、第4図は本発明の他の実施例の超電導磁
石システムの構造を説明する断面図であり、第5図は本
発明の他の実施例の超電導磁石システムの構造を説明す
る断面図であり、第6図は本発明の他の実施例の超電導
磁石システムの構造を説明する断面図であり、第7図は
本発明の他の実施例の超電導磁石システムの構造を説明
する断面図である。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a cross-sectional view illustrating the structure of a superconducting magnet system according to one embodiment of the present invention, and FIG. 2 is a diagram illustrating a refrigerator applied to one embodiment of the present invention. FIG. 3 is a cross-sectional view illustrating the structure of a superconducting magnet system according to another embodiment of the present invention, and FIG. 4 is a cross-sectional view illustrating the structure of a superconducting magnet system according to another embodiment of the present invention. FIG. 5 is a cross-sectional view illustrating the structure of a superconducting magnet system according to another embodiment of the present invention, and FIG. 6 is a cross-sectional view illustrating the structure of a superconducting magnet system according to another embodiment of the present invention. FIG. 7 is a sectional view for explaining the structure of a superconducting magnet system according to another embodiment of the present invention.

発明を実施するための最良の形態 以下、本発明の一実施例を第1図により説明する。第
1図は真空断熱管の長手直角方向の縦断面図である。超
電導磁石1はボビン2に固定され真空槽3内に配置され
常温空間(外部)と真空断熱されている。冷凍機4は例
えばギフォード・マクマホン式膨張機(以下,GM膨張機
と称す)で構成し、圧縮機5から高圧ガスヘリウムを配
管6を通じて供給され冷凍機4内で膨張し第1段ヒート
ステーション8で温度約50K、第2段ヒートステーショ
ン9で温度約5Kの寒冷を発生する。膨張後の低圧ガスヘ
リウムは配管7を通じて圧縮機5に戻る。ボビン2は第
2段ヒートステーション9と例えば銅製の伝熱体10と熱
的に結合されており超電導磁石1はさらにボビン2、銅
製の伝熱体10を介して熱的に結合され、超電導発生温度
以下に第2段ヒートステーション9で冷却される。
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of the present invention will be described below with reference to FIG. FIG. 1 is a longitudinal sectional view of a vacuum heat insulating tube in a direction perpendicular to the longitudinal direction. The superconducting magnet 1 is fixed to the bobbin 2 and arranged in the vacuum chamber 3 and is insulated from the room temperature (outside) by vacuum. The refrigerator 4 is constituted by, for example, a Gifford-McMahon type expander (hereinafter, referred to as a GM expander). High-pressure gas helium is supplied from a compressor 5 through a pipe 6, expanded in the refrigerator 4 and expanded in the refrigerator 4. And the second stage heat station 9 generates a cold of about 5K. The low-pressure gas helium after expansion returns to the compressor 5 through the pipe 7. The bobbin 2 is thermally coupled to the second-stage heat station 9 and, for example, a copper heat conductor 10, and the superconducting magnet 1 is further thermally coupled via the bobbin 2 and the copper heat conductor 10 to generate superconductivity. It is cooled in the second stage heat station 9 below the temperature.

超電導磁石1は常温空間にある外部電源11と一対の銅
製の母線12と接続されている。母線12は真空槽3のフラ
ンジ13に電気絶縁材14を介して固定された端子15と結合
される。真空槽内では例えば銅製の母線16の一端を端子
15と結合し他端を、第1段ヒートステーション8で冷却
される銅製の伝熱体17に電気絶縁材18を介して固定され
た母線19と結合される。母線19の他端は、銅製の伝熱体
20に電気絶縁材21を介して熱的に結合され、第2段ヒー
トステーション9で冷却される。母線19と超電導磁石1
とは超電導磁石を構成する超電導材製の母線22で接続す
る。
The superconducting magnet 1 is connected to an external power supply 11 and a pair of copper buses 12 located in a room temperature space. The busbar 12 is connected to a terminal 15 fixed to a flange 13 of the vacuum chamber 3 via an electrical insulating material 14. In a vacuum chamber, for example, connect one end of a copper busbar 16 to a terminal.
The other end is connected to a bus bar 19 fixed via an electrical insulating material 18 to a copper heat conductor 17 cooled in the first-stage heat station 8. The other end of bus 19 is a copper heat transfer element
It is thermally coupled to 20 via an electrical insulator 21 and is cooled in the second stage heat station 9. Bus 19 and superconducting magnet 1
Are connected by a bus bar 22 made of a superconducting material constituting a superconducting magnet.

超電導スイッチ26を構成するため、母線19間を母線19
と同じ材料で製作したU字型の超電導体23で連結し、第
1段ヒートステーション8で冷却される銅製の伝熱体17
に電気絶縁材24(電気的には絶縁体であるが、熱的には
伝熱体である)を介して固定された伝熱体25と結合され
る。超電導体23の一部は電気絶縁されたヒーター27と結
合され、ヒーター27はヒーター用外部電源28とリード線
29で接続されている。
To configure the superconducting switch 26, the bus 19 is
A copper heat conductor 17 connected by a U-shaped superconductor 23 made of the same material as above and cooled by the first-stage heat station 8
Is connected to a fixed heat transfer member 25 via an electrical insulating material 24 (electrically insulating but thermally conductive). A part of the superconductor 23 is connected to an electrically insulated heater 27, and the heater 27 is connected to an external power source 28 for the heater and a lead wire.
Connected at 29.

また、第1段ヒートステーション8で冷却される銅製
の熱シールド板3aを超電導磁石1、母線19、超電導体23
を取り囲むように設置し、これらの要素に常温の真空槽
壁からの輻射熱が侵入しないように断熱している。
Further, the copper heat shield plate 3a cooled in the first-stage heat station 8 is connected to the superconducting magnet 1, the busbar 19, and the superconductor 23.
And is insulated so that radiant heat from the vacuum chamber wall at room temperature does not enter these elements.

冷凍機1で超電導発生温度以下に冷却した超電導磁石
1を励磁する時は、外部電源11から母線12、端子15、母
線16、母線19及び、母線22を介して超電導磁石1に電流
が供給される。この時、超電導スイッチ26は「OFF」の
状態で、超電導スイッチ26のヒーター27は外部電源28か
ら電流の供給を受け超電導体23を加熱している状態にあ
る。このため、超電導体23の温度は超電導発生温度以上
に上昇し、超電導体は常電導状態に移行し電気抵抗が生
じる状態となる。したがって、この電気抵抗のため電流
は超電導体側にほとんど流れずに電気抵抗がゼロとなっ
ている超電導磁石1に流れ、所望の電流値まで所定の電
流上昇速度で供給する。
When exciting the superconducting magnet 1 cooled below the superconducting generation temperature by the refrigerator 1, an electric current is supplied from the external power supply 11 to the superconducting magnet 1 via the bus 12, the terminal 15, the bus 16, the bus 19 and the bus 22. You. At this time, the superconducting switch 26 is in the “OFF” state, and the heater 27 of the superconducting switch 26 is supplied with current from the external power supply 28 and is heating the superconductor 23. For this reason, the temperature of the superconductor 23 rises to a temperature higher than the superconducting occurrence temperature, and the superconductor shifts to a normal conduction state, and a state where electric resistance is generated. Therefore, current hardly flows to the superconductor side due to this electric resistance, flows to the superconducting magnet 1 whose electric resistance is zero, and is supplied at a predetermined current rising speed to a desired current value.

その後、超電導スイッチ26のヒーター27を切ると、超
電導体23は、電気絶縁材24、銅製の伝熱体17を介して冷
凍機の第1段ヒートステーション8で冷却されているの
で、超電導体23の温度は超電導発生温度以下になること
から超電導状態が回復する。これによって、超電導体23
の電気抵抗はゼロになり、超電導磁石1に流れる電流
は、同じく超電導状態にある母線19及び母線19間にある
電気抵抗ゼロの超電導体23により電気的に接続された閉
回路内を永久電流として保持される。
Thereafter, when the heater 27 of the superconducting switch 26 is turned off, the superconductor 23 is cooled in the first heat station 8 of the refrigerator via the electric insulating material 24 and the copper heat conductor 17. Is lower than the superconducting generation temperature, the superconducting state is restored. As a result, the superconductor 23
The electric current flowing through the superconducting magnet 1 becomes a permanent current in the closed circuit electrically connected by the bus 19 in the superconducting state and the superconductor 23 having zero electric resistance between the bus 19 as a permanent current. Will be retained.

本実施例に係る超電導磁石システムでは、超電導磁石
1を第2段ヒートステーション9で冷却し、超電導スイ
ッチ26の超電導体23を第1段ヒートステーション8で冷
却している。このため、超電導スイッチが「OFF」状態
のとき加熱されるヒータ27の熱負荷は、熱容量の大きな
第1段ヒートステーション8で吸収されるので、第2段
ヒートステーション9の温度上昇は小さく、超電導磁石
1の温度も極低温状態を維持できる。したがって、超電
導スイッチが「OFF」状態のときでも、超電導磁石1の
温度を超電導発生温度以下に安定に冷却でき超電導状態
を維持できる効果がある。
In the superconducting magnet system according to the present embodiment, the superconducting magnet 1 is cooled by the second heat station 9, and the superconductor 23 of the superconducting switch 26 is cooled by the first heat station 8. Therefore, the heat load of the heater 27 that is heated when the superconducting switch is in the “OFF” state is absorbed by the first-stage heat station 8 having a large heat capacity. The temperature of the magnet 1 can also be maintained at an extremely low temperature. Therefore, even when the superconducting switch is in the “OFF” state, there is an effect that the temperature of the superconducting magnet 1 can be stably cooled to the superconducting generation temperature or lower and the superconducting state can be maintained.

このように第2段ヒートステーション9の温度上昇を
抑えることができる理由を第2図を用いて説明する。
The reason why the temperature rise of the second-stage heat station 9 can be suppressed as described above will be described with reference to FIG.

第2図に機械式膨張機として代表的なギフォード・マ
クマフォン膨張機を示した。第1図と同一の符号は同一
の構成を示している。このギフォード・マクマフォン膨
張機4は第1の膨張室41及び第2の膨張室92の膨張室を
有し、これら膨張室はシリーズ2段構成となっている。
温度レベルが高い第1の膨張室41の容積は温度レベルが
低い第2の膨張室92よりも大きい。常温の圧縮機5から
供給される常温高圧の作動流体、例えば、ヘリウムガス
は、所定周期で上下に移動する第1ディスプレーサ42に
内蔵した第1蓄冷材43内を第1膨張室41に向かって流
れ、蓄冷材の冷熱で冷却される。第1蓄冷材43として
は、例えば、銅の金網にて構成する。第1膨張室43に流
入した低温高圧のヘリウムガスの一部は、さらに、上下
に移動する第2ディスプレーサ95に内蔵した第2蓄冷材
96内を第2膨張室92に向かって流れ、蓄冷材96の冷熱で
冷却される。第2蓄冷材96としては、例えば、鉛やエリ
ビュウム・ニッケル等の球形粒子を充填したものにて構
成する。第1及び第2ディスプレーサ42・95が上端部に
移動し、膨張容積がもっとも大きくなった時点で高圧ヘ
リウムガスの供給を止め、両膨張室内を圧縮機の低圧流
路に解放して、これら膨張室内の高圧ヘリウムガスを一
気に膨張させる。この時、ヘリウムガスは寒冷を発生
し、膨張室に接続された第1ヒートステージ8及び第2
ヒートステージ9を冷却し、低温低圧のヘリウムガスは
蓄熱材43及び96を冷却しながら加温されほぼ常温となっ
て圧縮機5の低圧回路に流入する。この時、両ディスプ
レーサは下端部まで移動し膨張室容積をもっとも小さく
して膨張室内の低圧ヘリウムガスを排出して1サイクル
を終了する。このようにこのギフォード・マクマフォン
膨張機4は独立した二つの膨張機によって構成されてい
るといえる。
FIG. 2 shows a typical Gifford McMahon expander as a mechanical expander. The same reference numerals as those in FIG. 1 indicate the same components. The Gifford-McMaphon expander 4 has expansion chambers of a first expansion chamber 41 and a second expansion chamber 92, and these expansion chambers have a two-stage series configuration.
The volume of the first expansion chamber 41 having a higher temperature level is larger than that of the second expansion chamber 92 having a lower temperature level. A normal-temperature and high-pressure working fluid, for example, helium gas, supplied from the normal-temperature compressor 5 flows toward the first expansion chamber 41 through a first cold storage material 43 incorporated in a first displacer 42 that moves up and down at a predetermined cycle. It is cooled by the cold heat of the cold storage material. The first cold storage material 43 is made of, for example, a copper wire mesh. Part of the low-temperature and high-pressure helium gas flowing into the first expansion chamber 43 is further supplied to a second cold storage material built in a second displacer 95 that moves up and down.
The gas flows through the inside of the tube 96 toward the second expansion chamber 92, and is cooled by the cold heat of the cold storage material 96. The second regenerative material 96 is made of, for example, a material filled with spherical particles such as lead and erbium / nickel. When the first and second displacers 42 and 95 move to the upper end and the expansion volume becomes the largest, the supply of high-pressure helium gas is stopped, and both expansion chambers are released to the low-pressure flow path of the compressor. The high-pressure helium gas in the room is expanded at a stretch. At this time, the helium gas generates cold, and the first heat stage 8 and the second heat stage 8 connected to the expansion chamber.
The heat stage 9 is cooled, and the low-temperature and low-pressure helium gas is heated while cooling the heat storage materials 43 and 96, becomes almost normal temperature, and flows into the low-pressure circuit of the compressor 5. At this time, both displacers move to the lower end to minimize the expansion chamber volume and discharge the low-pressure helium gas in the expansion chamber to complete one cycle. Thus, it can be said that the Gifford-McMafon expander 4 is constituted by two independent expanders.

各膨張室での寒冷発生量は膨張前後のヘリウムガスの
圧力差と膨張室容積でほぼ決定されるため、膨張容積の
大きい第1膨張室41における寒冷発生量は第2膨張室に
おける寒冷発生量より5倍から10倍大きくなる。このた
め、所定の熱量(この場合ヒーター27の発生熱量及び超
電導体23が発生した熱量の和)を第1ヒートステージ8
で冷却する場合の第2ヒートステージ9の温度上昇は、
同じ熱量を第2ヒートステージ9で冷却する場合の第2
ヒートステージ9の温度上昇に比べて低くすることがで
きる。
Since the amount of cold generated in each expansion chamber is substantially determined by the pressure difference between the helium gas before and after expansion and the volume of the expansion chamber, the amount of cold generated in the first expansion chamber 41 having a large expansion volume is the amount of cold generated in the second expansion chamber. 5 to 10 times larger. For this reason, a predetermined amount of heat (in this case, the sum of the amount of heat generated by the heater 27 and the amount of heat generated by the superconductor 23) is applied to the first heat stage 8
The temperature rise of the second heat stage 9 when cooling at
The second case in which the same amount of heat is cooled by the second heat stage 9
The temperature can be reduced as compared with the temperature rise of the heat stage 9.

以上本実施例によれば、構成上二つの膨張機からなる
ギフォード・マクマフォン膨張機4の高温側4(第1ヒ
ートステージ8)で超電導スイッチ26を冷却するように
構成したので、低温側(第2ヒートステージ9)に熱的
に接続されている超電導磁石のクエンチを防止すること
ができる。
As described above, according to this embodiment, the superconducting switch 26 is cooled on the high-temperature side 4 (first heat stage 8) of the Gifford-McMaphon expander 4 composed of two expanders. 2 Quenching of the superconducting magnet thermally connected to the heat stage 9) can be prevented.

ちなみに、超電導スイッチ26の超電導体23が高温側で
超伝導状態を示す理由は、この超電導体23がビスマス系
の高温超電導体で構成したためである。
Incidentally, the reason that the superconductor 23 of the superconducting switch 26 shows a superconducting state on the high temperature side is that the superconductor 23 is made of a bismuth-based high-temperature superconductor.

なお、本実施例では伝熱体17を銅で製作したが銅より
も熱電導率が小さい真ちゅう製でもよく、ヒータ27の小
さい熱負荷で伝熱体17の温度が超電導発生温度よりも高
くなるように、電気絶縁材24、伝熱体17の材質、形状を
決定すればよい。
In the present embodiment, the heat transfer body 17 is made of copper, but may be made of brass having a lower thermal conductivity than copper, and the temperature of the heat transfer body 17 becomes higher than the superconducting occurrence temperature with a small heat load of the heater 27. Thus, the materials and shapes of the electric insulating material 24 and the heat transfer body 17 may be determined.

このように構成された超電導磁石は、核磁気共鳴装置
に利用される他、以下に略説するような水の中からアオ
コや赤潮の元となるプランクトンなどを分離する磁気分
離フィルタにも利用される。真空槽3の内側の室温ボア
ー3b内に超電導磁石1が作る磁場空間を利用して、室温
ボアー3b内側に流路3cを設け、この流路内に磁性材で作
られた金網等の磁性フィルタ3dを配置する。このように
すると、磁性フィルタ3dの表面には超電導磁石1が作る
磁場により、大きな磁気勾配が生じ流路内を流れる流体
に混在した磁性粒子を捕捉し流体を浄化できる。このよ
うな流体としては、例えば、磁性粒子と不純物を凝縮剤
等で一体化したフロックを含む汚水、個体磁性物を含む
工業用排水、磁性鉱物を含む水流、磁性粒子を含む気体
等がある。
The superconducting magnet configured as described above is used for a nuclear magnetic resonance apparatus, and also for a magnetic separation filter for separating plankton, which is a source of red water and red tide, from water as outlined below. . Utilizing the magnetic field space created by the superconducting magnet 1 in the room temperature bore 3b inside the vacuum chamber 3, a flow path 3c is provided inside the room temperature bore 3b, and a magnetic filter such as a wire mesh made of a magnetic material is formed in the flow path. Place 3d. In this way, a large magnetic gradient is generated by the magnetic field generated by the superconducting magnet 1 on the surface of the magnetic filter 3d, so that magnetic particles mixed in the fluid flowing in the flow path can be captured and the fluid can be purified. Such fluids include, for example, sewage containing flocs in which magnetic particles and impurities are integrated with a condensing agent or the like, industrial wastewater containing solid magnetic substances, water flow containing magnetic minerals, gas containing magnetic particles, and the like.

したがって、本電導冷却型超電導磁石システムでは、
永久電流維持モードで運転される伝導冷却型超電導磁石
で使用し得る安定な超電導スイッチを有した伝導冷却型
超電導磁石システムを提供できる。
Therefore, in this conductive cooling type superconducting magnet system,
It is possible to provide a conduction-cooled superconducting magnet system having a stable superconducting switch that can be used in a conduction-cooled superconducting magnet operated in a persistent current maintaining mode.

第3図は本発明になる他の実施例を示すもので、第1
図に示した実施例と異なる点は、第1図において超電導
スイッチ26を構成する要素であるU字型の超電導体23を
ほぼ直線型の超電導体30で構成した点にある。超電導体
23は電気絶縁材27a、熱移動制御体27c、およびヒーター
27bを介して伝熱体17に固定されている。超電導体23
を、例えば、ビスマス系の高温超電導体で構成する場
合、導体が非常に脆いのでU字型に加工すると内部に亀
裂等が発生し安定に超電導状態を維持できない。したが
って、本実施例のように超電導体23を直線型に構成する
ことにより信頼性が高い超電導スイッチを有した伝導冷
却型超電導磁石システムを提供することができる。
FIG. 3 shows another embodiment according to the present invention.
The difference from the embodiment shown in the figure is that the U-shaped superconductor 23 constituting the superconducting switch 26 in FIG. 1 is constituted by a substantially linear superconductor 30. Superconductor
23 is an electric insulating material 27a, a heat transfer control body 27c, and a heater
It is fixed to the heat transfer body 17 via 27b. Superconductor 23
For example, when the conductor is made of a bismuth-based high-temperature superconductor, since the conductor is very brittle, if it is processed into a U-shape, cracks and the like are generated inside, and the superconducting state cannot be stably maintained. Therefore, by forming the superconductor 23 in a linear shape as in this embodiment, a conduction-cooled superconducting magnet system having a highly reliable superconducting switch can be provided.

第4図は本発明になる他の実施例を示すもので、第1
図に示した実施例と異なる点は、膨張機を2台使用して
超電導磁石1と超電導スイッチ26の構成要素の超電導体
23を別々に冷却するようにした所にある。超電導磁石1
を第1の膨張機4aの第2段ヒートステーション9a(最も
低温)で超電導発生温度以下に冷却する。
FIG. 4 shows another embodiment of the present invention.
The difference from the embodiment shown in the figure is that the superconducting magnet 1 and the superconducting switch of the superconducting switch 26 are formed by using two expanders.
23 is to be cooled separately. Superconducting magnet 1
Is cooled to the superconducting generation temperature or lower in the second stage heat station 9a (lowest temperature) of the first expander 4a.

銅製の伝熱体17、電気絶縁材18、母線19の端部、超電
導体23、電気絶縁材24、伝熱体25、電気絶縁材26、ヒー
ター27と銅製の熱シールド板30を膨張機4bの第1段ヒー
トステーション8b(最も高温)で冷却し、母線19の他
端、銅製の伝熱体20、電気絶縁材21、母線22の端部(こ
れらは第1段ヒートステーション8bの温度で超電導状態
を示す超電導体で形成する)を第2段ヒートステーショ
ン9b(第2段ヒートステーション9aとほぼ同温)で冷却
する。
Copper heat transfer member 17, electrical insulating material 18, end of busbar 19, superconductor 23, electric insulating material 24, heat transfer material 25, electric insulating material 26, heater 27 and copper heat shield plate 30 expander 4b At the first stage heat station 8b (highest temperature), the other end of the bus 19, the copper heat conductor 20, the electrical insulating material 21, and the end of the bus 22 (these are at the temperature of the first stage heat station 8b). The superconductor formed of a superconducting state is cooled in the second heat station 9b (at substantially the same temperature as the second heat station 9a).

本実施例によれば、第1図に示した実施例と比べて、
超電導スイッチ26を超電導磁石1とは熱的に完全に独立
した二つの冷却装置(膨張機4a,4b)により個別に冷却
することができるので、超電導磁石1への電流リード線
を通る伝導伝熱による侵入熱を膨張機4bで冷却でき、超
電導スイッチが「OFF」状態のときでも、膨張機4aで冷
却する超電導磁石1の温度を超電導発生温度以下に安定
に冷却して超電導状態を安定に維持できる効果がある。
According to the present embodiment, compared to the embodiment shown in FIG.
Since the superconducting switch 26 can be individually cooled by two cooling devices (expanders 4a, 4b) that are thermally completely independent of the superconducting magnet 1, conduction heat conduction through the current lead wire to the superconducting magnet 1 Heat can be cooled by the expander 4b, and even when the superconducting switch is in the "OFF" state, the temperature of the superconducting magnet 1 cooled by the expander 4a is stably cooled below the superconducting generation temperature to maintain the superconducting state stably. There is an effect that can be done.

なお、本実施例では、膨張機4a、4bへのヘリウムガス
の供給は圧縮機5から行うが、別々に圧縮機を配置して
も同様な効果があり、圧縮機を別々の圧縮機を配置する
ことにより、膨張機4bの熱負荷変動の影響によるヘリウ
ムガス圧力の影響を膨張機4aが受けなくなるので、膨張
機4aで冷却する超電導磁石1の温度を超電導発生温度以
下にさらに安定に冷却して超電導状態を安定に維持でき
る効果がある。
In the present embodiment, the supply of helium gas to the expanders 4a and 4b is performed from the compressor 5, but the same effect can be obtained even if a separate compressor is provided. By doing so, the expander 4a is not affected by the helium gas pressure due to the influence of the thermal load fluctuation of the expander 4b, so that the temperature of the superconducting magnet 1 cooled by the expander 4a is more stably cooled to the superconducting generation temperature or lower. Therefore, the superconducting state can be stably maintained.

第5図は本発明になる他の実施例を示すもので、第4
図に示した実施例と異なる点は、膨張機を2台使用して
超電導磁石1と超電導スイッチ26の構成要素の超電導体
23を別々に冷却する様にした点である。これにより、超
電導スイッチ26内の超電導体23の超電導発生温度を超電
導磁石1の超電導発生温度より高く、かつ母線19の超電
導発生温度より低くなるようにした。例えば、超電導磁
石1をニオブ・チタン系(4Kで超電導状態)の超電導導
体で製作し、母線19をビスマス系(80Kで超電導状態)
の高温超電導導体で製作し、超電導スイッチ26内の超電
導体23をニオブ・スズ系(20Kで超電導状態)超電導導
体で製作する。
FIG. 5 shows another embodiment of the present invention.
The difference from the embodiment shown in the figure is that the superconducting magnet 1 and the superconducting switch of the superconducting switch 26 are formed by using two expanders.
23 is to be cooled separately. As a result, the superconducting temperature of the superconductor 23 in the superconducting switch 26 is set higher than the superconducting temperature of the superconducting magnet 1 and lower than the superconducting temperature of the bus 19. For example, the superconducting magnet 1 is made of a niobium-titanium-based superconducting conductor (superconducting state at 4K), and the bus 19 is a bismuth-based (superconducting state at 80K).
The superconductor 23 in the superconducting switch 26 is made of a niobium-tin (20K superconducting state) superconductor.

最も低温を発生する第1の膨張機4aの第2段ヒートス
テーション9aで超電導磁石1を超電導発生温度以下に冷
却する。第4図で示した超電導スイッチのヒーター用外
部電源28とリード線29、および圧縮機5、配管6、7は
図示していない。第2段ヒートステーション9aの次に低
温を発生する第2の膨張機4bの第2段ヒートステーショ
ン9bで超電導スイッチ26を冷却し、最も高温を発生する
第2の膨張機4bの第1段ヒートステーション8bで銅製の
熱シールド板30を冷却する。第1の膨張機4aの第1段ヒ
ートステーション8aで銅製の伝熱体17、電気絶縁材18、
母線19の端部、銅製の熱シールド板30を冷却し、母線19
の他端、銅製の伝熱体20、電気絶縁材21、母線22aの端
部を第2段ヒートステーション9aで冷却する。母線22b
と超電導スイッチ26内の超電導体23は同材質の超電導導
体で製作し、これらは第1段ヒートステーション9bの温
度で超電導状態になる超電導体で形成される。
The superconducting magnet 1 is cooled below the superconducting generation temperature in the second stage heat station 9a of the first expander 4a that generates the lowest temperature. The external power supply 28 and lead wire 29 for the heater of the superconducting switch shown in FIG. 4, the compressor 5, and the pipes 6, 7 are not shown. The superconducting switch 26 is cooled in the second stage heat station 9b of the second expander 4b that generates the low temperature next to the second stage heat station 9a, and the first stage heat of the second expander 4b that generates the highest temperature is generated. The heat shield plate 30 made of copper is cooled in the station 8b. In the first stage heat station 8a of the first expander 4a, a copper heat conductor 17, an electrical insulating material 18,
The end of the bus 19, the copper heat shield plate 30 is cooled, and the bus 19
, The copper heat transfer body 20, the electrical insulating material 21, and the end of the bus bar 22a are cooled by the second-stage heat station 9a. Bus bar 22b
The superconductor 23 in the superconducting switch 26 is made of a superconductor of the same material, and these are formed of superconductors that become superconductive at the temperature of the first-stage heat station 9b.

本実施例によれば、超電導スイッチが「OFF」状態の
とき加熱されるヒータ27の熱負荷は、第2冷凍機4bの第
2段ヒートステーション9bで吸収されるので、第1冷凍
機4aへの影響は少なく、第1冷凍機4aの第2段ヒートス
テーション9aの温度上昇は小さく、超電導磁石1の温度
も極低温状態を維持できる。したがって、超電導スイッ
チが「OFF」状態のときでも、超電導磁石1の温度を超
電導発生温度以下に安定に冷却でき超電導状態を維持で
きる効果がある。また、第2のヒートステーション9bは
温度4Kまで冷却する必要がないので(超電導スイッチ26
の超電導体23及び母線22をニオブ・スズ系で構成)冷凍
機を安価にすることができる。
According to the present embodiment, since the heat load of the heater 27 that is heated when the superconducting switch is in the “OFF” state is absorbed by the second-stage heat station 9b of the second refrigerator 4b, the heat load is supplied to the first refrigerator 4a. , The temperature rise of the second-stage heat station 9a of the first refrigerator 4a is small, and the temperature of the superconducting magnet 1 can be maintained at an extremely low temperature. Therefore, even when the superconducting switch is in the “OFF” state, there is an effect that the temperature of the superconducting magnet 1 can be stably cooled to the superconducting generation temperature or lower and the superconducting state can be maintained. Also, since the second heat station 9b does not need to be cooled to a temperature of 4K (the superconducting switch 26
The superconductor 23 and the bus bar 22 are made of a niobium-tin system.

第6図は本発明になる他の実施例を示すもので、第5
図に示す実施例と異なる点は、膨張機を2台使用して超
電導磁石1と超電導スイッチ26の構成要素の超電導体23
を別々に冷却する様にし、超電導体23と母線19、母線22
をビスマス系の高温超電導導体で製作し、超電導体23を
第2の膨張機4bの第1段ヒートステーション8bで冷却す
るようにした点である。
FIG. 6 shows another embodiment of the present invention.
The difference from the embodiment shown in the figure is that the superconducting magnet 23 and the superconducting element 23 of the superconducting switch 26 are formed by using two expanders.
Are cooled separately, and the superconductor 23, the bus 19, and the bus 22
Is made of a bismuth-based high-temperature superconductor and the superconductor 23 is cooled by the first-stage heat station 8b of the second expander 4b.

また、同じ第1段ヒートステーション8bで銅製の熱シ
ールド板30を冷却する。第2膨張機は第1段ヒートステ
ーション8bのみで第2段ヒートステーションを有しな
い。
Further, the heat shield plate 30 made of copper is cooled by the same first-stage heat station 8b. The second expander has only the first heat station 8b and does not have the second heat station.

本実施例によれば、超電導スイッチ26が「OFF」状態
のとき加熱されるヒータ27の熱負荷は、第2冷凍機4bの
第1段ヒートステーション8bで吸収されるので、第1冷
凍機4aへの影響は少なく、最も低温を発生する第1冷凍
機4aの第2段ヒートステーション9aの温度上昇は小さ
く、熱伝導体10a及び熱伝導板10bを介して冷却される超
電導磁石1の温度も極低温状態を維持できる。したがっ
て、超電導スイッチ26が「OFF」状態のときでも、超電
導磁石1の温度を超電導発生温度以下に安定に冷却でき
超電導状態を維持できる効果がある。また、第2膨張機
4bは第1段ヒートステーション8bのみで第2段ヒートス
テーションが無いので、第2膨張機4bの圧縮機は処理流
量が少なくて済み、圧縮機を駆動する電力を小さくでき
る効果がある。
According to the present embodiment, the heat load of the heater 27 that is heated when the superconducting switch 26 is in the “OFF” state is absorbed by the first-stage heat station 8b of the second refrigerator 4b, so that the first refrigerator 4a The temperature rise of the second heat station 9a of the first refrigerator 4a that generates the lowest temperature is small, and the temperature of the superconducting magnet 1 cooled through the heat conductor 10a and the heat conduction plate 10b is also small. Extremely low temperature can be maintained. Therefore, even when the superconducting switch 26 is in the "OFF" state, the temperature of the superconducting magnet 1 can be stably cooled to the superconducting generation temperature or lower, and the superconducting state can be maintained. Also, the second expander
4b has only the first-stage heat station 8b and no second-stage heat station. Therefore, the compressor of the second expander 4b has a small processing flow rate, and has the effect of reducing the electric power for driving the compressor.

第7図は本発明になる他の実施例を示すもので、第2
図に示した実施例とと異なる点は、超電導スイッチの構
成要素である超電導体23の超電導状態を壊す手段とし
て、ヒーター27の代わりに、超電導体23と同材質の小型
の超電導コイル31を使用する点にある。超電導コイル31
はエポキシ系樹脂32等でモールドされ熱移動制御体27c
を介して伝熱体17に固定され、超電導コイル31は第1段
ヒートステーション8で冷却され常に超電導状態を維持
できる。また、スイッチ用の超電導コイル31は外部電源
33と母線34で接続されている。
FIG. 7 shows another embodiment of the present invention.
The difference from the embodiment shown in the figure is that a small superconducting coil 31 of the same material as the superconductor 23 is used instead of the heater 27 as a means for breaking the superconducting state of the superconductor 23 which is a component of the superconducting switch. Is to do. Superconducting coil 31
Is molded with epoxy resin 32 etc. and heat transfer controller 27c
The superconducting coil 31 is fixed at the first stage heat station 8 and can always maintain the superconducting state. The superconducting coil 31 for the switch is connected to an external power supply.
33 and a bus 34.

超電導スイッチを「OFF」状態とするとき、超電導コ
イル31に外部電源33から給電されると、超電導体23を直
角に横切る磁場が発生し、磁場内にある超電導体23の超
電導状態が壊れ常電導状態となって電気抵抗が生じる。
この場合、この電気抵抗により熱は発生するが、ヒータ
による熱負荷は生じないので、冷凍機4の第1段ヒート
ステーション8の温度変動はさらに少なくなる。このた
め、第2段ヒートステーション9の温度上昇もさらに小
さく、超電導磁石1の温度も極低温状態を維持するで
き、クエンチを防止することができる。したがって、超
電導スイッチが「OFF」状態のときでも、超電導磁石1
の温度を超電導発生温度以下に安定に冷却でき超電導状
態を維持できる効果がある。超電導スイッチが「ON」時
は、外部電源33からの給電止め、超電導コイル31で発生
する磁場を無くす。超電導体23を直角に横切る磁場が無
くなることによって、超電導体23は再び超電導状態とな
り、永久電流が流れる。
When the superconducting switch is turned off, when the superconducting coil 31 is supplied with power from the external power supply 33, a magnetic field crossing the superconducting conductor 23 at right angles is generated, and the superconducting state of the superconducting conductor 23 in the magnetic field is broken and the normal conducting State and electrical resistance occurs.
In this case, heat is generated by the electric resistance, but no heat load is generated by the heater, so that the temperature fluctuation of the first-stage heat station 8 of the refrigerator 4 is further reduced. For this reason, the temperature rise of the second-stage heat station 9 is further reduced, and the temperature of the superconducting magnet 1 can be maintained at an extremely low temperature, so that quenching can be prevented. Therefore, even when the superconducting switch is in the “OFF” state, the superconducting magnet 1
Is stably cooled to a temperature lower than the superconducting generation temperature, and the superconducting state can be maintained. When the superconducting switch is “ON”, the power supply from the external power supply 33 is stopped, and the magnetic field generated in the superconducting coil 31 is eliminated. By eliminating the magnetic field crossing the superconductor 23 at right angles, the superconductor 23 is again in a superconducting state, and a permanent current flows.

なお、以上説明した実施例では、機械式膨張機の一例
として、ギフォード・マクマフォン式を代表して説明し
たが、本発明はこれに限らず低温側と高温側が異なる冷
凍機で構成されたものであれば、例えば、ソルベ式、ス
ターリング式、パルス管式であっても適用することがで
きる。
In the above-described embodiment, as an example of the mechanical expander, the Gifford McMahon type was described as a representative, but the present invention is not limited to this, and is configured by a refrigerator having different low-temperature side and high-temperature side. If so, for example, the present invention can be applied to a sorbet type, a Stirling type, and a pulse tube type.

また、上記説明した実施例では、超電導磁石および超
電導スイッチを冷凍機で冷却する場合で説明したが、超
電導磁石を温度4.2Kの液体ヘリウムで冷却し、超電導ス
イッチを温度77.4Kの液体窒素、すなわち温度レベルが
異なる複数の寒剤で冷却する場合においても、超電導ス
イッチの開閉時に、温度が低い側の寒剤、すなわち潜熱
が小さい方の寒剤の消費量を低減でき、超電導磁石を安
定に冷却できる効果がある。
Further, in the embodiment described above, the case where the superconducting magnet and the superconducting switch are cooled by a refrigerator is described, but the superconducting magnet is cooled with liquid helium at a temperature of 4.2 K, and the superconducting switch is cooled with liquid nitrogen at a temperature of 77.4 K, that is, Even when cooling with a plurality of cryogens having different temperature levels, when opening and closing the superconducting switch, it is possible to reduce the consumption of the cryogen on the lower temperature side, that is, the cryogen with the smaller latent heat, and has the effect of stably cooling the superconducting magnet. is there.

本発明によれば、超電導スイッチは超電導発生温度が
超電導磁石の超電導発生温度より高い冷却ステーション
で冷却できるので、超電導磁石に結合したより温度の低
い冷却ステーションの熱負荷は小さくなり、超電導スイ
ッチOFF時に超電導磁石の温度が上昇せず、超電導磁石
の超電導状態を保持することができる。
According to the present invention, since the superconducting switch can be cooled at the cooling station where the superconducting generation temperature is higher than the superconducting generation temperature of the superconducting magnet, the heat load of the lower temperature cooling station coupled to the superconducting magnet is reduced, and when the superconducting switch is turned off. The temperature of the superconducting magnet does not rise, and the superconducting magnet can maintain the superconducting state.

また、スイッチ用超電導磁石で超電導体の超電導状態
で壊れる磁場を発生させることによって、超電導スイッ
チをOFFに操作できる。この時、スイッチ用超電導磁石
の熱負荷は、超電導磁石の超電導発生温度より高い冷却
ステーションで冷却できるので、超電導磁石に結合した
より温度の低い冷却ステーションの熱負荷は小さくな
り、超電導スイッチOFF時に超電導磁石の温度が上昇せ
ず、超電導磁石の超電導状態を保持することができる。
In addition, the superconducting switch can be turned off by generating a magnetic field that is broken in the superconducting state of the superconductor by the switching superconducting magnet. At this time, the heat load of the superconducting magnet for the switch can be cooled at the cooling station higher than the superconducting temperature of the superconducting magnet, so the heat load of the cooling station with a lower temperature coupled to the superconducting magnet becomes smaller, and the superconducting switch is turned off when the superconducting switch is turned off. The superconducting state of the superconducting magnet can be maintained without the temperature of the magnet increasing.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭61−214588(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01F 6/04 ZAA ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-61-214588 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01F 6/04 ZAA

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】超電導磁石と、この超電導磁石に接続され
電流を供給する電源と、前記超電導磁石に並列接続され
た超電導スイッチと、前記超電導磁石と前記超電導スイ
ッチとを冷却する冷却手段とを備えた超電導磁石システ
ムにおいて、前記冷却手段は、前記超電導磁石と前記超
電導スイッチとを個別に冷却する手段であって、該個別
に冷却する手段は、複数温度レベルの冷却部位を有する
冷却手段であり、前記超電導磁石を冷却する冷却部位よ
りも、前記超電導スイッチを冷却する冷却部位の冷却温
度を高い冷却部位で冷却する超電導磁石システム。 ある超電導システム。
A superconducting magnet, a power supply connected to the superconducting magnet and supplying a current, a superconducting switch connected in parallel to the superconducting magnet, and cooling means for cooling the superconducting magnet and the superconducting switch. In the superconducting magnet system, the cooling unit is a unit for individually cooling the superconducting magnet and the superconducting switch, and the unit for individually cooling is a cooling unit having a cooling portion having a plurality of temperature levels, A superconducting magnet system that cools a cooling portion that cools the superconducting switch at a higher cooling temperature than a cooling portion that cools the superconducting magnet. Some superconducting systems.
【請求項2】請求項1において、前記超電導スイッチを
前記超電導磁石よりも高い温度で超電導状態になる物質
で生成した超電導磁石システム。
2. A superconducting magnet system according to claim 1, wherein said superconducting switch is made of a substance which becomes superconducting at a higher temperature than said superconducting magnet.
【請求項3】請求項1において、前記超電導スイッチに
用いられる超電導状態から常電導状態に移行させる手段
は、ヒーターである超電導磁石システム。
3. The superconducting magnet system according to claim 1, wherein the means for shifting the superconducting state used for the superconducting switch from the superconducting state to the normal conducting state is a heater.
【請求項4】請求項1において、前記超電導スイッチに
用いられる超電導状態から常電導状態に移行させる手段
は、磁界を発生させる手段である超電導磁石システム。
4. The superconducting magnet system according to claim 1, wherein the means for shifting the superconducting state used for the superconducting switch to the normal conducting state is a means for generating a magnetic field.
【請求項5】超電導磁石と、この超電導磁石に接続され
電流を供給する電源と、前記超電導磁石に並列接続され
た超電導スイッチと、前記超電導磁石と前記超電導スイ
ッチとを冷却する冷却手段とを備えた超電導磁石システ
ムにおいて、前記冷却手段は、複数温度レベルの冷却部
位を有するものであり、この冷却手段の冷却温度が最も
低い第2の冷却部位よりも冷却温度が高い第1の冷却部
位で超電導磁石に給電する母線の一部を冷却し、この第
1の冷却部位よりも温度が低い領域にある前記母線を前
記第1の冷却部位の温度で超電導状態を維持する超電導
体で形成し、前記超電導スイッチの導電体を前記第1の
冷却部位の温度で超電導状態を維持する超電導体で形成
し、この超電導スイッチを前記第2の冷却部位よりも温
度が高い部位にかつ前記母線間を短絡するように構成し
た超電導磁石システム。
5. A superconducting magnet, a power supply connected to the superconducting magnet and supplying a current, a superconducting switch connected in parallel to the superconducting magnet, and cooling means for cooling the superconducting magnet and the superconducting switch. In the superconducting magnet system described above, the cooling means has a plurality of cooling levels at a plurality of temperature levels, and the cooling means has a cooling temperature higher than that of the second cooling section having the lowest cooling temperature. A part of a bus for supplying power to the magnet is cooled, and the bus in a region having a lower temperature than the first cooling part is formed of a superconductor that maintains a superconducting state at the temperature of the first cooling part; The conductor of the superconducting switch is formed of a superconductor that maintains a superconducting state at the temperature of the first cooling portion, and the superconducting switch is placed in a portion having a higher temperature than the second cooling portion. Superconducting magnet system configured to short-circuit between the bus bars.
【請求項6】超電導磁石と、この超電導磁石に接続され
電流を供給する電源と、前記超電導磁石に並列接続され
た超電導スイッチと、前記超電導磁石と前記超電導スイ
ッチとを冷却する冷却手段とを備えた超電導磁石システ
ムにおいて、前記冷却手段は、複数温度レベルの冷却部
位を有するものであり、この冷却手段の冷却温度が最も
低い第2の冷却部位よりも冷却温度が高い第1の冷却部
位で超電導磁石に給電する母線の一部を冷却し、この第
1の冷却部位よりも温度が低い領域にある前記母線をこ
の第1の冷却部位の温度で超電導状態を維持できる超電
導体で形成し、前記超電導スイッチの導電体を前記第1
の冷却部位よりも温度が低くかつ前記第2の冷却部位よ
りも温度が高い第3の冷却部位の温度で超電導状態を維
持できる超電導体で形成し、前記超電導スイッチをこの
第3の冷却部位で冷却し、前記母線間を短絡するように
構成した超電導磁石システム。
6. A superconducting magnet, a power supply connected to the superconducting magnet and supplying a current, a superconducting switch connected in parallel to the superconducting magnet, and cooling means for cooling the superconducting magnet and the superconducting switch. In the superconducting magnet system described above, the cooling means has a plurality of cooling levels at a plurality of temperature levels, and the cooling means has a cooling temperature higher than that of the second cooling section having the lowest cooling temperature. A part of a bus for supplying power to the magnet is cooled, and the bus in a region having a lower temperature than the first cooling part is formed of a superconductor capable of maintaining a superconducting state at the temperature of the first cooling part; The conductor of the superconducting switch is
Formed of a superconductor capable of maintaining a superconducting state at the temperature of the third cooling portion having a lower temperature than the cooling portion and having a higher temperature than the second cooling portion, and the superconducting switch is formed by the third cooling portion. A superconducting magnet system configured to cool and short between said buses.
JP09512564A 1995-09-20 1995-09-20 Superconducting magnet system Expired - Lifetime JP3107228B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP1995/001876 WO1997011472A1 (en) 1995-09-20 1995-09-20 Superconducting magnet system

Publications (1)

Publication Number Publication Date
JP3107228B2 true JP3107228B2 (en) 2000-11-06

Family

ID=14126279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09512564A Expired - Lifetime JP3107228B2 (en) 1995-09-20 1995-09-20 Superconducting magnet system

Country Status (2)

Country Link
JP (1) JP3107228B2 (en)
WO (1) WO1997011472A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010283186A (en) * 2009-06-05 2010-12-16 Hitachi Ltd Refrigerator-cooled superconducting magnet
JP2011082229A (en) * 2009-10-05 2011-04-21 Hitachi Ltd Conduction-cooled superconducting magnet
KR101362772B1 (en) * 2012-02-06 2014-02-13 삼성전자주식회사 Cryocooler and superconducting magnet apparatus employing the same
US10107879B2 (en) 2012-12-17 2018-10-23 Koninklijke Philips N.V. Low-loss persistent current switch with heat transfer arrangement
JP6378039B2 (en) * 2014-10-23 2018-08-22 株式会社日立製作所 Superconducting magnet, MRI equipment, NMR equipment
GB2586821B (en) * 2019-09-04 2022-04-13 Siemens Healthcare Ltd Current leads for superconducting magnets
WO2024072382A1 (en) * 2022-09-28 2024-04-04 General Electric Renovables España, S.L. Field charging system for a superconducting magnet

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61214588A (en) * 1985-03-20 1986-09-24 Hitachi Ltd Superconducting apparatus

Also Published As

Publication number Publication date
WO1997011472A1 (en) 1997-03-27

Similar Documents

Publication Publication Date Title
US5848532A (en) Cooling system for superconducting magnet
CN100485990C (en) Superconducting device having a cryogenic system and a superconducting switch
CN101109583A (en) Cryogenically cooled equipment comprising current leads for electric equipment
JPH09312210A (en) Cooling device and cooling method
US9072198B2 (en) Variable impedance device with integrated refrigeration
CN100424906C (en) Superconducting device having cryosystem and superconducting switch
JP3107228B2 (en) Superconducting magnet system
US20090086386A1 (en) Fault current limiter
US7174737B2 (en) Refrigeration plant for parts of installation, which are to be chilled
US5563369A (en) Current lead
JPH10285792A (en) Current limiter
CN102985769A (en) Method and apparatus for electricity generation using electromagnetic induction including thermal transfer between vortex flux generator and refrigerator compartment
JP3450318B2 (en) Thermoelectric cooling type power lead
JPH10275719A (en) Method for cooling superconductor
JP3377350B2 (en) Thermoelectric cooling type power lead
JP3020140B2 (en) Permanent current switch device for refrigerator cooled superconducting magnet
JP2004111581A (en) Superconducting magnet unit
JPH10247753A (en) Superconducting device and control method thereof
US6286318B1 (en) Pulse tube refrigerator and current lead
JP3860070B2 (en) Thermoelectric cooling power lead
JP4019014B2 (en) Thermoelectric cooling power lead
JPH09106909A (en) Conductive cooling superconducting magnet
KR20170070521A (en) Conduction-cooled Heat Switch using High-temperature Superconductor Persistent Current Switch
KR19990037314A (en) Operation control method of superconducting coil
US5057645A (en) Low heat loss lead interface for cryogenic devices

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070908

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080908

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080908

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090908

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090908

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100908

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100908

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110908

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120908

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120908

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130908

Year of fee payment: 13

EXPY Cancellation because of completion of term