JP3104842B2 - Iron anchor hydride production equipment - Google Patents

Iron anchor hydride production equipment

Info

Publication number
JP3104842B2
JP3104842B2 JP07189135A JP18913595A JP3104842B2 JP 3104842 B2 JP3104842 B2 JP 3104842B2 JP 07189135 A JP07189135 A JP 07189135A JP 18913595 A JP18913595 A JP 18913595A JP 3104842 B2 JP3104842 B2 JP 3104842B2
Authority
JP
Japan
Prior art keywords
gas
fluidized bed
bed reactor
iron oxide
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP07189135A
Other languages
Japanese (ja)
Other versions
JPH0940414A (en
Inventor
英二 井上
義雄 内山
虎勝 宮下
純也 中谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Corp
Kawasaki Motors Ltd
Original Assignee
Mitsubishi Corp
Kawasaki Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Corp, Kawasaki Jukogyo KK filed Critical Mitsubishi Corp
Priority to JP07189135A priority Critical patent/JP3104842B2/en
Priority to IDP970020A priority patent/ID17483A/en
Publication of JPH0940414A publication Critical patent/JPH0940414A/en
Application granted granted Critical
Publication of JP3104842B2 publication Critical patent/JP3104842B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はアイアンカーバイドの製
造装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for manufacturing an eye anchor carbide.

【0002】[0002]

【従来の技術および発明が解決しようとする課題】鉄鉱
石から鋼を得る伝統的な方法は、コークス炉で製造され
たコークスおよびその他の副原料を鉄鉱石とともに高炉
に装入し、炭素の燃焼熱により溶銑を得、この溶銑を転
炉に装入して酸素吹錬を行うことにより溶銑中の炭素濃
度が一定以下の鋼を得るという方法である。
BACKGROUND OF THE INVENTION The traditional method of obtaining steel from iron ore is to charge coke and other adjuncts produced in a coke oven together with the iron ore into a blast furnace and burn carbon. In this method, hot metal is obtained by heat, and the hot metal is charged into a converter and subjected to oxygen blowing to obtain steel having a carbon concentration in the hot metal of a certain level or less.

【0003】しかしながら、高炉法は多数の付属設備を
必要とし、強粘結炭等高価な装入原料が必要であり、ま
た建設費が高く且つ広大な敷地が必要であるという欠点
を有するので、近年、高炉法に代わる製鉄技術が開発さ
れつつある。
[0003] However, the blast furnace method has the drawbacks that it requires a large number of auxiliary facilities, requires expensive charging materials such as strongly caking coal, requires high construction costs, and requires a large site. In recent years, ironmaking technology replacing the blast furnace method is being developed.

【0004】例えば、細粒状の酸化鉄を水素等の還元剤
とメタンガス等の炭化剤を用いて炭化鉄(アイアンカー
バイド)に変化させ、このアイアンカーバイドを電気炉
装入原料として所定の処理を施して鋼を得ることができ
る。アイアンカーバイドを得る設備としては流動層反応
炉が知られており、例えば、特表平6−501983号
公報には、図6に示すように、「細粒状の酸化鉄を入口
31から流動層反応炉32内に導入し、底面にある多数
のノズル33から吐出される高温高圧のガスによって酸
化鉄を浮遊・流動させつつ還元し、還元反応の進行とと
もに径小となった酸化鉄が邪魔板34、35、36、3
7によって形成された通路を順次進み、最終的に炭化鉄
となった状態で出口38から排出される構造のアイアン
カーバイド製造装置」が開示されている。(以下「従来
のアイアンカーバイド製造装置」という) ところで、酸化鉄が還元および炭化されてアイアンカー
バイド(Fe3 C)に変化する反応は、次式に従って進
行する。 Fe2 3 +3H2 →2Fe+3H2 O(FeO1.5+1.5H2 →Fe+1.5H2O) Fe3 4 +4H2 →3Fe+4H2 O (FeO1.3+1.3H2 →Fe+1.3H2O) FeO + H2 → Fe+ H2 O 3Fe +CH4 → Fe3 C+2H2 3Fe2 3 +5H2 +2CH4 →2Fe3 C+9H2 O 上記〜式に示すように、還元性ガス(H2)の使用量
は酸化鉄の還元程度(Fe2 3 →Fe3 4 →FeO
→Fe)によって異なっている。すなわち、効率的に還
元反応を進めるためには、酸化鉄が還元される程度に応
じてH2 の供給量を変更することが好ましい。しかし、
従来のアイアンカーバイド製造装置は、流動層反応炉が
1基であって、入口31近くには未還元のもの、出口3
8近くには還元の終了したものが存在するというよう
に、炉内には還元程度が大きく異なる酸化鉄が混在する
という状態であり、このように流動層反応炉が1基の場
合には、ある一定の(多めの)H2 供給量で還元反応を
行わざるをえない。
For example, fine iron oxide particles are converted into iron carbide (iron anchor carbide) using a reducing agent such as hydrogen and a carbonizing agent such as methane gas, and the eye anchor carbide is subjected to a predetermined treatment as a raw material to be charged into an electric furnace. Steel can be obtained. Fluidized bed reactors are known as equipment for obtaining iron anchor hydride. For example, Japanese Patent Publication No. Hei 6-501983 discloses that "fine-grained iron oxide is supplied from an inlet 31 to a fluidized bed reactor as shown in FIG. The iron oxide is introduced into the furnace 32, and reduced while floating and flowing the iron oxide by high-temperature and high-pressure gas discharged from a number of nozzles 33 provided on the bottom surface. , 35, 36, 3
7, which sequentially passes through the passage formed by the exhaust pipe 7 and is finally discharged from the outlet 38 in the state of iron carbide. (Hereinafter, referred to as a “conventional eye anchor carbide manufacturing apparatus”) Incidentally, the reaction in which iron oxide is reduced and carbonized to change into iron anchor carbide (Fe 3 C) proceeds according to the following equation. Fe 2 O 3 + 3H 2 → 2Fe + 3H 2 O (FeO 1.5 + 1.5H 2 → Fe + 1.5H 2 O) Fe 3 O 4 + 4H 2 → 3Fe + 4H 2 O (FeO 1.3 + 1.3H 2 → Fe + 1.3H 2 O) FeO + H 2 → Fe + H 2 O 3Fe + CH 4 → Fe 3 C + 2H 2 3Fe 2 O 3 + 5H 2 + 2CH 4 → 2Fe 3 C + 9H 2 O As shown in the above formulas, the amount of reducing gas (H 2 ) used is iron oxide. Degree of reduction (Fe 2 O 3 → Fe 3 O 4 → FeO
→ Fe). That is, in order to promote the reduction reaction efficiently, it is preferable to change the supply amount of H 2 according to the degree to which the iron oxide is reduced. But,
The conventional eye anchor hydride manufacturing apparatus has one fluidized bed reactor, and an unreduced one near the inlet 31 and an outlet 3
In a state where iron oxides having greatly reduced degrees of reduction are mixed in the furnace, as in the case where there is one whose reduction has been completed near 8, there is a state in which there is one fluidized bed reactor, The reduction reaction has to be performed at a certain (large) H 2 supply amount.

【0005】また、上記総括反応式に示すように、F
2 3 がFe3 Cに変化することによってその重量は
約3/4になり、さらに、浮遊・流動中において細粒状
酸化鉄が互いに擦れ合うことにより、その粒径は徐々に
小さくなる。このように、還元反応の進行に伴って流動
物質(粒状酸化鉄)の重さが徐々に軽くなることを考慮
すれば、流動層反応炉に供給する還元性ガスの流速は、
反応前半は比較的速く、反応後半は比較的遅くするのが
効率的に反応を進める上で好ましいといえる。
Further, as shown in the above general reaction equation, F
When e 2 O 3 changes to Fe 3 C, its weight becomes about /, and the particle diameter gradually decreases as fine-grained iron oxides rub against each other during floating and flowing. Thus, considering that the weight of the fluid material (granular iron oxide) gradually decreases with the progress of the reduction reaction, the flow rate of the reducing gas supplied to the fluidized bed reactor is
It is preferable to make the reaction relatively fast in the first half of the reaction and relatively slow in the second half of the reaction in order to efficiently promote the reaction.

【0006】(前半用の流速では後半の粒子は飛散量が
多く、歩留りが低下する。)しかし、従来のアイアンカ
ーバイド製造装置は流動層反応炉が1基であるため、H
2 供給量に関して説明したのと同様の理由で、ガス流速
はある一定値に設定せざるを得ない。
(At the flow rate for the first half, particles in the second half scatter a large amount and the yield is reduced.) However, since the conventional eye anchor hydride manufacturing apparatus has one fluidized bed reactor, H
2 For the same reason as described for the supply amount, the gas flow rate must be set to a certain value.

【0007】本発明は従来の技術の有するこのような問
題点に鑑みてなされたものであって、その目的は、効率
的にアイアンカーバイドを製造することができるアイア
ンカーバイドの製造装置を提供することにある。
[0007] The present invention has been made in view of the above-mentioned problems of the prior art, and an object of the present invention is to provide an eye anchor carbide manufacturing apparatus capable of efficiently manufacturing an eye anchor carbide. It is in.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に本発明は、炉側面から吹き込まれた細粒状の酸化鉄を
炉底から吹き込んだ高温高圧のガスにより浮遊・流動さ
せつつ還元および炭化する第一の流動層反応炉に後続し
て第二の流動層反応炉を設けたアイアンカーバイドの製
造装置において、第一の流動層反応炉と第二の流動層反
応炉のそれぞれが個別のガス循環ループを有することを
特徴とするアイアンカーバイドの製造装置を第一の発明
とし、上記第一の発明において、それぞれのガス循環ル
ープ内にガスを冷却する冷却設備を有することを特徴と
するアイアンカーバイドの製造装置を第二の発明とし、
炉側面から吹き込まれた細粒状の酸化鉄を炉底から吹き
込んだ高温高圧のガスにより浮遊・流動させつつ還元お
よび炭化する流動層反応炉を設けたアイアンカーバイド
の製造装置において、流動層反応炉の下部を分離板によ
って2個のチャンバーに仕切り、各チャンバーに異なる
組成と圧力のガスを供給する個別のガス供給口を設けた
ことを特徴とするアイアンカーバイドの製造装置を第三
の発明とする。
SUMMARY OF THE INVENTION In order to achieve the above object, the present invention provides a method of reducing and carbonizing fine-grained iron oxide blown from the furnace side while floating and flowing it with a high-temperature and high-pressure gas blown from the furnace bottom. In the apparatus for producing an anchor hydride provided with a second fluidized bed reactor following the first fluidized bed reactor, each of the first fluidized bed reactor and the second fluidized bed reactor is a separate gas. A first aspect of the present invention is an eye anchor hydride production apparatus having a circulation loop, and in the first aspect, each of the gas circulation loops has a cooling facility for cooling gas. Manufacturing apparatus of the second invention,
In an iron anchor hydride manufacturing device equipped with a fluidized bed reactor that reduces and carbonizes fine-grained iron oxide blown from the furnace side while floating and flowing with high-temperature and high-pressure gas blown from the furnace bottom, A third invention is a third aspect of the present invention, which is an apparatus for producing an anchor hydride, wherein the lower portion is partitioned into two chambers by a separation plate, and individual gas supply ports for supplying gases having different compositions and pressures are provided in each chamber.

【0009】本発明において使用するガスには、H2
CH4 、CO、CO2 などが含まれる。
The gas used in the present invention includes H 2 ,
CH 4 , CO, CO 2 and the like are included.

【0010】[0010]

【作用】第一の流動層反応炉において、炉底から吹き込
んだ高温高圧のガスにより細粒状の酸化鉄を浮遊・流動
させつつ一定時間還元および炭化し、次いで第二の流動
層反応炉により還元および炭化する。第一の流動層反応
炉と第二の流動層反応炉のそれぞれが個別のガス循環ル
ープを有することにより、各炉のガス組成とガス圧(流
速)を変えることが可能であるから、効率的に反応を進
めることができる。さらに、ガスを冷却する冷却設備を
ガス循環ループが備えることにより、還元反応によって
発生する水蒸気(H2O ガス)を水にして系外に除去す
ることができるので、一層反応が促進される。そして、
細粒状の酸化鉄を高温高圧のガスにより浮遊・流動させ
つつ還元および炭化する流動層反応炉の下部を分離板に
よって2個のチャンバーに仕切り、各チャンバーに異な
る組成と圧力のガスを供給する個別のガス供給口を設け
れば、炉内の反応の状況に応じてきめ細かいガス組成と
ガス圧(流速)の管理が可能となり、最適条件の下で還
元および炭化反応を行うことができる。
In the first fluidized-bed reactor, fine-grained iron oxide is reduced and carbonized for a certain period of time while floating and flowing with high-temperature and high-pressure gas blown from the furnace bottom, and then reduced by the second fluidized-bed reactor. And carbonize. Since each of the first fluidized-bed reactor and the second fluidized-bed reactor has a separate gas circulation loop, it is possible to change the gas composition and gas pressure (flow rate) of each furnace. The reaction can proceed. Further, by providing the gas circulation loop with a cooling system for cooling the gas, water vapor (H 2 O gas) generated by the reduction reaction can be converted into water and removed from the system, thereby further promoting the reaction. And
The lower part of a fluidized bed reactor in which fine-grained iron oxide is reduced and carbonized while floating and flowing with high-temperature and high-pressure gas is divided into two chambers by a separation plate, and gas of different composition and pressure is supplied to each chamber. If the gas supply port is provided, detailed control of the gas composition and gas pressure (flow rate) can be performed in accordance with the state of the reaction in the furnace, and the reduction and carbonization reactions can be performed under optimal conditions.

【0011】[0011]

【実施例】以下に本発明の実施例を説明する。図1は、
本発明のアイアンカーバイドの製造装置の全体構成を示
す配置図である。図1において、矢示1方向から乾燥炉
2に送給された原料(細粒状の酸化鉄)は熱風発生器3
で生成した熱風を受けて乾燥炉2で一定時間乾燥処理を
施された後、第一の流動層反応炉4へ送られる。
Embodiments of the present invention will be described below. FIG.
BRIEF DESCRIPTION OF THE DRAWINGS It is a layout drawing which shows the whole structure of the manufacturing apparatus of an anchor carbide of this invention. In FIG. 1, the raw material (fine-grained iron oxide) fed to the drying furnace 2 from the direction of arrow 1 is
After receiving the hot air generated in the above, the drying process is performed in the drying furnace 2 for a certain period of time, and then sent to the first fluidized bed reactor 4.

【0012】細粒状の酸化鉄は第一の流動層反応炉4で
一定時間の還元および炭化処理を施された後第二の流動
層反応炉5へ送られ、還元および炭化を完了した後、レ
シーバータンク6a、6bへ送られ、コンベヤ7を経て
トラック等の輸送設備によりアイアンカーバイドを装入
原料とする電気炉等の設備へ輸送される。
The fine-grained iron oxide is subjected to reduction and carbonization treatment in a first fluidized bed reactor 4 for a certain period of time, and then sent to a second fluidized bed reactor 5 to complete the reduction and carbonization. It is sent to the receiver tanks 6a and 6b, and is transported via a conveyor 7 to a facility such as an electric furnace using eye anchor carbide as a charging material by a transport facility such as a truck.

【0013】8a、8bはサイクロン、9a、9bは熱
交換器、10a、10bはクエンチタワー、11は冷凍
機、12a、12bはクーラー、13a、13bは水分
を除去するノックアウトドラム、14a、14bはコン
プレッサー、15a、15bはプリヒーターである。図
1に示すように、第一の流動層反応炉4、第二の流動層
反応炉5は、それぞれ個別のガス循環ループA、Bを有
しており、各ガス循環ループに至るガス流路16a、1
6bのそれぞれは、図2に示すように、H2 ガス、CO
ガス、CO2 ガス、天然ガス(N.G.)の供給流路に
通じている。図2において、17は脱硫塔である。
8a and 8b are cyclones, 9a and 9b are heat exchangers, 10a and 10b are quench towers, 11 is a refrigerator, 12a and 12b are coolers, 13a and 13b are knockout drums for removing moisture, 14a and 14b are The compressors 15a and 15b are pre-heaters. As shown in FIG. 1, the first fluidized bed reactor 4 and the second fluidized bed reactor 5 have individual gas circulation loops A and B, respectively, and a gas flow path leading to each gas circulation loop. 16a, 1
As shown in FIG. 2, each of H 2 gas and CO 2
The gas, CO 2 gas, and natural gas (NG) are connected to supply channels. In FIG. 2, reference numeral 17 denotes a desulfurization tower.

【0014】以上のように構成される装置を用いてアイ
アンカーバイドを製造する方法について説明する。
A method for manufacturing an eye anchor by using the apparatus configured as described above will be described.

【0015】乾燥炉2で乾燥されて経路18を経て第一
の流動層反応炉4に送給された細粒状の酸化鉄は、炉底
から吐出される高温(約650℃)・高圧(約5気圧)
のガス流により浮遊・流動しつつ還元・炭化される。こ
の反応は多量のH2 、CH4の消費と水分の発生を伴う
ので、炉頂から排出される約600℃のガスには多量の
水蒸気が含まれており、この高温・多湿のガスを、以下
に説明するガス循環ループで順次冷却してガス中の水蒸
気を水として取り除いた後H2 、CH4 の補給を行うこ
とにより、流動層反応炉内の反応が良好に促進される。
The fine-grained iron oxide dried in the drying furnace 2 and fed to the first fluidized bed reactor 4 through the path 18 is discharged at a high temperature (about 650 ° C.) and a high pressure (about 5 atm)
It is reduced and carbonized while floating and flowing by the gas flow. Since this reaction involves the consumption of a large amount of H 2 and CH 4 and the generation of moisture, the gas at about 600 ° C. discharged from the furnace top contains a large amount of water vapor. The reaction in the fluidized bed reactor is favorably promoted by sequentially cooling in a gas circulation loop described below to remove water vapor in the gas as water and then replenishing H 2 and CH 4 .

【0016】すなわち、炉頂から排出される炉内ガスに
は極めて微細な酸化鉄粒も含まれているので、一部の微
細な酸化鉄粒がサイクロン8aで捕捉された後、約60
0℃の含水蒸気ガスは経路19を通過することによって
約500℃まで冷却され、さらに熱交換器9aで約22
0℃まで冷却される。次に、ガスはクーリングタワー
(図示せず)で得られた冷水が供給されるクエンチタワ
ー10aを通過することにより、約40℃まで冷却され
る。さらに、ガスは冷凍機11で製造された冷水が供給
されるクーラー12aを通過することにより、約20℃
まで冷却され、ノックアウトドラム13aで水分を除去
される。かくして、約20℃まで冷却されたガスはコン
プレッサー14aで約5気圧まで昇圧され、炉内から排
出された高温のガスと熱交換器9aで熱交換することに
より約400℃まで昇温され、さらにプリヒーター15
aで約650℃まで昇温された後流動層反応炉4に戻さ
れる。このようにして循環するガスは炉内での反応によ
り徐々に消費されるので、図2に示すガス供給流路から
必要な組成のガスが補給される。以上がガス循環ループ
A内の反応であるが、ガス循環ループB内においても同
様の反応が行われる。
That is, since the furnace gas discharged from the furnace top contains extremely fine iron oxide particles, after some of the fine iron oxide particles are captured by the cyclone 8a, about 60
The steam gas at 0 ° C. is cooled to about 500 ° C. by passing through the path 19, and further cooled to about 22 ° C. by the heat exchanger 9 a.
Cool to 0 ° C. Next, the gas is cooled to about 40 ° C. by passing through a quench tower 10a to which cold water obtained by a cooling tower (not shown) is supplied. Further, the gas passes through a cooler 12a to which cold water produced by the refrigerator 11 is supplied.
And water is removed by the knockout drum 13a. Thus, the gas cooled to about 20 ° C. is pressurized to about 5 atm by the compressor 14a, and is heated to about 400 ° C. by exchanging heat with the hot gas discharged from the furnace in the heat exchanger 9a. Preheater 15
After the temperature is raised to about 650 ° C. in a, it is returned to the fluidized bed reactor 4. Since the gas circulating in this manner is gradually consumed by the reaction in the furnace, a gas having a necessary composition is supplied from the gas supply channel shown in FIG. The above is the reaction in the gas circulation loop A, but the same reaction is also performed in the gas circulation loop B.

【0017】かくして、第一の流動層反応炉4に供給さ
れた酸化鉄はアイアンカーバイド(Fe3 C)となって
第二の流動層反応炉5から排出される。
Thus, the iron oxide supplied to the first fluidized bed reactor 4 is discharged from the second fluidized bed reactor 5 as iron anchor hydride (Fe 3 C).

【0018】ところで、還元反応は水分の発生を伴うも
のであるが、本発明者が市販されている酸化鉄鉱石(粒
径0.1〜1.0mm、平均粒径0.2mmのFe2 3)を
用いて、H2 ガスおよびCH4 ガスによる還元および炭
化反応のバッチ試験を行ったところ、排ガス中のH2
量は、図3に示すように初期には10%であったが、反
応の進行とともに徐々に低下することが分かった。従っ
て、ガス循環ループ中のガスから除去すべき水分量は反
応前半と後半では異なるので、クーラー12a、12b
のいずれでも同じように冷却するのは効率的でない。す
なわち、図3より、排ガス中の平均H2 Oは反応前半が
7%、反応後半が3%であり、一方、ガスを30℃まで
冷却するとガス中のH2 Oは1.1%、クーラー12a
を設けて20℃まで冷却するとガス中のH2 Oは0.7
%となる。従って、クーラー12aの有無による反応量
の比較は、反応前半は(7−0.7)/(7−1.1)
=1.07、反応後半は(3−0.7)/(3−1.
1)=1.21であり、反応前半はクーラー12aの効
果が少なく、設備コストを考えると必ずしも必要でな
い。
By the way, although the reduction reaction is accompanied by the generation of moisture, oxidation of iron ore by the inventors are commercially available (particle diameter 0.1 to 1.0 mm, an average particle diameter of 0.2 mm Fe 2 O 3) using, it was subjected to batch test the reduction and carbonization reaction with H 2 gas and CH 4 gas, H 2 O in the exhaust gas
The amount was initially 10%, as shown in FIG. 3, but was found to decrease gradually with the progress of the reaction. Therefore, since the amount of water to be removed from the gas in the gas circulation loop is different between the first half and the second half of the reaction, the coolers 12a, 12b
In any case, it is not efficient to cool similarly. That is, from FIG. 3, the average H 2 O in the exhaust gas is 7% in the first half of the reaction and 3% in the second half of the reaction. On the other hand, when the gas is cooled to 30 ° C., the H 2 O in the gas is 1.1% and the cooler is cooled. 12a
When cooled to 20 ° C., H 2 O in the gas becomes 0.7
%. Therefore, the comparison of the reaction amount depending on the presence or absence of the cooler 12a is (7-0.7) / (7-1.1) in the first half of the reaction.
= 1.07, (3-0.7) / (3-1.
1) = 1.21, the effect of the cooler 12a is small in the first half of the reaction, and is not always necessary in view of the equipment cost.

【0019】同上試験によれば、H2 の消費量も、図4
に示すように還元反応の進行とともに徐々に低下するこ
とが分かった。従って、図1に示すように、第一の流動
層反応炉4、第二の流動層反応炉5が、それぞれ個別の
ガス循環ループを有することにより、第一の流動層反応
炉4には比較的多量のH2 ガスを供給し、第二の流動層
反応炉5には比較的少量のH2 ガスを供給するようにす
れば、問題なく還元反応を遂行しかつガスコストを低減
することが可能になる。
According to the same test, the consumption of H 2 is also shown in FIG.
As shown in the figure, it was found that the concentration gradually decreased with the progress of the reduction reaction. Therefore, as shown in FIG. 1, the first fluidized-bed reactor 4 and the second fluidized-bed reactor 5 have separate gas circulation loops, respectively. supplying a multimer of the H 2 gas, that if as the second fluidized bed reactor 5 to supply a relatively small amount of H 2 gas, reducing the performance and and gas cost reduction without problems Will be possible.

【0020】また、上記したように、流動層反応炉にお
ける酸化鉄の大きさは反応の進行とともに徐々に径小化
し、且つ軽くなる。上記バッチ試験において得られたア
イアンカーバイド(Fe3 C)の平均粒径は0.13mm
であり、酸化鉄(Fe2 3)の平均粒径0.2mmに比し
て相当径小化している。従って、第一の流動層反応炉4
と第二の流動層反応炉5における最小流動化速度は異な
るようにするのが好ましく、具体的な数値としては、第
一の流動層反応炉4の空塔速度は0.3〜1.2m/s
程度とし、第二の流動層反応炉5の空塔速度は0.15
〜0.6m/s程度とするのが好ましい。この場合、第
二の流動層反応炉の圧力を第一の流動層反応炉より上げ
れば、流速を低くして同じ容積(Nm3)を流すことも可
能である。
Further, as described above, the size of iron oxide in the fluidized bed reactor gradually decreases in size and becomes lighter as the reaction proceeds. The average particle size of the eye anchor carbide (Fe 3 C) obtained in the above batch test is 0.13 mm.
The equivalent diameter is smaller than the average particle diameter of iron oxide (Fe 2 O 3 ) of 0.2 mm. Therefore, the first fluidized bed reactor 4
It is preferable that the minimum fluidization rate in the second fluidized bed reactor 5 is different from that in the second fluidized bed reactor 5. Specifically, the superficial velocity of the first fluidized bed reactor 4 is 0.3 to 1.2 m. / S
And the superficial velocity of the second fluidized bed reactor 5 is 0.15
It is preferably about 0.6 m / s. In this case, if the pressure of the second fluidized bed reactor is increased from that of the first fluidized bed reactor, the flow rate can be reduced and the same volume (Nm 3 ) can be flowed.

【0021】図5は流動層反応炉下部を分離板20によ
って2個のチャンバー21a、21bに仕切り、それぞ
れのチャンバーに個別のガス供給口22a、22bを設
けた場合を示す図であり、各チャンバー21a、21b
に設けた分散板23a、23bには適切な間隔をおいて
分散して配置したノズル24が複数個取り付けられてい
る。25は原料の投入口、26は排出口を示す。この流
動層反応炉の場合、投入口25から投入された原料鉱石
(細粒状酸化鉄)は、ガス供給口22aから供給されて
ノズル24から吐出される高温高圧のガスによって浮遊
・流動しつつ還元・炭化される。この反応中において酸
化鉄は徐々に径小化し且つ軽くなり、ある程度反応の進
んだ径小の粒状酸化鉄はチャンバー21aの表層部27
付近で浮遊し、やがてオーバーフローしてチャンバー2
1bに流入する。チャンバー21b内においてはさらに
酸化鉄の還元が行われるが、チャンバー21b内の粒状
酸化鉄の反応度はチャンバー21a内のものより進んで
おり、ガス供給口22bから供給されるガス組成および
ガス圧はガス供給口22aから供給されるものとは異な
る、適正なガス組成・ガス圧を選択することにより、効
率的に反応を進めることができる。チャンバーからのガ
ス流量を変え、ガス流速を変えるためには、チャンバー
21a、21bのノズル24の圧損を変えることで対処
できる。また、分離数を多くすることにより、さらに理
想的な反応炉となる。
FIG. 5 is a view showing a case where the lower part of the fluidized bed reactor is divided into two chambers 21a and 21b by a separation plate 20, and individual gas supply ports 22a and 22b are provided in each chamber. 21a, 21b
Are provided with a plurality of nozzles 24 which are dispersed and arranged at appropriate intervals. Reference numeral 25 denotes a raw material input port, and reference numeral 26 denotes a discharge port. In the case of this fluidized bed reactor, the raw ore (fine-grained iron oxide) supplied from the charging port 25 is reduced while floating and flowing by the high-temperature and high-pressure gas supplied from the gas supply port 22a and discharged from the nozzle 24.・ It is carbonized. During this reaction, the iron oxide gradually decreases in size and becomes lighter, and the small-diameter granular iron oxide, which has progressed to some extent, forms the surface layer portion 27 of the chamber 21a.
Floats in the vicinity, overflows soon, and chamber 2
1b. Iron oxide is further reduced in the chamber 21b, but the reactivity of the granular iron oxide in the chamber 21b is more advanced than that in the chamber 21a, and the gas composition and gas pressure supplied from the gas supply port 22b are By selecting an appropriate gas composition and gas pressure that is different from that supplied from the gas supply port 22a, the reaction can proceed efficiently. Changing the gas flow rate from the chamber and changing the gas flow rate can be dealt with by changing the pressure loss of the nozzle 24 of the chambers 21a and 21b. Further, by increasing the number of separations, the reactor becomes more ideal.

【0022】[0022]

【発明の効果】本発明によれば効率的にアイアンカーバ
イドを製造することが可能であり、その製造コストを大
幅に低減することができる。
According to the present invention, it is possible to efficiently manufacture an eye anchor carbide, and it is possible to greatly reduce the manufacturing cost.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のアイアンカーバイドの製造装置の全体
構成を示す配置図である。
FIG. 1 is a layout diagram showing an overall configuration of an eye anchor carbide manufacturing apparatus of the present invention.

【図2】ガス供給流路を示す図である。FIG. 2 is a diagram showing a gas supply channel.

【図3】バッチ試験での酸化鉄の還元反応における水分
の発生量の推移を示す図である。
FIG. 3 is a graph showing changes in the amount of generated water in a reduction reaction of iron oxide in a batch test.

【図4】バッチ試験での酸化鉄の還元反応における水素
の消費量の推移を示す図である。
FIG. 4 is a diagram showing a transition of hydrogen consumption in a reduction reaction of iron oxide in a batch test.

【図5】図5(a)は下部を2個のチャンバーに仕切っ
た流動層反応炉の縦断面図、図5(b)は図5(a)の
V−V線断面図である。
5 (a) is a longitudinal sectional view of a fluidized bed reactor having a lower part partitioned into two chambers, and FIG. 5 (b) is a sectional view taken along line VV of FIG. 5 (a).

【図6】従来の流動層反応炉の平面図である。FIG. 6 is a plan view of a conventional fluidized bed reactor.

【図7】図6のVII−VII線断面図である。FIG. 7 is a sectional view taken along line VII-VII of FIG. 6;

───────────────────────────────────────────────────── フロントページの続き (72)発明者 宮下 虎勝 兵庫県神戸市中央区東川崎町3丁目1番 1号 川崎重工業株式会社 神戸工場内 (72)発明者 中谷 純也 兵庫県神戸市中央区東川崎町3丁目1番 1号 川崎重工業株式会社 神戸工場内 審査官 安齋 美佐子 (56)参考文献 特表 平6−501983(JP,A) 独国特許出願公開4320359(DE,A 1) (58)調査した分野(Int.Cl.7,DB名) C01B 31/30 C21B 15/00 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Torakatsu Miyashita 3-1-1 Higashikawasaki-cho, Chuo-ku, Kobe-shi, Hyogo Kawasaki Heavy Industries, Ltd. Kobe Plant (72) Inventor Junya Nakatani Higashi-Kawasaki, Chuo-ku, Kobe-shi, Hyogo 3-1-1, Machi-cho Kawasaki Heavy Industries, Ltd. Kobe Plant Examiner Misako Anzai (56) References Table 6-6-501983 (JP, A) German Patent Application Publication 4320359 (DE, A1) (58) Search Field (Int.Cl. 7 , DB name) C01B 31/30 C21B 15/00

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 炉側面から吹き込まれた細粒状の酸化鉄
を炉底から吹き込んだ高温高圧のガスにより浮遊・流動
させつつ還元および炭化する第一の流動層反応炉に後続
して第二の流動層反応炉を設けたアイアンカーバイドの
製造装置において、第一の流動層反応炉と第二の流動層
反応炉のそれぞれが個別のガス循環ループを有すること
を特徴とするアイアンカーバイドの製造装置
1. A first fluidized bed reactor that reduces and carbonizes fine-grained iron oxide blown from the furnace side while reducing and carbonizing while floating and flowing with high-temperature and high-pressure gas blown from the furnace bottom. Eye anchor hydride with fluidized bed reactor
In a manufacturing apparatus, a first fluidized bed reactor and a second fluidized bed
Each of the reactors has a separate gas circulation loop
A manufacturing apparatus for an eye anchor hydride .
【請求項2】 それぞれのガス循環ループ内にガスを冷
却する冷却設備を有することを特徴とする請求項1記載
のアイアンカーバイドの製造装置
2. A method according to claim 1, wherein the gas into the respective gas circulation loop and having a cooling system for cooling
Equipment for the production of eye anchor hydride .
【請求項3】 炉側面から吹き込まれた細粒状の酸化鉄
を炉底から吹き込んだ高温高圧のガスにより浮遊・流動
させつつ還元および炭化する流動層反応炉を設けたアイ
アンカーバイドの製造装置において、流動層反応炉の下
部を分離板によって2個のチャンバーに仕切り、各チャ
ンバーに異なる組成と圧力のガスを供給する個別のガス
供給口を設けたことを特徴とするアイアンカーバイドの
製造装置。
3. Fine-grained iron oxide blown from the furnace side
And flow by high-temperature and high-pressure gas blown from the furnace bottom
With a fluidized bed reactor that reduces and carbonizes
In an anchor hydride production system, the lower part of a fluidized bed reactor is divided into two chambers by a separation plate, and individual gas for supplying gas of different composition and pressure to each chamber.
An eye anchor hydride manufacturing apparatus having a supply port .
JP07189135A 1995-07-25 1995-07-25 Iron anchor hydride production equipment Expired - Fee Related JP3104842B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP07189135A JP3104842B2 (en) 1995-07-25 1995-07-25 Iron anchor hydride production equipment
IDP970020A ID17483A (en) 1995-07-25 1997-01-07 PROCESS AND EQUIPMENT FOR PRODUCTION OF IRON CARBID

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07189135A JP3104842B2 (en) 1995-07-25 1995-07-25 Iron anchor hydride production equipment

Publications (2)

Publication Number Publication Date
JPH0940414A JPH0940414A (en) 1997-02-10
JP3104842B2 true JP3104842B2 (en) 2000-10-30

Family

ID=16236000

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07189135A Expired - Fee Related JP3104842B2 (en) 1995-07-25 1995-07-25 Iron anchor hydride production equipment

Country Status (2)

Country Link
JP (1) JP3104842B2 (en)
ID (1) ID17483A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0952112A4 (en) * 1997-01-13 2000-07-19 Kawasaki Heavy Ind Ltd Iron carbide manufacturing process and apparatus
KR100356178B1 (en) * 2000-08-23 2002-10-18 주식회사 포스코 Apparatus for making iron melt and iron carbide using several fluidized bed reactors

Also Published As

Publication number Publication date
JPH0940414A (en) 1997-02-10
ID17483A (en) 1998-01-08

Similar Documents

Publication Publication Date Title
US4054444A (en) Method for controlling the carbon content of directly reduced iron
CN103261446B (en) Method and apparatus for producing direct reduced iron utilizing a source of reducing gas comprising hydrogen and carbon monoxide
JP2727436B2 (en) Method and apparatus for manufacturing iron carbide
JPS5913644B2 (en) How to carry out the exothermic process
EP2576845B1 (en) Process and plant for producing hot metal
JP3543837B2 (en) Method for directly reducing iron oxide-containing raw materials using a solid carbon-containing reducing agent
CA2412530C (en) Method and installation for the indirect reduction of particulate oxide-containing ores
US4216011A (en) Method and apparatus for the secondary gaseous reduction of metal ores
US4734128A (en) Direct reduction reactor with hot discharge
JP3104842B2 (en) Iron anchor hydride production equipment
US4897113A (en) Direct reduction process in reactor with hot discharge
US6506353B2 (en) Process and apparatus for producing iron carbide
AU711114B2 (en) Process and apparatus for producing iron carbide
WO2004055832A1 (en) Method and apparatus for controling temperature uniformity of the burden in a direct reduction shaft furnace
US3551138A (en) Iron ore reduction process
RU2162820C1 (en) Method of preparing ferric carbide
Lüngen et al. History, development and processes of direct reduction of iron ores
US4338123A (en) Method and apparatus for the reduction of metal ores
CN217684954U (en) Industrial gas heating system
US4042226A (en) Method and apparatus for producing metallic iron pellets
CN115786618A (en) Electric energy heating direct reduction hydrogen metallurgy system
JP3279504B2 (en) Iron carbide manufacturing equipment
JP2997259B1 (en) A diffused-tube multi-chamber split-type fluidized-bed furnace for the production of reduced iron or iron carbide
MXPA99004057A (en) Iron carbide manufacturing process and apparatus
CN115896378A (en) Electric energy heating hydrogen direct reduction iron-making method

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080901

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080901

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090901

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090901

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090901

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100901

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110901

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120901

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees