JP3101190B2 - Infrared detector - Google Patents

Infrared detector

Info

Publication number
JP3101190B2
JP3101190B2 JP07248102A JP24810295A JP3101190B2 JP 3101190 B2 JP3101190 B2 JP 3101190B2 JP 07248102 A JP07248102 A JP 07248102A JP 24810295 A JP24810295 A JP 24810295A JP 3101190 B2 JP3101190 B2 JP 3101190B2
Authority
JP
Japan
Prior art keywords
thin film
thermopile
portions
infrared
semiconductor substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP07248102A
Other languages
Japanese (ja)
Other versions
JPH0989655A (en
Inventor
和憲 木寺
浩則 上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP07248102A priority Critical patent/JP3101190B2/en
Publication of JPH0989655A publication Critical patent/JPH0989655A/en
Application granted granted Critical
Publication of JP3101190B2 publication Critical patent/JP3101190B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Radiation Pyrometers (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、サーモパイルを用
いた赤外線検出装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an infrared detector using a thermopile.

【0002】[0002]

【従来の技術】従来より、図6に示すような構造の、サ
ーモパイルを用いた赤外線検出装置が知られている。こ
のような赤外線検出装置は、半導体基板7と、半導体基
板7の上面に形成された薄膜8と、半導体基板7を貫通
して設けられた凹部9と、薄膜8上に形成されたゼーベ
ック効果を有する第1及び第2の金属1,2と、凹部9
の外側の薄膜8の上面に設けられた温度補償用のダイオ
ード15とから構成されている。
2. Description of the Related Art An infrared detector using a thermopile having a structure as shown in FIG. 6 is conventionally known. Such an infrared detecting device includes a semiconductor substrate 7, a thin film 8 formed on the upper surface of the semiconductor substrate 7, a concave portion 9 provided through the semiconductor substrate 7, and a Seebeck effect formed on the thin film 8. Having first and second metals 1 and 2 and recess 9
And a temperature-compensating diode 15 provided on the upper surface of the thin film 8 on the outside.

【0003】ここで、第1の金属1の一端は、凹部9上
方の薄膜8上に形成された温接点3で、第1の金属1と
平行に形成された第2の金属2に接続され、その他端
は、凹部9の外側の薄膜8上に形成された冷接点4で、
同じく第1の金属1と平行に形成された別の第2の金属
2に接続されている。而して、複数個の第1及び第2の
金属1,2は、S字状に蛇行するように、互い違いに直
列に接続され、サーモパイルが形成されている。また、
直列に接続された複数個の第1及び第2の金属1,2の
両端は、配線5を介して端子6に接続されている。
Here, one end of the first metal 1 is connected to a second metal 2 formed in parallel with the first metal 1 by a hot junction 3 formed on the thin film 8 above the concave portion 9. And the other end is a cold junction 4 formed on the thin film 8 outside the recess 9,
It is also connected to another second metal 2 which is also formed in parallel with the first metal 1. Thus, the plurality of first and second metals 1 and 2 are alternately connected in series so as to meander in an S-shape to form a thermopile. Also,
Both ends of the plurality of first and second metals 1 and 2 connected in series are connected to a terminal 6 via a wiring 5.

【0004】この時、薄膜8が被測定物から赤外線を受
光すると、受光した赤外線量に比例して凹部9上方の薄
膜8上に形成された温接点3の温度が上昇する。一方、
熱的に安定な凹部9以外の薄膜8上に形成された冷接点
4の温度は変動しないので、温接点3と冷接点4との間
に温度差が発生し、複数個の第1及び第2の金属1,2
間に、この温度差に比例した熱起電力が発生する。而し
て、この熱起電力の総和がサーモパイルの出力電圧とし
て出力される。
At this time, when the thin film 8 receives infrared light from the object to be measured, the temperature of the hot junction 3 formed on the thin film 8 above the concave portion 9 increases in proportion to the amount of received infrared light. on the other hand,
Since the temperature of the cold junction 4 formed on the thin film 8 other than the thermally stable concave portion 9 does not fluctuate, a temperature difference occurs between the hot junction 3 and the cold junction 4, and a plurality of first and second cold junctions are formed. Metal 2
During that time, a thermoelectromotive force proportional to this temperature difference is generated. Thus, the sum of the thermoelectromotive forces is output as the output voltage of the thermopile.

【0005】ところで、薄膜8が被測定物から受光した
赤外線量は、被測定物の絶対温度と薄膜8の絶対温度と
の4乗の差に比例するので、被測定物の赤外線放射量を
検出するためには、基準温度となる凹部9以外の薄膜8
の温度を検出する必要がある。従って、サーモパイルの
出力電圧と、ダイオード15の順方向電圧の温度特性か
ら検出した凹部9以外の薄膜8の温度とから、被測定物
の赤外線放射量を計測していた。
Since the amount of infrared light received by the thin film 8 from the object to be measured is proportional to the fourth power of the absolute temperature of the object to be measured and the absolute temperature of the thin film 8, the amount of infrared radiation from the object to be measured is detected. To do so, the thin film 8 other than the concave portion 9 at which the reference temperature is reached
Temperature needs to be detected. Therefore, the infrared radiation amount of the object to be measured is measured from the output voltage of the thermopile and the temperature of the thin film 8 other than the concave portion 9 detected from the temperature characteristics of the forward voltage of the diode 15.

【0006】[0006]

【発明が解決しようとする課題】上記構成の赤外線検出
装置では、薄膜上に形成された複数個の第1及び第2の
金属からなるサーモパイルが、被測定物から赤外線を受
光していない場合でも、被測定物以外から受光する赤外
線によって、凹部上方の薄膜の温度が上昇し、凹部上方
の薄膜と凹部以外の薄膜との間に僅かな温度差が発生
し、この温度差によってサーモパイルにオフセット電圧
が発生するという問題点があった。
In the infrared detecting device having the above-mentioned structure, even when the thermopile formed of a plurality of first and second metals formed on the thin film does not receive infrared light from the object to be measured. The temperature of the thin film above the concave portion rises due to infrared light received from other than the object to be measured, and a slight temperature difference is generated between the thin film above the concave portion and the thin film other than the concave portion. There is a problem that occurs.

【0007】本発明は上記問題点に鑑みて為されたもの
であり、サーモパイルのオフセット電圧を低減させた赤
外線検出装置を提供することを目的とするものである。
The present invention has been made in view of the above problems, and has as its object to provide an infrared detecting device in which the offset voltage of a thermopile is reduced.

【0008】[0008]

【課題を解決するための手段】本発明では、上記目的を
達成するために、請求項1の発明は、半導体基板の上面
に形成された薄膜と、半導体基板の異なる部位を夫々貫
通して設けられた第1及び第2の凹部と、薄膜の一部を
構成し夫々第1及び第2の凹部の天井部をなし互いに熱
的に絶縁された第1及び第2の薄膜部と、薄膜上に熱電
対がアレイ状に直列に形成されたサーモパイルと、第1
の薄膜部上に形成されたサーモパイルの温接点と、第2
の薄膜部上に形成されたサーモパイルの冷接点とを備え
ており、サーモパイルの温接点と冷接点が共に熱容量の
等しい薄膜部上に形成されているので、被測定物から赤
外線を受光していない場合、温接点と冷接点の温度は同
じ温度になり、熱起電力が発生せず、オフセット電圧が
出力されない。
According to the present invention, in order to achieve the above object, the present invention is directed to a thin film formed on an upper surface of a semiconductor substrate and a thin film formed on different portions of the semiconductor substrate.
The first and second concave portions provided through the first and second concave portions constitute a part of the thin film and form the ceiling portions of the first and second concave portions and are thermally insulated from each other. A thermopile in which thermocouples are formed in series in an array on a thin film;
A thermopile hot junction formed on the thin film portion of
The thermopile cold junction is formed on the thin film part of the thermopile, and the hot junction and the cold junction of the thermopile are both formed on the thin film part having the same heat capacity, so that no infrared light is received from the object to be measured. In this case, the temperature of the hot junction and the temperature of the cold junction are the same, no thermoelectromotive force is generated, and no offset voltage is output.

【0009】請求項2の発明は、半導体基板の上面に形
成された薄膜と、半導体基板の異なる部位を夫々貫通し
て設けられた第1及び第2の凹部と、薄膜の一部を構成
夫々第1及び第2の凹部の天井部をなし互いに熱的に
絶縁された第1及び第2の薄膜部と、薄膜上に夫々熱電
対がアレイ状に直列に形成され互いに逆極性に接続され
た第1及び第2のサーモパイルと、第1の薄膜部上に形
成された第1のサーモパイルの冷接点と、第2の薄膜部
上に形成された第2のサーモパイルの温接点と、第1及
び第2の薄膜部以外の薄膜上に形成された第1のサーモ
パイルの温接点及び第2のサーモパイルの冷接点とを備
えており、薄膜部が被測定物から赤外線を受光していな
い場合、第1及び第2のサーモパイルが逆極性で接続さ
れているので、第1及び第2のサーモパイルに発生する
熱起電力は相殺され、オフセット電圧が出力されない。
According to a second aspect of the present invention, a thin film formed on an upper surface of a semiconductor substrate and a thin film formed on a different portion of the semiconductor substrate are respectively penetrated.
First and second recessed portions provided, and first and second thin film portions which constitute a part of the thin film, form ceiling portions of the first and second recessed portions, and are thermally insulated from each other, First and second thermopiles in which thermocouples are respectively formed in series in an array on the thin film and connected in opposite polarities; a cold junction of the first thermopile formed on the first thin film portion; A second thermopile hot junction formed on the second thin film portion, a first thermopile hot junction and a second thermopile cold junction formed on the thin film other than the first and second thin film portions. When the thin film portion does not receive infrared rays from the object to be measured, the first and second thermopiles are connected with opposite polarities, so that the thermoelectromotive force generated in the first and second thermopiles is provided. Are offset, and no offset voltage is output.

【0010】請求項3の発明は、請求項1又は2の発明
に於いて、第1及び第2の薄膜部が被測定物から受光す
る赤外線を交互に周期的に遮断する遮光手段を備えてい
るので、サーモパイルの出力信号は交流信号となり、フ
ィルタ等を用いて、サーモパイルの出力信号に含まれる
ノイズ成分やオフセット電圧を容易に除去できる。請求
項4の発明は、請求項1又は2の発明において、第1及
び第2の薄膜部が夫々異なる第1及び第2の被測定物か
ら赤外線を受光するための光学系レンズ等の集光手段を
備えているので、サーモパイルの出力信号から第1及び
第2の被測定物の赤外線量の差を非接触で検出できる。
ここで、集光手段が第1及び第2の薄膜部に夫々異なる
第1及び第2の被測定物から赤外線を受光させるとは、
集光手段が第1の被測定物からの赤外線を第1の薄膜部
にのみ受光させ、第2の被測定物からの赤外線を第2の
薄膜部にのみ受光させている状態をいう。
According to a third aspect of the present invention, in the first or second aspect, the first and second thin film portions are provided with light blocking means for alternately and periodically blocking infrared rays received from the object to be measured. Therefore, the output signal of the thermopile is an AC signal, and a noise component and an offset voltage included in the output signal of the thermopile can be easily removed using a filter or the like. According to a fourth aspect of the present invention, in the first or second aspect of the present invention, the first and second thin film portions collect light such as an optical system lens for receiving infrared rays from the first and second objects to be measured, which are different from each other. Since the means is provided, the difference between the infrared ray amounts of the first and second objects can be detected in a non-contact manner from the output signal of the thermopile.
Here, the condensing means causes the first and second thin film portions to receive infrared rays from different first and second objects to be measured, respectively.
This refers to a state in which the light condensing means causes only the first thin film portion to receive infrared light from the first DUT, and allows only the second thin film portion to receive infrared light from the second DUT.

【0011】[0011]

【発明の実施の形態】本発明の実施の形態を図面を参照
して説明する。 (実施形態1)本実施形態の赤外線検出装置の構造を図
1に示す。このような赤外線検出装置は、半導体基板7
と、半導体基板7上に形成された薄膜8と、半導体基板
7を貫通して設けられた第1及び第2の凹部9a,9b
と、薄膜8の一部を構成し夫々第1及び第2の凹部9
a,9bの天井部をなす第1及び第2の薄膜部8a,8
bと、薄膜8上に形成されたゼーベック効果を有する第
1及び第2の金属1,2とから構成されている。
Embodiments of the present invention will be described with reference to the drawings. (Embodiment 1) FIG. 1 shows the structure of an infrared detecting device of the present embodiment. Such an infrared detecting device is a semiconductor substrate 7
And a thin film 8 formed on the semiconductor substrate 7, and first and second recesses 9 a and 9 b provided through the semiconductor substrate 7.
And a first and a second concave portion 9 which respectively constitute a part of the thin film 8 and
a and 9b, the first and second thin film portions 8a and 8 forming the ceiling portion
b and the first and second metals 1 and 2 having the Seebeck effect and formed on the thin film 8.

【0012】ここで、第1の金属1の一端は、第1の薄
膜部8a上の温接点3で、第1の金属1と平行に形成さ
れた第2の金属2に接続され、その他端は、第2の薄膜
部8b上の冷接点4で、同様に第1の金属1と平行に形
成された別の第2の金属2に接続されている。而して、
複数個の第1及び第2の金属1,2は、S字状に蛇行す
るように、互い違いに直列に接続されており、サーモパ
イル10が形成されている。また、複数個の直列接続さ
れた第1及び第2の金属1,2の両端は、配線5を介し
て、端子6に接続されている。
Here, one end of the first metal 1 is connected to the second metal 2 formed in parallel with the first metal 1 at the hot junction 3 on the first thin film portion 8a, and the other end. Is a cold junction 4 on the second thin film portion 8b, and is connected to another second metal 2 similarly formed in parallel with the first metal 1. Thus,
The plurality of first and second metals 1 and 2 are alternately connected in series so as to meander in an S shape, and a thermopile 10 is formed. Both ends of the plurality of first and second metals 1 and 2 connected in series are connected to a terminal 6 via a wiring 5.

【0013】この時、第1及び第2の薄膜部8a,8b
が赤外線を受光すると、第1及び第2の薄膜部8a,8
bの温度は受光した赤外線量に比例して上昇する。従っ
て、複数個の第1及び第2の金属1,2の各接合では、
ゼーベック効果により第1の薄膜部8aと第2の薄膜部
8bとの温度差に比例した熱起電力が発生し、その熱起
電力の総和がサーモパイル10の出力電圧となる。ここ
で、第1及び第2の薄膜部8a,8bの熱容量は等しい
ので、両者の温度差は受光した赤外線量の差に比例す
る。よって、サーモパイル10の出力電圧から、第1及
び第2の薄膜部8a,8bが受光した赤外線量の差を検
出できる。
At this time, the first and second thin film portions 8a, 8b
Receives infrared rays, the first and second thin film portions 8a, 8a
The temperature of b rises in proportion to the amount of infrared light received. Therefore, in each joining of the plurality of first and second metals 1 and 2,
Due to the Seebeck effect, a thermoelectromotive force proportional to the temperature difference between the first thin film portion 8a and the second thin film portion 8b is generated, and the sum of the thermoelectromotive forces becomes the output voltage of the thermopile 10. Here, since the heat capacity of the first and second thin film portions 8a and 8b is equal, the temperature difference between them is proportional to the difference in the amount of received infrared light. Therefore, from the output voltage of the thermopile 10, the difference between the amounts of infrared rays received by the first and second thin film portions 8a and 8b can be detected.

【0014】一方、第1の薄膜部8aと第2の薄膜部8
bが被測定物から赤外線を受光していない場合、第1及
び第2の薄膜部8a,8bの熱容量は等しいので、第1
及び第2の薄膜部8a,8bの温度は等しくなる。従っ
て、第1の薄膜部8a上に設けられた温接点3と第2の
薄膜部8b上に設けられた冷接点4の温度差が発生しな
いので、第1及び第2の金属1,2の各接合では熱起電
力が発生せず、サーモパイル10のオフセット電圧は発
生しない。
On the other hand, the first thin film portion 8a and the second thin film portion 8
When b does not receive infrared light from the object to be measured, the first and second thin film portions 8a and 8b have the same heat capacity.
And the temperatures of the second thin film portions 8a and 8b become equal. Therefore, there is no temperature difference between the hot junction 3 provided on the first thin film portion 8a and the cold junction 4 provided on the second thin film portion 8b. No thermoelectromotive force is generated at each junction, and no offset voltage of the thermopile 10 is generated.

【0015】尚、本実施形態では、薄膜8上にゼーベッ
ク効果を有する2種の金属の接合を形成しているが、複
数個のPN接合を直列に形成してもよい。 (実施形態2)本実施形態の赤外線検出装置の構成を図
2に示す。この赤外線検出装置は、半導体基板7と、半
導体基板7上に形成された薄膜8と、半導体基板7を貫
通して設けられた第1及び第2の凹部9a,9bと、薄
膜8の一部を構成して夫々第1及び第2の凹部9a,9
bの天井部をなす第1及び第2の薄膜部8a,8bと、
第1及び第2の薄膜部8a,8b上に夫々形成されたゼ
ーベック効果を有する第1及び第2の金属1,2からな
る第1及び第2のサーモパイル10a,10bとから構
成されている。
In this embodiment, a junction between two metals having a Seebeck effect is formed on the thin film 8, but a plurality of PN junctions may be formed in series. (Embodiment 2) FIG. 2 shows the configuration of an infrared detection device of this embodiment. This infrared detecting device includes a semiconductor substrate 7, a thin film 8 formed on the semiconductor substrate 7, first and second concave portions 9a and 9b provided through the semiconductor substrate 7, and a part of the thin film 8. And the first and second concave portions 9a, 9a respectively.
b, the first and second thin film portions 8a and 8b forming the ceiling portion of b.
The first and second thermopiles 10a and 10b made of the first and second metals 1 and 2 having the Seebeck effect are formed on the first and second thin film portions 8a and 8b, respectively.

【0016】ここで、第1の薄膜部8a上に形成された
第1の金属1の一端は、第1の薄膜部8a上に形成され
た第1の温接点3aで第2の金属2に接続されており、
その他端は、第1及び第2の薄膜部8a,8b以外の薄
膜8上に形成された第1の冷接点4aで別の第2の金属
2に接続されている。而して、n個の第1及び第2の金
属1,2が、S字状に蛇行するように、互い違いに直列
に接続され、第1のサーモパイル10aが形成されてい
る。同様にして、第2の薄膜部8b上に形成された第1
の金属1の一端は、第1及び第2の薄膜部8a,8b以
外の薄膜8上に形成された第2の温接点3bで第2の金
属2に接続されており、その他端は、第2の薄膜部8b
上に形成された第2の冷接点4bで別の第2の金属2と
接続されている。而して、n個の第1及び第2の金属
1,2が、S字状に蛇行するように、互い違いに直列に
接続されており、第2のサーモパイル10bが形成され
ている。
Here, one end of the first metal 1 formed on the first thin film portion 8a is connected to the second metal 2 by the first hot junction 3a formed on the first thin film portion 8a. Connected
The other end is connected to another second metal 2 by a first cold junction 4a formed on the thin film 8 other than the first and second thin film portions 8a and 8b. Thus, the n first and second metals 1 and 2 are alternately connected in series so as to meander in an S-shape to form the first thermopile 10a. Similarly, the first thin film portion 8b formed on the second thin film portion 8b
One end of the metal 1 is connected to the second metal 2 by a second hot junction 3b formed on the thin film 8 other than the first and second thin film portions 8a and 8b, and the other end is 2 thin film part 8b
It is connected to another second metal 2 by a second cold junction 4b formed above. Thus, the n first and second metals 1 and 2 are alternately connected in series so as to meander in an S-shape, and the second thermopile 10b is formed.

【0017】この時、第1及び第2のサーモパイル10
a,10bは、それぞれ、n個の第1及び第2の金属
1,2から形成されており、第1のサーモパイル10a
の一端に位置する第1の金属1と、第2のサーモパイル
10bの一端に位置する第2の金属2とが接続されてい
る。而して、第1及び第2のサーモパイル10a,10
bは互いに極性が逆となるように接続されている。
At this time, the first and second thermopiles 10
a and 10b are formed of n first and second metals 1 and 2, respectively, and the first thermopile 10a
Is connected to the first metal 1 located at one end of the second thermopile 10b and the second metal 2 located at one end of the second thermopile 10b. Thus, the first and second thermopiles 10a, 10a
b are connected so that their polarities are opposite to each other.

【0018】さて、第1及び第2の薄膜部8a,8bが
受光する赤外線の赤外線量に差がある場合、第1及び第
2のサーモパイル10a,10bは、それぞれ、第1及
び第2の薄膜部8a,8bが受光した赤外線量に比例し
た熱起電力を発生する。ここで、第1のサーモパイル1
0aと第2のサーモパイル10bは極性が逆になるよう
に接続されているので、本実施形態の赤外線検出装置
は、第1の薄膜部8aと第2の薄膜部8bが夫々受光し
た赤外線量の差に比例した信号を出力する。
If there is a difference in the amount of infrared light received by the first and second thin film portions 8a and 8b, the first and second thermopiles 10a and 10b are connected to the first and second thin films, respectively. The portions 8a and 8b generate a thermoelectromotive force proportional to the amount of infrared light received. Here, the first thermopile 1
0a and the second thermopile 10b are connected so that the polarities are opposite, so that the infrared detecting device of the present embodiment has the amount of infrared light received by the first thin film portion 8a and the second thin film portion 8b, respectively. Outputs a signal proportional to the difference.

【0019】一方、第1及び第2の薄膜部8a,8bが
被測定物からの赤外線を受光していない場合、第1及び
第2の薄膜部8a,8bが受光する赤外線量は等しくな
る。ここで、第1及び第2の薄膜部8a,8bの熱容量
は等しいので、両者の温度は等しくなり、第1のサーモ
パイル10aと第2のサーモパイル10bに発生する熱
起電力は、大きさが等しく、極性が逆となる。従って、
第1及び第2のサーモパイル10a,10bに発生した
熱起電力が相殺されて、オフセット電圧が発生しない。
On the other hand, when the first and second thin film portions 8a and 8b do not receive infrared light from the object to be measured, the amount of infrared light received by the first and second thin film portions 8a and 8b becomes equal. Here, since the heat capacities of the first and second thin film portions 8a and 8b are equal, the temperatures of both are equal, and the thermoelectromotive forces generated in the first thermopile 10a and the second thermopile 10b are equal in magnitude. , The polarity is reversed. Therefore,
The thermoelectromotive force generated in the first and second thermopiles 10a and 10b is canceled, and no offset voltage is generated.

【0020】また、第1の薄膜部8a上に第1のサーモ
パイル10aの温接点3aを形成し、第2の薄膜部8b
上に第2のサーモパイル10bの冷接点4bを形成する
とともに、第1及び第2の薄膜部8a,8b以外の薄膜
8上に第1のサーモパイル10aの冷接点4aと第2の
サーモパイル10bの温接点3bとを形成することによ
り、第1及び第2の薄膜部8a,8bが夫々受光した赤
外線量の差を、熱的に安定な第1及び第2の薄膜部8
a,8b以外の薄膜8の温度を基準として検出している
ので、赤外線検出装置の出力信号の安定性を高め、精度
を向上させることができる。
Further, the hot junction 3a of the first thermopile 10a is formed on the first thin film portion 8a, and the second thin film portion 8b
The cold junction 4b of the second thermopile 10b is formed thereon, and the cold junction 4a of the first thermopile 10a and the temperature of the second thermopile 10b are formed on the thin film 8 other than the first and second thin film portions 8a and 8b. By forming the contact 3b, the difference between the amounts of infrared rays received by the first and second thin film portions 8a and 8b, respectively, can be reduced by using the thermally stable first and second thin film portions 8a and 8b.
Since the detection is performed with reference to the temperature of the thin film 8 other than a and 8b, the stability of the output signal of the infrared detection device can be improved and the accuracy can be improved.

【0021】尚、本実施形態では、薄膜8上にゼーベッ
ク効果を有する2種の金属をアレイ状に直列に形成して
いるが、複数個のPN接合を直列に形成してもよい。 (実施形態3)本実施形態の赤外線検出装置の構造を図
3に示す。実施形態1又は2の赤外線検出装置におい
て、図3に示すように、第1及び第2の薄膜部8a,8
bが受光する赤外線の内、一方が受光する赤外線を完全
に遮断するとともに、他方が受光する赤外線をそのまま
入射させるような半円形のチョッパー11を設けてお
り、チョッパー11を第1及び第2の薄膜部8a,8b
の上方で回転軸12を中心として一定の周期で回転させ
ることにより、第1及び第2の薄膜部8a,8bは交互
に周期的に赤外線を受光している。
In this embodiment, two kinds of metals having the Seebeck effect are formed in series on the thin film 8 in an array, but a plurality of PN junctions may be formed in series. (Embodiment 3) FIG. 3 shows the structure of an infrared detection device of this embodiment. In the infrared detecting device according to the first or second embodiment, as shown in FIG. 3, the first and second thin film portions 8a, 8
Among the infrared rays received by b, a semi-circular chopper 11 is provided so as to completely block the infrared rays received by one side and to directly enter the infrared rays received by the other side. Thin film parts 8a, 8b
, The first and second thin film portions 8a and 8b alternately and periodically receive infrared rays.

【0022】ここで、第1の薄膜部8a上にはサーモパ
イルの温接点が設けられ、第2の薄膜部8b上にはサー
モパイルの冷接点が設けられている。従って、温接点が
形成されている第1の薄膜部8aが赤外線を受光してい
る場合、サーモパイルの出力信号は正となり、冷接点が
形成されている第2の薄膜部8bが赤外線を受光してい
る場合、サーモパイルの出力信号は負となる。
A thermopile hot junction is provided on the first thin film portion 8a, and a thermopile cold contact is provided on the second thin film portion 8b. Therefore, when the first thin film portion 8a on which the hot junction is formed receives infrared light, the output signal of the thermopile becomes positive, and the second thin film portion 8b on which the cold junction is formed receives infrared light. The thermopile output signal is negative.

【0023】ところで、第1及び第2の薄膜部8a,8
bがそれぞれ受光する赤外線の赤外線量が等しい場合、
第1及び第2の薄膜部8a,8bの熱容量は等しいの
で、両者の温度は等しくなる。従って、第1及び第2の
薄膜部8a,8bが夫々赤外線を受光している時、第1
の薄膜部8a上に設けられた温接点の温度と第2の薄膜
部8b上に設けられた冷接点の温度とは等しくなり、サ
ーモパイルの出力信号は、大きさが等しく、極性が逆と
なる。
The first and second thin film portions 8a, 8a
If b is equal in the amount of infrared light received,
Since the heat capacity of the first and second thin film portions 8a and 8b is equal, the temperatures of both are equal. Therefore, when the first and second thin film portions 8a and 8b receive infrared light, respectively,
And the temperature of the cold junction provided on the second thin film portion 8b is equal to the temperature of the hot junction provided on the thin film portion 8a, and the output signals of the thermopile are equal in magnitude and opposite in polarity. .

【0024】従って、チョッパー11の回転周期が第1
及び第2の薄膜部8a,8b上に設けられたサーモパイ
ルの時定数に比べて十分長い場合、図4に示すように、
サーモパイルの出力信号は正弦波出力(図4のa)とな
る。よって、本実施形態のサーモパイルの出力信号は交
流信号となるので、フィルタ等を用いて、出力信号に含
まれるノイズ成分やオフセット電圧を除去することがで
き、ノイズやオフセット電圧の影響が少ないサーモパイ
ルの出力信号を得ることができる。
Therefore, the rotation cycle of the chopper 11
If the time constant is sufficiently longer than the time constant of the thermopile provided on the second thin film portions 8a and 8b, as shown in FIG.
The output signal of the thermopile is a sine wave output (a in FIG. 4). Therefore, since the output signal of the thermopile of the present embodiment is an AC signal, a noise component and an offset voltage included in the output signal can be removed using a filter or the like, and the effect of the noise and the offset voltage on the thermopile is small. An output signal can be obtained.

【0025】尚、本実施形態のサーモパイルの構造は、
実施形態1又は2と同様であるので、その説明は省略す
る。 (実施形態4)本実施形態の赤外線検出装置の構造を図
5に示す。実施形態1又は2の赤外線検出装置におい
て、第1の薄膜部8aに第1の被測定物14aからの赤
外線を受光させるための第1の光学系レンズ13aと、
第2の薄膜部8bに第2の被測定物14bからの赤外線
を受光させるための第2の光学系レンズ13bとが設け
られており、第1の薄膜部8aと第2の薄膜部8bは、
それぞれ異なる第1及び第2の被測定物14a,14b
から赤外線を受光している。
The structure of the thermopile of this embodiment is as follows.
Since it is the same as the first or second embodiment, the description is omitted. (Embodiment 4) FIG. 5 shows the structure of an infrared detection device according to this embodiment. In the infrared detection device according to the first or second embodiment, a first optical system lens 13a for causing the first thin film portion 8a to receive infrared light from the first DUT 14a,
The second thin film portion 8b is provided with a second optical system lens 13b for receiving infrared rays from the second DUT 14b, and the first thin film portion 8a and the second thin film portion 8b are provided. ,
First and second DUTs 14a and 14b different from each other
Receiving infrared rays from

【0026】ここで、第1及び第2の薄膜部8a,8b
が、それぞれ第1及び第2の被側定物14a,14bか
ら赤外線を受光する場合、両者の温度は受光した赤外線
の赤外線量に比例してそれぞれ変化する。ところで、第
1及び第2の薄膜部8a,8bの熱容量は等しいので、
第1及び第2の薄膜部8a,8bの温度差は、両者が受
光した赤外線量の差に比例している。
Here, the first and second thin film portions 8a, 8b
However, when infrared rays are received from the first and second fixed objects 14a and 14b, respectively, the temperatures of the both change in proportion to the amount of infrared rays received. By the way, since the first and second thin film portions 8a and 8b have the same heat capacity,
The temperature difference between the first and second thin film portions 8a and 8b is proportional to the difference in the amount of infrared light received by both.

【0027】この時、第1の薄膜部8a上にはサーモパ
イルの温接点が設けられ、第2の薄膜部8b上にはサー
モパイルの冷接点が設けられているので、温接点と冷接
点との温度差に比例してサーモパイルの出力信号が発生
する。従って、サーモパイルの出力信号は、第1及び第
2の薄膜部8a,8bが夫々受光した赤外線量の差に比
例するので、本実施形態のサーモパイルの出力信号か
ら、第1及び第2の被測定物14a,14bから受光し
た赤外線量の差を検出することができる。
At this time, a thermopile hot junction is provided on the first thin film portion 8a, and a thermopile cold contact is provided on the second thin film portion 8b. An output signal of the thermopile is generated in proportion to the temperature difference. Accordingly, the output signal of the thermopile is proportional to the difference between the amounts of infrared rays received by the first and second thin film portions 8a and 8b, respectively. Therefore, the first and second measured signals are obtained from the output signal of the thermopile of the present embodiment. The difference between the amounts of infrared rays received from the objects 14a and 14b can be detected.

【0028】尚、本実施形態のサーモパイルの構造は、
実施形態1又は2と同様であるので、その説明は省略す
る。
The structure of the thermopile of this embodiment is as follows.
Since it is the same as the first or second embodiment, the description is omitted.

【0029】[0029]

【発明の効果】請求項1の発明は、上述のように、半導
体基板の上面に形成された薄膜と、半導体基板の異なる
部位を夫々貫通して設けられた第1及び第2の凹部と、
薄膜の一部を構成し夫々第1及び第2の凹部の天井部を
なし互いに熱的に絶縁された第1及び第2の薄膜部と、
薄膜上に熱電対がアレイ状に直列に形成されたサーモパ
イルと、第1の薄膜部上に形成されたサーモパイルの温
接点と、第2の薄膜部上に形成されたサーモパイルの冷
接点とを備えているので、第1及び第2の薄膜部が赤外
線を受光していない場合、第1及び第2の薄膜部の温度
は等しくなり、温接点と冷接点の温度差が発生しないの
で、オフセット電圧が発生しないという効果がある。
According to the first aspect of the present invention, the thin film formed on the upper surface of the semiconductor substrate is different from the thin film formed on the upper surface of the semiconductor substrate.
First and second concave portions provided through the respective portions,
The ceiling portions of the first and second concave portions which constitute a part of the thin film are respectively
A first and a second thin film part thermally insulated from each other;
A thermopile in which thermocouples are formed in series in an array on a thin film, a hot junction of a thermopile formed on a first thin film portion, and a cold junction of a thermopile formed on a second thin film portion Therefore, when the first and second thin film portions do not receive infrared rays, the temperatures of the first and second thin film portions become equal, and no temperature difference occurs between the hot junction and the cold junction, so that the offset voltage This has the effect that no occurrence occurs.

【0030】請求項2の発明は、半導体基板の上面に形
成された薄膜と、半導体基板の異なる部位を夫々貫通し
て設けられた第1及び第2の凹部と、薄膜の一部を構成
夫々第1及び第2の凹部の天井部をなし互いに熱的に
絶縁された第1及び第2の薄膜部と、薄膜上に夫々熱電
対がアレイ状に直列に形成され互いに逆極性に接続され
た第1及び第2のサーモパイルと、第1の薄膜部上に形
成された第1のサーモパイルの冷接点と、第2の薄膜部
上に形成された第2のサーモパイルの温接点と、第1及
び第2の薄膜部以外の薄膜上に形成された第1のサーモ
パイルの温接点及び第2のサーモパイルの冷接点とを備
えており、第1及び第2の薄膜部が赤外線を受光してい
ない場合、第1及び第2の薄膜部の熱容量が等しいの
で、両者の温度は等しくなり、逆極性に接続された第1
及び第2のサーモパイルに発生する熱起電力が互いに相
殺され、オフセット電圧が発生しないという効果があ
る。また、第1及び第2のサーモパイルの基準温度を熱
的に安定した第1及び第2の薄膜部以外の薄膜の温度と
しているので、基準温度の変動が少なく、赤外線検出装
置の出力信号が安定し、精度が向上するという効果もあ
る。
According to a second aspect of the present invention, a thin film formed on an upper surface of a semiconductor substrate and a thin film formed on a different portion of the semiconductor substrate are respectively penetrated.
First and second recessed portions provided, and first and second thin film portions that constitute a part of the thin film and form a ceiling portion of the first and second recessed portions and are thermally insulated from each other, First and second thermopiles in which thermocouples are respectively formed in series in an array on the thin film and connected in opposite polarities; a cold junction of the first thermopile formed on the first thin film portion; A second thermopile hot junction formed on the second thin film portion, a first thermopile hot junction and a second thermopile cold junction formed on the thin film other than the first and second thin film portions. When the first and second thin film portions do not receive infrared light, the first and second thin film portions have the same heat capacity, so that the temperatures of the first and second thin film portions are equal, and the first and second thin film portions are connected in opposite polarities. 1
The thermoelectromotive force generated in the second thermopile and the thermoelectric power generated in the second thermopile are offset each other, and there is an effect that no offset voltage is generated. Further, since the reference temperatures of the first and second thermopiles are set to the temperatures of the thin films other than the thermally stable first and second thin film portions, the reference temperature fluctuates little and the output signal of the infrared detecting device is stable. In addition, there is an effect that accuracy is improved.

【0031】請求項3の発明は、第1及び第2の薄膜部
が被測定物から受光する赤外線を交互に周期的に遮断す
る遮光手段を備えており、サーモパイルの出力信号が交
流信号となるので、信号処理が容易に行え、フィルタ等
を用いてノイズやオフセット電圧を除去することが出来
るという効果がある。請求項4の発明は、第1及び第2
の薄膜部が夫々異なる第1及び第2の被測定物から赤外
線を受光するための光学系レンズ等の集光手段を備えて
いるので、サーモパイルの出力信号から第1及び第2の
被測定物の赤外線量の差を検出することにより、異なる
2つの被測定物の赤外線量の差を非接触で検出できると
いう効果がある。
According to a third aspect of the present invention, the first and second thin film portions are provided with light shielding means for alternately and periodically blocking infrared rays received from the object to be measured, and the output signal of the thermopile becomes an AC signal. Therefore, there is an effect that signal processing can be easily performed, and noise and offset voltage can be removed using a filter or the like. The invention of claim 4 is characterized in that the first and second
Is provided with a light condensing means such as an optical lens for receiving infrared rays from different first and second DUTs, so that the first and second DUTs can be obtained from the output signal of the thermopile. By detecting the difference in the amount of infrared light, there is an effect that the difference in the amount of infrared light between two different DUTs can be detected in a non-contact manner.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(a)実施形態1の赤外線検出装置を示す平面
図である。 (b)同上の断面図である。
FIG. 1A is a plan view illustrating an infrared detection device according to a first embodiment. (B) It is sectional drawing same as the above.

【図2】(a)実施形態2の赤外線検出装置を示す平面
図である。 (b)同上の断面図である。
FIG. 2A is a plan view illustrating an infrared detection device according to a second embodiment. (B) It is sectional drawing same as the above.

【図3】実施形態3の赤外線検出装置を示す外観斜視図
である。
FIG. 3 is an external perspective view illustrating an infrared detection device according to a third embodiment.

【図4】同上の動作状態を示す波形図である。FIG. 4 is a waveform chart showing an operation state of the above.

【図5】実施形態4の赤外線検出装置を示す外観斜視図
である。
FIG. 5 is an external perspective view illustrating an infrared detection device according to a fourth embodiment.

【図6】(a)従来例の赤外線検出装置を示す平面図で
ある。 (b)同上の断面図である。
FIG. 6A is a plan view showing a conventional infrared detection device. (B) It is sectional drawing same as the above.

【符号の説明】[Explanation of symbols]

1 第1の金属 2 第2の金属 3 温接点 4 冷接点 7 半導体基板 8 薄膜 8a 第1の薄膜部 8b 第2の薄膜部 9a 第1の凹部 9b 第2の凹部 10 サーモパイル DESCRIPTION OF SYMBOLS 1 1st metal 2 2nd metal 3 Hot junction 4 Cold junction 7 Semiconductor substrate 8 Thin film 8a First thin film portion 8b Second thin film portion 9a First concave portion 9b Second concave portion 10 Thermopile

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) G01J 1/02 G01J 5/02 G01J 5/16 H01L 35/32 ──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int.Cl. 7 , DB name) G01J 1/02 G01J 5/02 G01J 5/16 H01L 35/32

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】半導体基板の上面に形成された薄膜と、
記半導体基板の異なる部位を夫々貫通して設けられた第
1及び第2の凹部と、前記薄膜の一部を構成し夫々前記
第1及び第2の凹部の天井部をなし互いに熱的に絶縁さ
れた第1及び第2の薄膜部と、前記薄膜上に熱電対がア
レイ状に直列に形成されたサーモパイルと、前記第1の
薄膜部上に形成された前記サーモパイルの温接点と、前
記第2の薄膜部上に形成された前記サーモパイルの冷接
点とを備えて成ることを特徴とする赤外線検出装置。
1. A a thin film formed on the upper surface of the semiconductor substrate, prior to
The third portion is provided through each of the different portions of the semiconductor substrate.
A first and second recess, configured respectively the part of the thin film
First and second thin film portions forming ceiling portions of first and second concave portions and thermally insulated from each other; a thermopile having thermocouples formed in series on the thin film in an array; An infrared detecting device comprising: a hot junction of the thermopile formed on the thin film portion; and a cold junction of the thermopile formed on the second thin film portion.
【請求項2】半導体基板の上面に形成された薄膜と、
記半導体基板の異なる部位を夫々貫通して設けられた第
1及び第2の凹部と、前記薄膜の一部を構成し夫々前記
第1及び第2の凹部の天井部をなし互いに熱的に絶縁さ
れた第1及び第2の薄膜部と、前記薄膜上に夫々熱電対
がアレイ状に直列に形成され互いに逆極性に接続された
第1及び第2のサーモパイルと、前記第1の薄膜部上に
形成された前記第1のサーモパイルの冷接点と、前記第
2の薄膜部上に形成された前記第2のサーモパイルの温
接点と、前記第1及び第2の薄膜部以外の前記薄膜上に
形成された前記第1のサーモパイルの温接点及び前記第
2のサーモパイルの冷接点とを備えて成ることを特徴と
する赤外線検出装置。
Wherein the thin film formed on the upper surface of the semiconductor substrate, prior to
The third portion is provided through each of the different portions of the semiconductor substrate.
A first and second recess, configured respectively the part of the thin film
First and second thin film portions which form ceiling portions of the first and second concave portions and are thermally insulated from each other, and thermocouples are formed on the thin film in series in an array, respectively, and connected in opposite polarities. First and second thermopiles, a cold junction of the first thermopile formed on the first thin film portion, and a hot junction of the second thermopile formed on the second thin film portion And a hot junction of the first thermopile and a cold junction of the second thermopile formed on the thin film other than the first and second thin film portions. .
【請求項3】前記第1及び第2の薄膜部が被測定物から
受光する赤外線を交互に周期的に遮断する遮光手段を備
えて成ることを特徴とする請求項1又は2記載の赤外線
検出装置。
3. The infrared detection device according to claim 1, wherein said first and second thin film portions are provided with light shielding means for alternately and periodically blocking infrared light received from an object to be measured. apparatus.
【請求項4】前記第1及び第2の薄膜部が夫々異なる第
1及び第2の被測定物から赤外線を受光するための光学
系レンズ等の集光手段を備えて成ることを特徴とする請
求項1又は2記載の赤外線検出装置。
4. The apparatus according to claim 1, wherein said first and second thin film portions are provided with light collecting means such as an optical lens for receiving infrared rays from different first and second objects to be measured. The infrared detection device according to claim 1.
JP07248102A 1995-09-26 1995-09-26 Infrared detector Expired - Fee Related JP3101190B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07248102A JP3101190B2 (en) 1995-09-26 1995-09-26 Infrared detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07248102A JP3101190B2 (en) 1995-09-26 1995-09-26 Infrared detector

Publications (2)

Publication Number Publication Date
JPH0989655A JPH0989655A (en) 1997-04-04
JP3101190B2 true JP3101190B2 (en) 2000-10-23

Family

ID=17173257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07248102A Expired - Fee Related JP3101190B2 (en) 1995-09-26 1995-09-26 Infrared detector

Country Status (1)

Country Link
JP (1) JP3101190B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2002075262A1 (en) * 2001-03-16 2004-07-08 セイコーエプソン株式会社 Infrared detector, method of manufacturing the same, and temperature measuring device
US20040187904A1 (en) * 2003-02-05 2004-09-30 General Electric Company Apparatus for infrared radiation detection
DE102006062772B4 (en) * 2006-10-31 2012-03-01 Webasto Ag Method for providing an anti-jamming protection for moving parts of a motor vehicle, in particular for realizing an anti-jamming protection in a convertible vehicle
JP2009105100A (en) * 2007-10-19 2009-05-14 Furukawa Electric Co Ltd:The Temperature element and temperature detecting module, and temperature detection method, heating/cooling module, and temperature control method therefor
JP2010225608A (en) * 2009-03-19 2010-10-07 Mitsubishi Materials Corp Thermoelectric conversion element
JP2010225609A (en) * 2009-03-19 2010-10-07 Mitsubishi Materials Corp Thermoelectric conversion element
JP6467254B2 (en) * 2015-03-16 2019-02-06 ヤマハファインテック株式会社 Infrared sensor

Also Published As

Publication number Publication date
JPH0989655A (en) 1997-04-04

Similar Documents

Publication Publication Date Title
US6300554B1 (en) Method of fabricating thermoelectric sensor and thermoelectric sensor device
EP0354369B1 (en) Infrared detector
US6043493A (en) Infrared sensor and method for compensating temperature thereof
EP1333504A3 (en) Monolithically-integrated infrared sensor
JP3101190B2 (en) Infrared detector
US8981296B2 (en) Terahertz dispersive spectrometer system
US4883364A (en) Apparatus for accurately measuring temperature of materials of variable emissivity
JPH11258038A (en) Infrared ray sensor
US5322361A (en) Method and apparatus for measuring temperature
US6204502B1 (en) Heat radiation detection device and presence detection apparatus using same
JPH0249124A (en) Thermopile
JP3733847B2 (en) Thermometer
JP3217533B2 (en) Infrared sensor
JP2002048649A5 (en)
US4513201A (en) Thermocouple detector
JP3216523B2 (en) Infrared detector
JP3775830B2 (en) Infrared detector
JPS61259580A (en) Thermopile
Sarro Integrated silicon thermopile infrared detectors.
JPH0394127A (en) Infrared ray sensor
JP3388207B2 (en) Thermoelectric sensor device and method of manufacturing the same
JP3008210B2 (en) Speed detecting device and size measuring device using array type thermopile
JPH0539467Y2 (en)
JPH07140008A (en) Radiation thermometer
JPH11258040A (en) Thermopile type infrared ray sensor

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000808

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070818

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080818

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090818

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090818

Year of fee payment: 9

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090818

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090818

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100818

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110818

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120818

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130818

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees