JP3100830B2 - Method for producing low oxygen metal powder products - Google Patents

Method for producing low oxygen metal powder products

Info

Publication number
JP3100830B2
JP3100830B2 JP06112280A JP11228094A JP3100830B2 JP 3100830 B2 JP3100830 B2 JP 3100830B2 JP 06112280 A JP06112280 A JP 06112280A JP 11228094 A JP11228094 A JP 11228094A JP 3100830 B2 JP3100830 B2 JP 3100830B2
Authority
JP
Japan
Prior art keywords
capsule
less
powder
metal powder
product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP06112280A
Other languages
Japanese (ja)
Other versions
JPH07300603A (en
Inventor
彰 村瀬
優 江島
幹也 山名
源隆 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Special Steel Co Ltd
Original Assignee
Sanyo Special Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Special Steel Co Ltd filed Critical Sanyo Special Steel Co Ltd
Priority to JP06112280A priority Critical patent/JP3100830B2/en
Publication of JPH07300603A publication Critical patent/JPH07300603A/en
Application granted granted Critical
Publication of JP3100830B2 publication Critical patent/JP3100830B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、低酸素金属粉末製品の
製造方法に関し、特に低酸素の高速度工具鋼や合金工具
鋼の棒管材等の製造に好適な製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a low-oxygen metal powder product, and more particularly to a method suitable for producing low-oxygen high-speed tool steel and alloy tool steel rods and tubes.

【0002】[0002]

【従来の技術】高速度工具鋼や合金工具鋼は多くの元素
が添加されているため、溶製法による製造ではインゴッ
トに偏析が起こりやすく均一な炭化物粒度で微細均一な
組成を得ることは困難である。しかし、粉末法ではバル
クとしての粉末に殆ど偏析がないので、これを固めて焼
結すれば、偏析を少なくかつ結晶粒を微細にでき、さら
に炭化物を微細にかつ均一に分散させることができ、し
たがって靱性が高く、かつ、切削性の良好な鋼を製造す
ることが可能である。
2. Description of the Related Art Since high-speed tool steel and alloy tool steel contain many elements, it is difficult for segregation to occur in an ingot and to obtain a fine and uniform composition with a uniform carbide particle size in the ingot production. is there. However, in the powder method, since there is almost no segregation in the powder as a bulk, if this is solidified and sintered, segregation can be reduced and the crystal grains can be made fine, and the carbide can be finely and uniformly dispersed, Therefore, it is possible to manufacture steel having high toughness and good machinability.

【0003】しかし、従来の粉末法による高速度鋼の製
造では、アトマイズ法により得られた粉末を熱間静水圧
プレス(HIP)で加圧焼結したのち鍛造または押出し
により製品とするか、あるいは、冷間静水圧プレス(C
IP)により加圧して充填率を上げておいてから加熱し
てのち鍛造または押出しして製品とするので、粉末製造
工程において粉末表面が酸化され製品自体の酸素含有量
が高くなり、製品の抗折力等の靱性が低くなる問題があ
った。
However, in the production of high-speed steel by the conventional powder method, the powder obtained by the atomization method is pressure-sintered by a hot isostatic press (HIP) and then forged or extruded into a product. , Cold isostatic press (C
Since the product is pressurized by IP) to increase the filling rate, heated, and then forged or extruded to obtain a product, the powder surface is oxidized in the powder manufacturing process and the oxygen content of the product itself is increased, thereby reducing the product resistance. There was a problem that toughness such as bending strength was lowered.

【0004】上記の問題点を解決するものとして、アト
マイズ粉末を高温下で真空に引いて脱気して酸素量を下
げて熱間鍛造する方法が、特開平2-138403号公報に提案
されている。該公報に記載の方法では真空雰囲気に近い
高温雰囲気で脱気されるため、鋼粉末中のCとOが反応
して自己還元作用が促進され、製品中の酸素濃度を低く
することができるとされている。
As a method for solving the above-mentioned problems, Japanese Patent Application Laid-Open No. 2-138403 proposes a method in which an atomized powder is evacuated and degassed at a high temperature to reduce the amount of oxygen and hot forging. I have. In the method described in this publication, since degassing is performed in a high-temperature atmosphere close to a vacuum atmosphere, C and O in the steel powder react with each other to promote the self-reducing action, so that the oxygen concentration in the product can be reduced. Have been.

【0005】しかし、この方法においても、高温で真空
に脱気するため複雑な設備がかかりかつ工程が複雑であ
り、しかも上記の真空還元するのに時間を要するためコ
ストが高くなり実用性になお問題があった。
[0005] However, even in this method, degassing is carried out at a high temperature in a vacuum, so that complicated equipment is required and the process is complicated. Moreover, the above-mentioned vacuum reduction requires time, so that the cost is high and practicality is still low. There was a problem.

【0006】[0006]

【発明が解決しようとする課題】本発明が解決しようと
する課題は、上記のような従来技術の問題点を解消する
ことにあり、複雑な設備を必要とすることなく、工程が
簡単で、実用的で、かつコスト的に安価な低酸素の粉末
高速度工具鋼や合金工具鋼の棒管状製品の製造方法を提
供することにある。
The problem to be solved by the present invention is to solve the above-mentioned problems of the prior art, and does not require complicated equipment, and the process is simple. It is an object of the present invention to provide a method for producing a rod-like tubular product of a low-oxygen powdered high-speed tool steel or an alloy tool steel that is practical and inexpensive.

【0007】[0007]

【課題を解決するための手段】上記の課題を解決するた
めの、本発明における低酸素金属粉末製品の製造方法
は、1)炭素を含有する金属アトマイズ粉末を押出しカ
プセルに充填率85%以下になるように充填し、室温で
カプセル内を10-1atm以下に減圧して密封した後、該
カプセルを1000℃以上に徐加熱して一定時間保持し
た後、熱間押出しすること、2)炭素を含有する金属ア
トマイズ粉末を押出しカプセルに充填率85%以下にな
るように充填し、500℃以下の低温域でカプセル内を
10-1atm以下に脱気して密封した後、該カプセルを1
000℃以上に徐加熱して5MPa以下の低加圧又は無
加圧で一定時間保持した後、熱間静水圧プレスを行い次
いで、熱間鍛造することからなる。
In order to solve the above-mentioned problems, a method for producing a low-oxygen metal powder product according to the present invention comprises the following steps: 1) Filling a carbon atomized metal atomized powder into an extruded capsule to a filling rate of 85% or less. After the capsule is sealed at room temperature under reduced pressure of 10 -1 atm or less, the capsule is gradually heated to 1000 ° C. or more and held for a certain period of time, followed by hot extrusion. 2) Carbon Is filled into an extruded capsule so as to have a filling ratio of 85% or less, and the inside of the capsule is degassed to 10 -1 atm or less in a low temperature range of 500 ° C or less and sealed.
After gradually heating to 000 ° C. or more and holding at a low or no pressure of 5 MPa or less for a certain period of time, hot isostatic pressing is performed, and then hot forging is performed .

【0008】[0008]

【作用】本発明は、酸素還元に必要な充分な量の炭素を
含有する場合はその炭素を含有するアトマイズ金属粉末
を、カプセル内に充填率85%以下になるように充填す
る。次いで、1000℃以上の温度に徐加熱し、一定時
間保持することによりカプセル内の金属粉末表面の酸化
物を均一に還元する。カプセル内の粉末の充填率は85
%以下にすることにより、アトマイズ金属粉末にはフリ
ー界面が多く残存し、粉末中の炭素による酸素の還元作
用がより効果的に促進される。さらに、カプセルは10
-1atm以下に減圧されているので、カプセル中の酸素の
量もその分だけ少なく、 低酸素の粉末製品が得られ
る。
According to the present invention, when a sufficient amount of carbon necessary for oxygen reduction is contained, an atomized metal powder containing the carbon is filled in the capsule so as to have a filling rate of 85% or less. Then, the oxide on the surface of the metal powder in the capsule is uniformly reduced by gradually heating to a temperature of 1000 ° C. or more and holding for a certain time. The filling rate of powder in the capsule is 85
% Or less, many free interfaces remain in the atomized metal powder, and the reduction of oxygen by carbon in the powder is more effectively promoted. In addition, 10 capsules
Since the pressure is reduced to -1 atm or less, the amount of oxygen in the capsule is correspondingly small, and a low oxygen powder product can be obtained.

【0009】[0009]

【実施例】本発明の実施例として、表1に記載の化学成
分の、平均粒径100μmのガスアトマイズ金属粉末を
軟鋼板製の直径150mm、高さ680mmの円筒カプ
セルに表2及び表3に示す充填率で充填し、溶接により
仮封して室温で脱気したのち密封した。
EXAMPLES Examples of the present invention are shown in Tables 2 and 3 in which gas atomized metal powder having an average particle diameter of 100 μm and having the chemical components shown in Table 1 is formed into a mild steel plate cylindrical capsule having a diameter of 150 mm and a height of 680 mm. It was filled at a filling rate, temporarily sealed by welding, deaerated at room temperature, and then sealed.

【0010】[0010]

【表1】 [Table 1]

【0011】次いで、500℃以下の低温域で脱気し、
密封した後、このカプセルを1000℃以上の成分に応
じた適宜の高温に徐加熱昇温し、粉末中の炭素による還
元反応を進行させて脱酸するために該温度に一定時間保
持したのち、さらに成分に応じた熱間押出し最適温度に
一定時間保持したのち熱間押出し加工を行うか、あるい
は、1000℃以上に徐加熱し、5MPa以下の低加圧
状態で成分に応じた最適熱間静水圧プレス温度に一定時
間保持したのち昇温し、通常の熱間静水圧プレス後、鍛
造により成形加工を行った。これらの加熱保持温度、保
持時間、熱間押出し加工条件あるいは熱間静水圧プレス
加工条件、および得られた製品の酸素含有量を表2及び
表3に示す。
Next, deaeration is performed at a low temperature of 500 ° C. or less,
After sealing, the capsule is gradually heated to an appropriate high temperature according to the component of 1000 ° C. or higher, and is kept at the temperature for a certain period of time in order to promote a reduction reaction by carbon in the powder and deoxidize the capsule. Further, after maintaining the temperature at the optimum temperature of the hot extrusion according to the component for a certain period of time, perform the hot extrusion process, or gradually heat the material to 1000 ° C or more, and perform the optimal hot static treatment according to the component at a low pressure of 5 MPa or less. After maintaining at a hydraulic press temperature for a certain period of time, the temperature was raised, and after normal hot isostatic pressing, forming was performed by forging. Tables 2 and 3 show these heating holding temperature, holding time, hot extrusion working conditions or hot isostatic pressing working conditions, and the oxygen content of the obtained products.

【0012】従来法として、上記と同様に平均粒径10
0μmのガスアトマイズ金属粉末を軟鋼板製の直径15
0mm、高さ680mmの円筒カプセルに充填したの
ち、冷間静水圧プレスにより加圧成形して得たビレット
を所定の温度に加熱したのち熱間押出し加工して製品と
したもの、および、加圧しつつ昇温して所定の温度で熱
間静水圧プレスしたのち鍛造加工により製品としたも
の、の酸素量を表2及び表3に示す。
As a conventional method, an average particle size of 10
0 μm gas atomized metal powder is made of mild steel
After filling into a cylindrical capsule having a height of 0 mm and a height of 680 mm, a billet obtained by press-molding with a cold isostatic press is heated to a predetermined temperature and then hot-extruded into a product, and the product is pressed. Tables 2 and 3 show the oxygen content of the product which was heated while being heated and subjected to hot isostatic pressing at a predetermined temperature and then forged.

【0013】[0013]

【表2】 [Table 2]

【0014】[0014]

【表3】 [Table 3]

【0015】表2及び表3からわかるように、従来法に
よる製品は酸素含有量が80〜110ppm と高く、これ
は表1の出発原料中の酸素含有量と殆ど同じである。こ
れに対し、本発明の製品の中心部における酸素含有量は
20〜50ppm であり、さらに外周部においても70pp
m 以下であり、極めて低酸素の製品が短時間で得られる
ことがわかる。
As can be seen from Tables 2 and 3, the products according to the prior art have a high oxygen content of 80-110 ppm, which is almost the same as the oxygen content in the starting materials in Table 1. In contrast, the oxygen content at the center of the product of the present invention is
20 to 50 ppm, and 70 pp at the outer periphery.
m or less, which indicates that an extremely low oxygen product can be obtained in a short time.

【0016】[0016]

【発明の効果】以上説明したように、本発明は、還元に
必要な量の炭素を含有するアトマイズ金属粉末を、押出
しカプセルに充填率85%以下になるように充填するこ
とにより、アトマイズ金属粉末にフリー界面を出来るだ
け多く残存させ、さらに、カプセル内を10-1atm以下
に減圧して酸素量を少なくしているので、加熱保持する
だけで粉末中の炭素による酸素の還元作用をより効果的
に進行でき従来法に比してより低酸素の粉末製品が得ら
れる。
As described above, according to the present invention, an atomized metal powder containing an amount of carbon necessary for reduction is filled into an extruded capsule so as to have a filling rate of 85% or less. As much free interface as possible remains, and the amount of oxygen is reduced by reducing the pressure in the capsule to 10 -1 atm or less, so the effect of reducing the oxygen by the carbon in the powder is more effective just by heating and holding. And a powder product having a lower oxygen content than the conventional method can be obtained.

フロントページの続き (72)発明者 阿部 源隆 兵庫県姫路市飾磨区中島字一文字3007番 地 山陽特殊製鋼株式会社内 (56)参考文献 特開 昭49−61008(JP,A) 特開 平3−264607(JP,A) 特開 平5−43957(JP,A) (58)調査した分野(Int.Cl.7,DB名) B22F 1/00 - 8/00 C22C 1/04 - 1/05 C22C 33/02 Continuation of the front page (72) Inventor Gentaka Abe 3007 one character Nakajima character in Shima, Himeji City, Hyogo Prefecture Inside Sanyo Special Steel Co., Ltd. (56) References JP-A-49-61008 (JP, A) JP-A-3 -264607 (JP, A) JP-A-5-43957 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) B22F 1/00-8/00 C22C 1/04-1/05 C22C 33/02

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 炭素を含有する金属アトマイズ粉末を押
出しカプセルに充填率85%以下になるように充填し、
室温でカプセル内を10-1atm以下に減圧して密封した
後、該カプセルを1000℃以上に徐加熱して一定時間
保持した後、熱間押出しすることを特徴とする低酸素金
属粉末製品の製造方法。
1. An extruded capsule is filled with a carbon atomized metal atomized powder so as to have a filling rate of 85% or less,
After sealing the capsule at a room temperature by reducing the pressure inside the capsule to 10 -1 atm or less, gradually heating the capsule to 1000 ° C. or more, holding the capsule for a certain period of time, and then hot-extruding the product. Production method.
【請求項2】 炭素を含有する金属アトマイズ粉末を押
出しカプセルに充填率85%以下になるように充填し、
500℃以下の低温域でカプセル内を10-1atm以下に
脱気し、密封した後、該カプセルを1000℃以上に徐
加熱して5MPa以下の低加圧又は無加圧で一定時間保
持した後、熱間静水圧プレスを行い、次いで熱間鍛造す
ることを特徴とする低酸素金属粉末製品の製造方法。
2. Extruded capsules are filled with carbon atomized metal atomized powder so as to have a filling rate of 85% or less.
After degassing the inside of the capsule to 10 -1 atm or less in a low temperature range of 500 ° C or less and sealing, the capsule was gradually heated to 1000 ° C or more and kept at a low pressure or no pressure of 5 MPa or less for a certain period of time. Thereafter, hot isostatic pressing is performed, followed by hot forging.
JP06112280A 1994-04-27 1994-04-27 Method for producing low oxygen metal powder products Expired - Fee Related JP3100830B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06112280A JP3100830B2 (en) 1994-04-27 1994-04-27 Method for producing low oxygen metal powder products

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06112280A JP3100830B2 (en) 1994-04-27 1994-04-27 Method for producing low oxygen metal powder products

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP31769599A Division JP3328620B2 (en) 1999-11-09 1999-11-09 Method for producing low oxygen metal powder products

Publications (2)

Publication Number Publication Date
JPH07300603A JPH07300603A (en) 1995-11-14
JP3100830B2 true JP3100830B2 (en) 2000-10-23

Family

ID=14582753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06112280A Expired - Fee Related JP3100830B2 (en) 1994-04-27 1994-04-27 Method for producing low oxygen metal powder products

Country Status (1)

Country Link
JP (1) JP3100830B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012041583A (en) * 2010-08-17 2012-03-01 Sanyo Special Steel Co Ltd Method for producing titanium product or titanium alloy product

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10094007B2 (en) * 2013-10-24 2018-10-09 Crs Holdings Inc. Method of manufacturing a ferrous alloy article using powder metallurgy processing
GB2536483B (en) * 2015-03-19 2019-10-09 Avic Beijing Institute Of Aeronautical Mat Avic Biam A method of Forming a Metal Component

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012041583A (en) * 2010-08-17 2012-03-01 Sanyo Special Steel Co Ltd Method for producing titanium product or titanium alloy product

Also Published As

Publication number Publication date
JPH07300603A (en) 1995-11-14

Similar Documents

Publication Publication Date Title
DE2419014C3 (en) Method of manufacturing stainless steel pipes and application of the method to the manufacture of composite pipes
EP2376248B1 (en) Method for the manufacture of a metal part
EP2578336A1 (en) Titanium alloy compound powder combined with copper powder, chrome powder or iron powder, titanium alloy material using said powder as raw material and production method thereof
US5445787A (en) Method of extruding refractory metals and alloys and an extruded product made thereby
EP0174984A4 (en) Liquid phase bonded amorphous materials and process for preparation thereof.
US3704115A (en) High alloy steel powders and their consolidation into homogeneous tool steel
EP1044286B1 (en) Dispersion hardening alloy and method for the production of the alloy
JPH0130898B2 (en)
JP2012041583A (en) Method for producing titanium product or titanium alloy product
AT406349B (en) METHOD FOR PRODUCING A METAL POWDER WITH AN OXYGEN CONTENT LESS THAN 300 PPM, AND METHOD FOR PRODUCING MOLDED POWDER METALURGICAL METAL PRODUCTS FROM THIS METAL POWDER
US5384087A (en) Aluminum-silicon carbide composite and process for making the same
JP3100830B2 (en) Method for producing low oxygen metal powder products
EP0202886B1 (en) Canless method for hot working gas atomized powders
US4569822A (en) Powder metal process for preparing computer disk substrates
JP3071118B2 (en) Method for producing NiAl intermetallic compound to which fine additive element is added
JP3113144B2 (en) Method for producing high density sintered titanium alloy
JP3328620B2 (en) Method for producing low oxygen metal powder products
WO1996024455A1 (en) Processes for extruding powdered metals including tantalum and niobium
JPS63255331A (en) Formation of ti-al intermetallic-compound member
JP2689486B2 (en) Method for producing low oxygen powder high speed tool steel
ZA200405764B (en) Stabilized grain size refractory metal power metallurgy mill products.
JPS6043423B2 (en) Method for manufacturing tool alloy with composite structure
JPS63247321A (en) Formation of ti-al intermetallic compound member
DE2462747C2 (en) Extruded billets for the powder metallurgical production of stainless steel pipes
JP3582061B2 (en) Sintered material and manufacturing method thereof

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080818

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090818

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100818

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100818

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110818

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees