JP3099945B2 - Electromagnetic relay - Google Patents

Electromagnetic relay

Info

Publication number
JP3099945B2
JP3099945B2 JP08282307A JP28230796A JP3099945B2 JP 3099945 B2 JP3099945 B2 JP 3099945B2 JP 08282307 A JP08282307 A JP 08282307A JP 28230796 A JP28230796 A JP 28230796A JP 3099945 B2 JP3099945 B2 JP 3099945B2
Authority
JP
Japan
Prior art keywords
armature
permanent magnet
coil
contact
electromagnetic relay
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP08282307A
Other languages
Japanese (ja)
Other versions
JPH10125203A (en
Inventor
茂 葛西
浩 渉里
立身 井手
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP08282307A priority Critical patent/JP3099945B2/en
Publication of JPH10125203A publication Critical patent/JPH10125203A/en
Application granted granted Critical
Publication of JP3099945B2 publication Critical patent/JP3099945B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H50/00Details of electromagnetic relays
    • H01H50/16Magnetic circuit arrangements
    • H01H50/163Details concerning air-gaps, e.g. anti-remanence, damping, anti-corrosion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H51/00Electromagnetic relays
    • H01H51/22Polarised relays

Landscapes

  • Contacts (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電磁リレーに関
し、特にコイル組立体中央の永久磁石上で接極子組立体
が転動する電磁リレーに関する。
The present invention relates to an electromagnetic relay, and more particularly, to an electromagnetic relay in which an armature assembly rolls on a permanent magnet in the center of a coil assembly.

【0002】[0002]

【従来の技術】従来、この種の電磁リレーはOA機器、
通信機器、計測機器等の一般電子機器において信号切り
換えを目的として用いられている。図3は従来の電磁リ
レーの分解斜視図である。従来の電磁リレーは、接極子
組立体1、コイル組立体7、絶縁体基台13、カバー1
7より構成されている。実装は、絶縁体基台13にコイ
ル組立体を積み重ね、絶縁体基台13のコイル端子15
とコイル組立体7のコイル導出端子部11を溶接等の方
法により結合する。次にコイル組立体7上に接極子組立
体1を実装し、ヒンジばね4a、4bと絶縁体基台13
の中立端子16をそれぞれ溶接等の方法により結合す
る。最後にカバー17を装着し、封止材によって密閉し
てリレーの組立を完了する。
2. Description of the Related Art Conventionally, this type of electromagnetic relay has been used for OA equipment,
It is used for switching signals in general electronic devices such as communication devices and measuring devices. FIG. 3 is an exploded perspective view of a conventional electromagnetic relay. A conventional electromagnetic relay includes an armature assembly 1, a coil assembly 7, an insulator base 13, a cover 1
7. The mounting is performed by stacking the coil assembly on the insulator base 13 and coil terminals 15 of the insulator base 13.
And the coil lead-out terminal portion 11 of the coil assembly 7 are joined by a method such as welding. Next, the armature assembly 1 is mounted on the coil assembly 7, and the hinge springs 4a and 4b and the insulator base 13 are mounted.
Are connected by a method such as welding. Finally, the cover 17 is attached and sealed with a sealing material to complete the assembly of the relay.

【0003】接極子組立体1は、裏面先端に8ポイント
の可動接点2を有する可動接点ばね3a、3b及びヒン
ジばね4a、4bを接極子5の両長手方向側面に絶縁固
定体6によって一体成形したものである。コイル組立体
7は絶縁体からなるコイルスプール10と一体成形され
た、コ字形鉄心12、コイルスプール10中央穴部に配
置した永久磁石9、又、コイルスプール10に巻回され
ているコイル8より構成されている。
The armature assembly 1 has movable contact springs 3a, 3b and hinge springs 4a, 4b each having an 8-point movable contact 2 at the front end of the back surface, and are integrally formed on both longitudinal side surfaces of the armature 5 by an insulating fixed body 6. It was done. The coil assembly 7 includes a U-shaped iron core 12 integrally formed with a coil spool 10 made of an insulator, a permanent magnet 9 disposed in a center hole of the coil spool 10, and a coil 8 wound around the coil spool 10. It is configured.

【0004】コイルスプール10中央穴部に収納されて
いる永久磁石9は、上部が接極子組立体1の支点部と下
部がコ字形鉄心12中央と接触している。コイルスプー
ル10に巻回されているコイル8は、コイル組立体7の
両短手方向側面に備えるコイル導出部11と導通があ
る。絶縁体基台13は、コイル組立体7実装側面が開い
た箱型絶縁体である。ベースには接極子組立体1の可動
接点2と対応した固定接点14が固着され、接点端子を
形成している。中立端子16、コイル端子15はそれぞ
れ接極子組立体1のヒンジバネ4a、4b、コイル組立
体7のコイル導出部11と溶接等の手段により結合す
る。
The upper part of the permanent magnet 9 housed in the center hole of the coil spool 10 is in contact with the fulcrum of the armature assembly 1 and the lower part thereof is in contact with the center of the U-shaped iron core 12. The coil 8 wound around the coil spool 10 is electrically connected to the coil lead-out portions 11 provided on both short side surfaces of the coil assembly 7. The insulator base 13 is a box-shaped insulator having an open side surface on which the coil assembly 7 is mounted. A fixed contact 14 corresponding to the movable contact 2 of the armature assembly 1 is fixed to the base to form a contact terminal. The neutral terminal 16 and the coil terminal 15 are respectively coupled to the hinge springs 4a and 4b of the armature assembly 1 and the coil lead-out portion 11 of the coil assembly 7 by means such as welding.

【0005】次に従来の電磁リレーの動作原理について
述べる。図4(a)は電磁リレーの無励磁状態における
断面図を、(b)は励磁状態を開始し接極子が転動途中
の断面図を、(c)は励磁により接極子が転動を終えた
状態を示す。
Next, the operation principle of the conventional electromagnetic relay will be described. 4A is a cross-sectional view of the electromagnetic relay in a non-excited state, FIG. 4B is a cross-sectional view of the armature being started to be excited and the armature is rolling, and FIG. It shows the state that it was turned on.

【0006】無励磁状態では、永久磁石9より発する磁
束とヒンジばねの力により接極子端部は、一方がコ字形
鉄心12端部に吸引している。この時、可動ばね3の先
端に配置する可動接点2は、これと対向して配置してい
る固定接点14と接触している。励磁は絶縁体基台13
のコイル端子に所定の電圧を印加するによって行われ、
これによってコ字形鉄心12及び接極子5間に磁束が生
ずる。この磁束が無励磁状態の磁束を打ち消し、且つ他
方の接極子5とコ字形鉄心12間に磁束が生ずるため、
接極子5は支点を中心に転動し、接極子5とコ字形鉄心
12が吸引する。この時、吸引された接極子5と同方向
に備えられた可動ばね3の先端に配置する可動接点2
は、これと対向して配置している固定接点14と接触す
る。又接極子5の復旧はコイル電圧を遮断すると、ヒン
ジばねの力と永久磁石9の吸引により接極子5は復旧し
無励磁状態に戻る。この動作により、電磁リレーは信号
の切り替えを行う。
In the non-excitation state, one end of the armature is attracted to the end of the U-shaped iron core 12 by the magnetic flux generated from the permanent magnet 9 and the force of the hinge spring. At this time, the movable contact 2 disposed at the tip of the movable spring 3 is in contact with the fixed contact 14 disposed opposite thereto. Excitation is on insulator base 13
Is performed by applying a predetermined voltage to the coil terminals of
As a result, a magnetic flux is generated between the U-shaped iron core 12 and the armature 5. Since this magnetic flux cancels out the magnetic flux in the non-excited state, and a magnetic flux is generated between the other armature 5 and the U-shaped iron core 12,
The armature 5 rolls around the fulcrum, and the armature 5 and the U-shaped iron core 12 attract. At this time, the movable contact 2 disposed at the tip of the movable spring 3 provided in the same direction as the attracted armature 5
Are in contact with the fixed contact 14 disposed opposite thereto. When the coil voltage is cut off, the armature 5 is restored by the force of the hinge spring and the attraction of the permanent magnet 9, and the armature 5 is restored and returns to the non-excited state. With this operation, the electromagnetic relay switches signals.

【0007】次に接極子5、永久磁石9間の接触部につ
いて説明する。図5は接極子5と永久磁石9間の接触部
の拡大図である。接極子5は母材が軟鉄等であり、その
最表面外層はニッケル皮膜層18aにより覆われてい
る。ニッケル皮膜層の厚さは2〜10μmであり、その
生成方法は電解メッキ、無電解メッキ、及び蒸着等があ
る。接極子5の支点部の形状は半円柱であり、コイル電
圧の印加に伴い転動を行う。一方、永久磁石9は母材が
希土類金属系材料であり、その最表面外層はニッケル皮
膜層18bによって覆われ、形状は平滑である。ニッケ
ル皮膜層の厚さは2〜10μmであり、その生成方法は
電解メッキ、無電解メッキ、及び蒸着等がある。
Next, a contact portion between the armature 5 and the permanent magnet 9 will be described. FIG. 5 is an enlarged view of a contact portion between the armature 5 and the permanent magnet 9. The base material of the armature 5 is soft iron or the like, and the outermost surface layer is covered with a nickel coating layer 18a. The thickness of the nickel film layer is 2 to 10 μm, and the formation method includes electrolytic plating, electroless plating, and vapor deposition. The shape of the fulcrum portion of the armature 5 is a semi-cylindrical column, and rolls with application of a coil voltage. On the other hand, the base material of the permanent magnet 9 is a rare earth metal-based material, the outermost surface layer of which is covered with a nickel coating layer 18b, and has a smooth shape. The thickness of the nickel film layer is 2 to 10 μm, and the formation method includes electrolytic plating, electroless plating, and vapor deposition.

【0008】コイル電圧印加時においては、接極子5が
転動するが、接極子5の回転中心と接極子5と永久磁石
9の接触部が一致しないため、接触部は転動と同時に摺
動する。この摺動により接極子5支点接触部は、摩擦力
F=μNを受ける。ここでμは接極子5と永久磁石9の
接触部の摩擦係数を表し、Nは永久磁石9による垂直抗
力を表す。摩擦係数μは、ニッケル金属同士の接触であ
るため、初期状態においては約0.3であるが、多数回
動作後において摩擦力により接極子5及び永久磁石9の
最表面外層であるニッケル層が剥離し、摩耗紛が生成す
る。
When the coil voltage is applied, the armature 5 rolls, but since the center of rotation of the armature 5 does not coincide with the contact portion between the armature 5 and the permanent magnet 9, the contact portion slides simultaneously with the rolling. I do. This sliding causes the armature 5 fulcrum contact portion to receive a frictional force F = μN. Here, μ represents a coefficient of friction of a contact portion between the armature 5 and the permanent magnet 9, and N represents a normal force by the permanent magnet 9. The friction coefficient μ is about 0.3 in the initial state because of the contact between the nickel metals, but after a number of operations, the nickel layer, which is the outermost outer layer of the armature 5 and the permanent magnet 9, is formed by frictional force. Exfoliates and forms abrasion powder.

【0009】接極子と永久磁石間の摩擦力を低下させ、
摩耗紛の低減を目的とした構造として、例えば実開平1
−71843号公報に記載の改良例がある。図6は前記
公報を説明するための電磁リレーの断面図である。この
例においては、永久磁石9表面に接点グリース22を塗
布することによって接極子20と永久磁石9間の摩擦係
数を低下させ、電磁リレーの動作時に障害となる金属摩
耗紛の発生を抑制する効果がある。
Reducing the frictional force between the armature and the permanent magnet,
As a structure for the purpose of reducing abrasion powder, for example,
There is an improved example described in -71843. FIG. 6 is a sectional view of an electromagnetic relay for explaining the above publication. In this example, the effect of reducing the friction coefficient between the armature 20 and the permanent magnet 9 by applying the contact grease 22 to the surface of the permanent magnet 9 and suppressing the generation of metal abrasion powder that becomes an obstacle during the operation of the electromagnetic relay. There is.

【0010】[0010]

【発明が解決しようとする課題】問題点は、接極子の転
動及びそれに伴う摺動運動によって電磁リレー特性の長
期信頼性を著しく損なうことである。これは接極子と永
久磁石の接触部が転動と摺動運動により摩耗し、摩耗紛
が生成され、接極子支点部の動作を阻害するためであ
る。金属摩耗紛が生成する理由は、接極子及び永久磁石
の最表面外層がニッケル同士であるため、摩擦係数が大
きく凝着性が高いためである。
The problem is that the long-term reliability of the characteristics of the electromagnetic relay is significantly impaired due to the rolling of the armature and the accompanying sliding movement. This is because the contact portion between the armature and the permanent magnet is worn by the rolling and sliding motion, and wear powder is generated, which hinders the operation of the armature fulcrum. The reason why the metal wear powder is generated is that since the outermost outer layers of the armature and the permanent magnet are made of nickel, the friction coefficient is large and the adhesion is high.

【0011】よって本発明の目的は、多数回動作後にお
いても電磁リレーの特性値が安定する長期信頼性の高い
リレーを提供することにある。
SUMMARY OF THE INVENTION It is therefore an object of the present invention to provide a relay having a long-term reliability in which the characteristic value of an electromagnetic relay is stable even after many operations.

【0012】[0012]

【課題を解決するための手段】本発明の電磁リレー駆動
部は、接極子又は永久磁石のどちらか一方の最表面に銀
皮膜層、他方をニッケル皮膜層を生成させることによっ
て接極子と永久磁石の接触部を銀とニッケルの異種金属
対向とした手段を有する。皮膜層は接極子と永久磁石の
最表面全体に生成又は接極子と永久磁石の摺動範囲に部
分的に皮膜を生成することを含む。
SUMMARY OF THE INVENTION An electromagnetic relay driving section according to the present invention comprises an armature and a permanent magnet formed by forming a silver film layer on the outermost surface of one of an armature and a permanent magnet and a nickel film layer on the other. Means for making a contact portion of the above-mentioned different metals opposed to silver and nickel. The coating layer may be formed on the entire outermost surface of the armature and the permanent magnet or may be partially formed in a sliding range between the armature and the permanent magnet.

【0013】接極子と永久磁石の転動及び摺動におい
て、銀とニッケルの摩擦係数は小さく、転動及び摺動に
よって生ずる摩擦力も小さいため摩耗紛の生成を低減で
きる。
In the rolling and sliding of the armature and the permanent magnet, the friction coefficient between silver and nickel is small, and the frictional force generated by the rolling and sliding is also small, so that the generation of wear powder can be reduced.

【0014】[0014]

【発明の実施の形態】次に本発明の実施の形態につい
て、図面を参照して説明する。図1は、本発明の第1の
実施の形態を説明するための電磁リレーの接極子5と永
久磁石9の接触部の部分拡大図である。本実施の形態の
電磁リレーとしての基本構造並びに動作原理は、前述し
た図3の電磁リレーと同様であり、接極子と永久磁石の
外層を除き説明を省略する。
Embodiments of the present invention will now be described with reference to the drawings. FIG. 1 is a partially enlarged view of a contact portion between an armature 5 and a permanent magnet 9 of an electromagnetic relay for explaining a first embodiment of the present invention. The basic structure and operation principle of the electromagnetic relay of the present embodiment are the same as those of the above-described electromagnetic relay of FIG. 3, and the description is omitted except for the outer layers of the armature and the permanent magnet.

【0015】図1に示すように、接極子5は形状が半円
柱であり、コイル電圧の印加に伴い平滑な永久磁石9上
を転動する。母材が軟鉄等であり、その最外層は厚さ2
〜10μmの銀皮膜層19aによって接極子5の全面又
は永久磁石9との接触部のみ覆われている。銀皮膜層1
9aの生成は厚さ2〜10μmのニッケル皮膜層18a
の上に電解メッキ、無電解メッキ、蒸着等によって成膜
する。ニッケル皮膜層18aは、接極子5の母材と銀皮
膜層19aの密着性を良好に保つためであり、同時に母
材の防錆対策でもある。
As shown in FIG. 1, the armature 5 has a semi-cylindrical shape and rolls on a smooth permanent magnet 9 with application of a coil voltage. The base material is soft iron, etc., and the outermost layer is
The entire surface of the armature 5 or only the contact portion with the permanent magnet 9 is covered by the silver coating layer 19a of 10 to 10 μm. Silver coating layer 1
9a is formed by a nickel coating layer 18a having a thickness of 2 to 10 μm.
A film is formed thereon by electrolytic plating, electroless plating, vapor deposition, or the like. The nickel coating layer 18a is for maintaining good adhesion between the base material of the armature 5 and the silver coating layer 19a, and is also a measure for preventing rust of the base material.

【0016】一方、永久磁石9は母材が希土類金属材料
であり、その最表面外層は厚さ2〜10μmのニッケル
皮膜層18bによって全面を覆われている。よって接極
子5と永久磁石9の接触部は銀とニッケルの異種金属材
料の接触となっている。
On the other hand, the base material of the permanent magnet 9 is a rare earth metal material, and its outermost surface layer is entirely covered with a nickel coating layer 18b having a thickness of 2 to 10 μm. Therefore, the contact portion between the armature 5 and the permanent magnet 9 is in contact with a different metal material of silver and nickel.

【0017】図2は、本発明の第2の実施の形態を説明
するための電磁リレーの接極子5と永久磁石9の接触部
の部分拡大図である。本実施の形態の電磁リレーとして
の基本構造並びに動作原理は前述した図3の電磁リレー
と同様であり、接極子5と永久磁石9の外層を除き説明
を省略する。
FIG. 2 is a partially enlarged view of a contact portion between an armature 5 and a permanent magnet 9 of an electromagnetic relay for explaining a second embodiment of the present invention. The basic structure and operating principle of the electromagnetic relay of the present embodiment are the same as those of the electromagnetic relay of FIG. 3 described above, and description thereof will be omitted except for the outer layers of the armature 5 and the permanent magnet 9.

【0018】図2に示すように、接極子5は形状が半円
柱であり、コイル電圧の印加に伴い平滑な永久磁石9上
を転動する。永久磁石5は母材が希土類金属材料であ
り、その最外層は厚さ2〜10μmの銀皮膜層19bに
よって永久磁石9全面又は接極子5との接触部のみ覆わ
れている。銀皮膜層19bの生成は厚さ2〜10μmの
ニッケル皮膜層18bの上に電解メッキ、無電解メッ
キ、蒸着等により成膜する。ニッケル皮膜層18bは、
接極子5の母材と銀皮膜層19bの密着性を良好に保つ
ためであり、同時に母材の防錆対策でもある。
As shown in FIG. 2, the armature 5 has a semi-cylindrical shape and rolls on a smooth permanent magnet 9 with application of a coil voltage. The base material of the permanent magnet 5 is a rare earth metal material, and the outermost layer is covered by the silver coating layer 19b having a thickness of 2 to 10 μm, and only the entire surface of the permanent magnet 9 or only the contact portion with the armature 5 is covered. The silver film layer 19b is formed on the nickel film layer 18b having a thickness of 2 to 10 μm by electrolytic plating, electroless plating, evaporation or the like. The nickel coating layer 18b
This is for maintaining good adhesion between the base material of the armature 5 and the silver coating layer 19b, and at the same time is a measure for preventing rust of the base material.

【0019】一方、接極子5は母材が軟鉄等であり、そ
の最表面外層は厚さ2〜10μmのニッケル皮膜層18
aによって全面を覆われている。よって接極子5と永久
磁石9の接触部は、銀とニッケルの異種金属材料の接触
となっている。銀とニッケルの互いの溶解度は低く、液
体、固体中でも混じり合わない。又、真空中でも凝着し
ない。よって摩耗紛の発生原因である凝着や移着を起こ
しにくく摩擦係数もニッケル同士の接触に比べて低い。
On the other hand, the base material of the armature 5 is soft iron or the like, and its outermost surface layer is a nickel coating layer 18 having a thickness of 2 to 10 μm.
The entire surface is covered by a. Therefore, the contact portion between the armature 5 and the permanent magnet 9 is in contact with a different metal material of silver and nickel. Silver and nickel have low solubility in each other and do not mix in liquids and solids. Also, it does not adhere even in vacuum. Therefore, adhesion and transfer, which are the causes of the generation of wear powder, are unlikely to occur, and the coefficient of friction is lower than that of contact between nickels.

【0020】このように電磁リレー駆動部の接触を、銀
とニッケルの異種金属材料の接触とすることによって接
極子の転動及び摺動によって生ずる最表面外層の剥離、
母材の露出を抑制し摩耗紛の生成を低減できる。
As described above, the contact of the electromagnetic relay drive unit is made of a different metal material of silver and nickel, so that the outermost outer layer caused by the rolling and sliding of the armature can be separated.
Exposure of the base material can be suppressed, and generation of wear powder can be reduced.

【0021】表1に本発明の実施例1と実施例2の多数
回動作後(2000万回)における電磁リレー特性値変
動結果の一例を示す。
Table 1 shows an example of the results of electromagnetic relay characteristic value fluctuations after a large number of operations (20 million operations) in the first and second embodiments of the present invention.

【0022】[0022]

【表1】 [Table 1]

【0023】従来品、つまり接極子と永久磁石の接触部
がニッケル同士である場合は、多量の摩耗粉が発生し特
性値が変動する。これに対して本発明の実施例1、接極
子表面に銀皮膜層10μm、永久磁石表面にニッケル皮
膜層10μmとした場合には、多数回動作後においては
接極子と永久磁石表面に摩耗紛が少量で特性値も安定し
ている。同様に実施例2おいても、多数回動作後では接
極子と永久磁石に発生する摩耗紛は少量で電磁リレーの
特性値は安定する。
In the conventional product, that is, when the contact portion between the armature and the permanent magnet is made of nickel, a large amount of abrasion powder is generated and the characteristic value fluctuates. In contrast, in Example 1 of the present invention, when the silver film layer was 10 μm on the surface of the armature and the nickel film layer was 10 μm on the surface of the permanent magnet, abrasion powder was formed on the surface of the armature and the permanent magnet after many operations. The characteristic value is stable with a small amount. Similarly, also in the second embodiment, after a large number of operations, a small amount of wear powder is generated in the armature and the permanent magnet, and the characteristic value of the electromagnetic relay is stable.

【0024】[0024]

【発明の効果】以上説明したように、本発明の電磁リレ
ーは接極子もしくは永久磁石の最表面外層として、いず
れかの一方を銀皮膜層、他方をニッケル皮膜層を成膜し
た構造としたことによって、接極子と永久磁石の接触部
の摺動による摩耗紛の発生を低減し、多数回動作後にお
いて、動作特性が安定する信頼性の高い電磁リレーを提
供することができる。
As described above, the electromagnetic relay of the present invention has a structure in which one of the armature and the permanent magnet has a silver film layer and the other has a nickel film layer as the outermost surface layer of the permanent magnet. Thus, the generation of wear powder due to sliding of the contact portion between the armature and the permanent magnet can be reduced, and a highly reliable electromagnetic relay having stable operation characteristics after many operations can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施の形態の電磁リレーの接極
子と永久磁石の接触部の部分拡大図である。
FIG. 1 is a partial enlarged view of a contact portion between an armature and a permanent magnet of an electromagnetic relay according to a first embodiment of the present invention.

【図2】本発明の第2の実施の形態の電磁リレーの接極
子と永久磁石の接触部の部分拡大図である。
FIG. 2 is a partially enlarged view of a contact portion between an armature and a permanent magnet of an electromagnetic relay according to a second embodiment of the present invention.

【図3】従来の電磁リレーの分解斜視図である。FIG. 3 is an exploded perspective view of a conventional electromagnetic relay.

【図4】(a)〜(c)は、従来の電磁リレーの動作状
態を説明するための断面図である。
FIGS. 4A to 4C are cross-sectional views illustrating an operation state of a conventional electromagnetic relay.

【図5】従来の電磁リレーの接極子と永久磁石の接触部
の部分拡大図である。
FIG. 5 is a partially enlarged view of a contact portion between a armature and a permanent magnet of a conventional electromagnetic relay.

【図6】従来の一例を説明するための電磁リレーの断面
図である。
FIG. 6 is a cross-sectional view of an electromagnetic relay for explaining an example of the related art.

【符号の説明】[Explanation of symbols]

1 接極子組立体 2 可動接点 3 可動接点ばね 4 ヒンジばね 5 接極子 6 絶縁固定体 7 コイル組立体 8 コイル 9 永久磁石 10 コイルスプール 11 コイル導出部 12 コ字形鉄心 13 絶縁体基台 14 固定接点 15 コイル端子 16 中立端子 17 カバー 18 ニッケル皮膜層 19 銀皮膜層 DESCRIPTION OF SYMBOLS 1 Armature assembly 2 Movable contact 3 Movable contact spring 4 Hinge spring 5 Armature 6 Insulation fixed body 7 Coil assembly 8 Coil 9 Permanent magnet 10 Coil spool 11 Coil lead-out part 12 U-shaped iron core 13 Insulator base 14 Fixed contact 15 Coil terminal 16 Neutral terminal 17 Cover 18 Nickel coating layer 19 Silver coating layer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 井手 立身 東京都港区芝五丁目7番1号 日本電気 株式会社内 (56)参考文献 特開 平5−205598(JP,A) ──────────────────────────────────────────────────続 き Continuation of front page (72) Inventor Tatsumi Ide 5-7-1 Shiba, Minato-ku, Tokyo Within NEC Corporation (56) References JP-A-5-205598 (JP, A)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 絶縁体により概ね全面を覆われたコ字形
鉄心にコイルを巻回し、前記絶縁体中央穴部に永久磁石
が配置されているコイル組立体と、前記コ字形鉄心の中
央に配設された永久磁石上面に当接し前記コ字形鉄心の
両磁極のどちらか一方に接触するように転動する接極子
と、先端に可動接点を備える可動ばねと、該可動ばねと
一体でほぼ接極子の中央部で接極子の幅方向に延設する
ヒンジばねとを絶縁体にて一体成形された接極子組立体
と、前記接極子組立体の可動接点と対向して配置された
固定接点を各角に持ちコイル組立体収納のため実装側面
が開いた箱型形状で、前記可動接点、固定接点、コイル
とそれぞれ電気的導通を持つ外部導出端子と一体成形さ
れている絶縁体基台とからなり、前記コイル組立体、接
極子組立体、カバーの順に絶縁体基台に実装した電磁リ
レーにおいて、接極子および永久磁石のいずれか一方の
最表面全面を銀皮膜層、他方の最表面全面をニッケル皮
膜層としたことを特徴とする電磁リレー。
1. A coil assembly in which a coil is wound around a U-shaped iron core whose entire surface is covered by an insulator, and a permanent magnet is disposed in a center hole of the insulator, and a coil is disposed at the center of the U-shaped iron core. An armature that contacts the upper surface of the provided permanent magnet and rolls so as to contact one of the two magnetic poles of the U-shaped iron core; a movable spring having a movable contact at the tip; and a substantially integral contact with the movable spring. An armature assembly in which a hinge spring extending in the width direction of the armature at the center of the armature is integrally formed with an insulator, and a fixed contact arranged opposite to a movable contact of the armature assembly. The movable base, fixed contact, and coil are externally connected to each other and have an electrical lead-out terminal and are integrally formed with an insulator base. The coil assembly, armature assembly, cover 1. An electromagnetic relay mounted on an insulator base in the order as described above, wherein the outermost surface of one of the armature and the permanent magnet is a silver film layer and the other outermost surface is a nickel film layer.
【請求項2】 前記銀皮膜層の成膜域を接極子と永久磁
石の当接部を含む部分のみとしたことを特徴とする請求
1記載の電磁リレー。
2. The electromagnetic relay according to claim 1, wherein the silver coating layer is formed only in a portion including a contact portion between the armature and the permanent magnet.
JP08282307A 1996-10-24 1996-10-24 Electromagnetic relay Expired - Fee Related JP3099945B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08282307A JP3099945B2 (en) 1996-10-24 1996-10-24 Electromagnetic relay

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08282307A JP3099945B2 (en) 1996-10-24 1996-10-24 Electromagnetic relay

Publications (2)

Publication Number Publication Date
JPH10125203A JPH10125203A (en) 1998-05-15
JP3099945B2 true JP3099945B2 (en) 2000-10-16

Family

ID=17650724

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08282307A Expired - Fee Related JP3099945B2 (en) 1996-10-24 1996-10-24 Electromagnetic relay

Country Status (1)

Country Link
JP (1) JP3099945B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3579262A1 (en) * 2018-06-08 2019-12-11 Schneider Electric Industries SAS Ferromagnetic part for an electromagnetic contactor, method for manufacturing same and use thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100480640B1 (en) * 2003-01-17 2005-03-31 삼성전자주식회사 Solenoid switch and plating method of the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3579262A1 (en) * 2018-06-08 2019-12-11 Schneider Electric Industries SAS Ferromagnetic part for an electromagnetic contactor, method for manufacturing same and use thereof
FR3082352A1 (en) * 2018-06-08 2019-12-13 Schneider Electric Industries Sas FERROMAGNETIC PART FOR AN ELECTROMAGNETIC CONTACTOR, MANUFACTURING METHOD THEREOF AND USE THEREOF
EP3579262B1 (en) * 2018-06-08 2021-04-28 Schneider Electric Industries SAS Ferromagnetic part for an electromagnetic contactor, its manufacturing process and its use
US11183350B2 (en) 2018-06-08 2021-11-23 Schneider Electric Industries Sas Ferromagnetic part for an electromagnetic contact, its manufacturing process and its use

Also Published As

Publication number Publication date
JPH10125203A (en) 1998-05-15

Similar Documents

Publication Publication Date Title
JP7126227B2 (en) electromagnetic relay
US6246306B1 (en) Electromagnetic relay with pressure spring
JPH09198983A (en) Small-sized device
CA2228894A1 (en) Polarized electromagnetic relay
CA1203275A (en) Electromagnetic relay
JP3099945B2 (en) Electromagnetic relay
EP0843884B1 (en) Polarized electromagnetic relay
EP0382525A1 (en) Electromagnetic relay
US2490895A (en) High-frequency vibrator
JP2588956Y2 (en) Electromagnetic relay
JP3019080B1 (en) Electromagnetic relay
JPS62217512A (en) Mercury switch
US2965733A (en) Polar electromagnetic relay
JP2833075B2 (en) Contact device
US3335376A (en) Micro-miniature relay
JP2604534B2 (en) Electromagnetic relay
US4680563A (en) Relay switch apparatus
JPH0439640Y2 (en)
JP2930465B2 (en) Electromagnetic relay
JPS59203326A (en) Vacuum relay
JPH11283481A (en) Electromagnetic relay
JPH04136845U (en) electromagnetic relay
JPS6318818B2 (en)
JPH0810657B2 (en) Electromagnet device
JPH09288957A (en) Electromagnetic relay and its manufacture

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19990302

LAPS Cancellation because of no payment of annual fees