JP3099475B2 - Turbo molecular pump - Google Patents

Turbo molecular pump

Info

Publication number
JP3099475B2
JP3099475B2 JP31942591A JP31942591A JP3099475B2 JP 3099475 B2 JP3099475 B2 JP 3099475B2 JP 31942591 A JP31942591 A JP 31942591A JP 31942591 A JP31942591 A JP 31942591A JP 3099475 B2 JP3099475 B2 JP 3099475B2
Authority
JP
Japan
Prior art keywords
inner peripheral
support
peripheral side
fixed
wing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31942591A
Other languages
Japanese (ja)
Other versions
JPH05157090A (en
Inventor
修 芦田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP31942591A priority Critical patent/JP3099475B2/en
Publication of JPH05157090A publication Critical patent/JPH05157090A/en
Application granted granted Critical
Publication of JP3099475B2 publication Critical patent/JP3099475B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
    • F04D19/042Turbomolecular vacuum pumps

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Non-Positive Displacement Air Blowers (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、高真空や超高真空の発
生・維持を始めとして、中真空や低真空下での連続的な
気体の排気等に用いられるターボ分子ポンプに関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a turbo-molecular pump used for generating and maintaining a high vacuum or an ultra-high vacuum, and for continuously exhausting a gas under a medium vacuum or a low vacuum. .

【0002】[0002]

【従来の技術】図3に、従来のターボ分子ポンプの一例
を示す。このものは、ロータ1の外周に突設した回転翼
群2と、ステータ3の内周に突設した固定翼群4とを回
転軸m方向に多段に交互配置してタービンTを形成し、
このタービンTにより、吸気口5から排気口6に向かっ
て排気作用を営み得るように構成されている。各段の回
転翼群2は、ロータ1に一体的に形成した円環状をなす
内周側支え2aの外周等角位置に多数の回転翼2cを突
出形成したものであり、また、各段の固定翼群4は、円
環状をなす外周側支え4aおよび内周側支え4bの間の
等角位置に多数の固定翼4cを形成したものである。こ
の固定翼群4について説明を捕捉すると、図4に示すよ
うに、薄肉円環状をなすステンレス製あるいはアルミニ
ウム製の板の中央部に翼となる部分をエッチング法によ
って切出し、その切出した部分にプレス加工による曲げ
加工を施して固定翼4cを形成したものである。その
際、内外周に切り残した部位にそれぞれ円環状の外周側
支え4aおよび内周側支え4bを形成している。そし
て、この固定翼群4の外周側支え4aを、外筒の内周に
積層した各スペーサ3a間に挾持させることにより、固
定翼群4をステータ3側に支持させている。なお、この
固定翼群4は組付け時に半割りにされ、ロータ1の両側
に差し込まれた状態で円環状に組み合わせられる。
2. Description of the Related Art FIG. 3 shows an example of a conventional turbo-molecular pump. The turbine T is formed by alternately arranging a group of rotating blades 2 protruding from the outer periphery of a rotor 1 and a group of stationary blades 4 protruding from the inner periphery of a stator 3 in the direction of the rotation axis m.
The turbine T is configured to perform an exhaust operation from the intake port 5 to the exhaust port 6. The rotating blade group 2 of each stage has a large number of rotating blades 2c protrudingly formed at equiangular positions on the outer periphery of an annular inner support 2a formed integrally with the rotor 1. The fixed wing group 4 has a large number of fixed wings 4c formed at equiangular positions between an outer peripheral support 4a and an inner peripheral support 4b that form an annular shape. The description of the fixed blade group 4 is as follows. As shown in FIG. 4, a portion to be a wing is cut out at the center of a thin annular stainless or aluminum plate by an etching method, and a pressed portion is formed on the cut portion. The fixed wing 4c is formed by performing a bending process. At this time, annular outer-peripheral supports 4a and inner-peripheral supports 4b are respectively formed at the portions left uncut on the inner and outer peripheries. The fixed blade group 4 is supported by the stator 3 by holding the outer peripheral side support 4a of the fixed blade group 4 between the spacers 3a stacked on the inner periphery of the outer cylinder. The fixed blade group 4 is halved at the time of assembling, and is assembled in an annular shape while being inserted on both sides of the rotor 1.

【0003】[0003]

【発明が解決しようとする課題】ところで、前記タービ
ンTは、1Torr以下の真空中で回転翼群2が高速回転す
ることにより排気作用を営むものであり、その回転数は
通常 20000〜90000 rpmで、回転翼2cの先端での周速
度は 200〜400 m/s に達する。この運転中に、誤操作等
によりポンプ内に大気が突入し、内部の圧力が急激に上
昇したときには、図5に示すように固定翼4cのまわり
に強い旋回気流uを生じる。vはその際の回転翼2cの
回転方向を示している。そして、その気流uによって、
固定翼4cに揚力Fを生じ、固定翼4cがその外周側支
え4aとともに図6中想像線で示すように吸気口5側に
向かって変形する。その際、従来のターボ分子ポンプに
おいては、同図に示すように、曲げ加工によって形成さ
れる固定翼4cの内周側吸気口端4dと回転翼2cの内
周側排気口端2dとの間の軸方向離間距離d2 が、当該
固定翼4cがねじられた分だけ、固定翼群4の内周側支
え4bとこの内周側支え4bに吸気口5側において対面
する回転翼群2の内周側支え2aとの間の軸方向離間距
離d1 よりも小さくなっている。そのため、前述した揚
力Fに基づく変形が生じたときには、固定翼内周側支え
4bが回転翼内周側支え2aに接触するよりも先に、固
定翼4cが回転翼2cに接触し、その結果、それらの翼
4c、2c同士が噛み合ってタービンTが破損するとい
う重大な事故に発展する。
By the way, the turbine T performs an exhausting operation by rotating the rotor blade group 2 at a high speed in a vacuum of 1 Torr or less, and its rotation speed is usually 20,000 to 90,000 rpm. The peripheral velocity at the tip of the rotary blade 2c reaches 200 to 400 m / s. During this operation, when the air enters the pump due to an erroneous operation or the like and the internal pressure rises rapidly, a strong swirling airflow u is generated around the fixed blade 4c as shown in FIG. “v” indicates the rotation direction of the rotor 2c at that time. And by the air flow u,
A lift F is generated in the fixed wing 4c, and the fixed wing 4c is deformed together with the outer peripheral side support 4a toward the intake port 5 as shown by an imaginary line in FIG. At this time, in the conventional turbo-molecular pump, as shown in the same figure, between the inner peripheral side intake end 4d of the fixed wing 4c formed by bending and the inner peripheral side exhaust end 2d of the rotary wing 2c. The distance d 2 in the axial direction is equal to the amount by which the fixed blade 4c is twisted, of the inner peripheral side support 4b of the fixed blade group 4 and the rotating blade group 2 facing the inner peripheral side support 4b on the intake port 5 side. It is smaller than the axial distance d 1 between the inner peripheral side support 2a. Therefore, when the deformation based on the above-described lift F occurs, the fixed blade 4c contacts the rotating blade 2c before the fixed blade inner circumferential side support 4b contacts the rotating blade inner circumferential side support 2a, and as a result, The wings 4c and 2c are engaged with each other, and the turbine T is damaged, which leads to a serious accident.

【0004】そこで、従来では、大気突入があっても
固定翼4cの変形が十分小さくなるように、固定翼4c
の翼厚を十分厚くして変形を小さくするか、固定翼4
cと回転翼2cとの軸方向離間距離d2 を十分広くとる
かによって、そのような事態を回避するようにしてい
た。
[0004] Therefore, conventionally, the fixed wings 4c are so designed that the deformation of the fixed wings 4c is sufficiently small even if there is an entry into the atmosphere.
Of the fixed wing 4
Depending taking sufficiently wide axial distance d 2 between the c and the rotating blades 2c, it had to avoid such a situation.

【0005】ところが、上述したの手法では、固定翼
4cと回転翼2cの間の空間が狭められ、排気流路が狭
められることになるので、結果的に排気速度を低下させ
るという不具合につながる欠点がある。また、の手法
では、回転翼群2の軸方向間隔が大きくなり、それに伴
ってロータ1を支持する軸受部も大きくする必要が生じ
るので、ポンプ全体の大形化につながるという欠点があ
る。
However, in the above-described method, the space between the fixed blade 4c and the rotary blade 2c is narrowed, and the exhaust flow path is narrowed. As a result, there is a disadvantage that the exhaust speed is reduced. There is. Further, in the method (1), the axial interval between the rotor blade groups 2 is increased, and accordingly, it is necessary to increase the size of a bearing portion for supporting the rotor 1. Therefore, there is a disadvantage that the entire pump is enlarged.

【0006】本発明は、このような課題に着目してなさ
れたものであって、排気速度の低下やポンプの大形化を
招くことなく、大気突入からタービンを有効に保護し得
るようにしたターボ分子ポンプを提供することを目的と
している。
The present invention has been made in view of such a problem, and is capable of effectively protecting the turbine from entering the atmosphere without lowering the exhaust speed or increasing the size of the pump. It is intended to provide a turbo molecular pump.

【0007】[0007]

【課題を解決するための手段】本発明は、かかる目的を
達成するために、次のような構成を採用したものであ
る。
In order to achieve the above object, the present invention employs the following configuration.

【0008】すなわち、本発明に係るターボ分子ポンプ
は、円環状をなす内周側支えを介してロータに支持させ
た回転翼群と、外周側支えおよび内周側支えを介してス
テータに支持させた固定翼群とを具備してなり、それら
回転翼群および固定翼群を軸方向に多段に交互配置して
タービンを形成してなるターボ分子ポンプにおいて、あ
る固定翼群の内周側支えとこの内周側支えに吸気口側に
おいて対面する回転翼群の内周側支えとの間の軸方向離
間距離を、当該固定翼の内周側吸気口端と当該回転翼の
内周側排気口端との間の軸方向離間距離よりも小さくし
たことを特徴とする。
That is, the turbo-molecular pump according to the present invention has a rotor blade group supported by a rotor via an annular inner support, and a rotor blade supported by a stator via an outer support and an inner support. A turbine blade formed by alternately arranging the rotating blade group and the fixed blade group in multiple stages in the axial direction to form a turbine. The axial separation distance between the inner peripheral side support and the inner peripheral side support of the rotating blade group facing the intake port side is set to the inner peripheral side intake end of the fixed blade and the inner peripheral side exhaust port of the rotary blade. It is characterized in that it is smaller than the axial separation distance from the end.

【0009】[0009]

【作用】このような構成のものであると、回転翼が高速
回転している状態で大気がポンプに突入し、固定翼に強
い揚力を生じてその内周側が吸気口側に向かって変形し
ても、内周側支えと回転翼の内周側支えとの間の距離
が、その固定翼の内周側吸気口端とその回転翼の内周側
排気口端との距離よりも小さい値に設定してあるので、
固定翼が回転翼に接触するよりも先に、固定翼の内周側
支えが回転翼の内周側支えに接触することになる。しか
して、固定翼の内周側支えは回転翼の内周側支えに添接
した以降はそれ以上に変形しようがなく、その位置で回
転翼の内周側支えに対して相対摺動し続けるので、固定
翼もその位置に保持されてそれ以上回転翼側へ接近する
ことが禁止される。このため、このものは大気突入時に
固定翼と回転翼が接触する事態を確実に回避できるもの
となる。
With this configuration, the air enters the pump while the rotor is rotating at a high speed, and a strong lift is generated on the stationary blade, and the inner periphery of the rotor is deformed toward the intake port. However, the distance between the inner peripheral side support and the inner peripheral side support of the rotor is smaller than the distance between the inner peripheral side intake end of the fixed blade and the inner peripheral side exhaust end of the rotor. Is set to
Before the fixed wing contacts the rotating wing, the inner circumferential support of the fixed wing contacts the inner circumferential support of the rotating wing. However, the inner peripheral support of the fixed wing does not deform any more after being attached to the inner peripheral support of the rotor, and continues to slide relative to the inner peripheral support of the rotor at that position. Therefore, the fixed wing is also held at that position, and further approaching to the rotating wing side is prohibited. For this reason, this can surely avoid the situation where the fixed wing and the rotating wing come into contact with each other when entering the atmosphere.

【0010】[0010]

【実施例】以下、本発明の一実施例を、図1および図2
を参照して説明する。なお、図3〜図6と共通する部分
には同一符号を付し、その説明を一部省略する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will now be described with reference to FIGS.
This will be described with reference to FIG. 3 to 6 are denoted by the same reference numerals, and the description thereof will be partially omitted.

【0011】このターボ分子ポンプは、従来と同様の固
定翼群4を備えている。すなわち、この固定翼群4は、
図4に示したような薄肉円環状をなすステンレス製ある
いはアルミニウム製の板の中央部において翼となる部分
をエッチング法によって切出し、その切出した部分にプ
レス加工による曲げ加工を施して固定翼4cを形成する
とともに、内外周に切り残した部位にそれぞれ円環状の
外周側支え4aおよび内周側支え4bを形成したもので
ある。また、回転翼群2も、従来と同様にしてロータ1
に形成した円環状の内周側支え2aの外周等角位置に一
体突設したものであるが、その際に、円環状の内周側支
え2aの下面に、その肉を一部排気口6側に向かって図
2に示すように膨出させることにより、円環状の段部2
eを一体的に形成している。この段部2eを前記内周側
支え2aの下面に設けておくことにより、その段部2e
部分に対応した固定翼4cの内周側支え4bと、この内
周側支え4bに吸気口5側において対面する回転翼2c
の内周側支え2aとの軸方向寸法d3 が、その固定翼4
の内周側吸気口端4dとその回転翼2cの内周側排気口
端2dとの間の軸方向離間距離d2 よりも小さくなるよ
うにしている。
This turbo molecular pump has a fixed blade group 4 similar to the conventional one. That is, this fixed wing group 4
At the center of a stainless steel or aluminum plate having a thin annular shape as shown in FIG. 4, a portion to be a wing is cut out by an etching method, and the cut out portion is subjected to bending by press working to form a fixed blade 4c. The annular support 4a and the inner support 4b are respectively formed at the portions that are formed and left uncut on the inner and outer circumferences. In addition, the rotor group 2 also has a rotor 1
The inner peripheral support 2a is formed integrally with the annular inner peripheral support 2a, and is partially protruded from the lower surface of the annular inner peripheral support 2a. By bulging toward the side as shown in FIG.
e are integrally formed. By providing the step 2e on the lower surface of the inner peripheral side support 2a, the step 2e is provided.
An inner peripheral support 4b of the fixed wing 4c corresponding to the portion, and a rotary wing 2c facing the inner peripheral support 4b on the intake port 5 side.
The axial dimension d 3 with the inner peripheral side support 2a of the
Designed to be smaller than the axial distance d 2 between the inner peripheral side inlet end 4d and the inner circumferential side outlet end 2d of the rotor blades 2c of.

【0012】このような構成のものであると、回転翼2
cが高速回転している状態で大気がポンプに突入し、固
定翼4cに図2中想像線で示すように強い揚力Fが生じ
て、固定翼4cが内周側支え4bとともに同図中想像線
で示すように吸気口5側に変形しても、d3 <d2 とし
ておくことにより、固定翼4cが回転翼2cに接触する
よりも先に、固定翼4cの内周側支え4bを回転翼2c
の段部2e部分での内周側支え2aに接触させることが
できる。しかして、固定翼4cの内周側支え4bは回転
翼2cの内周側支え2aに添接した以降はそれ以上変形
しようがなく、その位置で内周側支え2aに対して相対
摺動し続けるので、固定翼4cもその位置に保持されて
それ以上回転翼2c側へ接近することが禁止される。そ
のため、この構造は固定翼4cと回転翼2cとの接触を
確実に回避することができる。以上により、このターボ
分子ポンプは、排気速度の低下やポンプ自体の大形化を
招かずに、大気突入時におけるタービンTの破損を有効
に保護できるものとなる。換言すれば、タービンTの堅
牢さが従来ポンプと同一レベルであると仮定した場合
に、そのポンプよりも本実施例に係るポンプの排気速度
を向上させることができ、ポンプ自体も相対的に小形化
することができるという効果が奏される。
With such a structure, the rotating blades 2
The air rushes into the pump while c is rotating at a high speed, and a strong lift F is generated on the fixed wing 4c as shown by the imaginary line in FIG. 2, and the fixed wing 4c is imagined in FIG. Even if the fixed blade 4c is deformed toward the intake port 5 as shown by the line, by setting d 3 <d 2 , the inner peripheral side support 4b of the fixed blade 4c is moved before the fixed blade 4c contacts the rotating blade 2c. Rotor blade 2c
Can be brought into contact with the inner peripheral support 2a at the step 2e. However, after the inner peripheral support 4b of the fixed wing 4c is attached to the inner peripheral support 2a of the rotary wing 2c, the inner peripheral support 4b does not deform any more, and slides relative to the inner peripheral support 2a at that position. Since the continuation is continued, the fixed wing 4c is also held at that position, and the further approach to the rotating wing 2c side is prohibited. Therefore, this structure can reliably avoid contact between the fixed wing 4c and the rotary wing 2c. As described above, this turbo-molecular pump can effectively protect the turbine T from being damaged at the time of entry into the atmosphere without lowering the pumping speed or increasing the size of the pump itself. In other words, assuming that the robustness of the turbine T is at the same level as that of the conventional pump, the pumping speed of the pump according to the present embodiment can be improved more than that of the conventional pump, and the pump itself is also relatively small. The effect that it can be made is produced.

【0013】なお、前記実施例は磁気軸受方式のターボ
分子ポンプについて説明したが、本発明が他の軸受方式
にも同様に適用可能であることは言うまでもない。ま
た、各部の構成も図示例に限定されるものではなく、本
発明の趣旨を逸脱しない範囲で種々変形が可能である。
Although the above embodiment has been described with respect to the turbo-molecular pump of the magnetic bearing type, it goes without saying that the present invention can be applied to other bearing types as well. Further, the configuration of each unit is not limited to the illustrated example, and various modifications can be made without departing from the spirit of the present invention.

【0014】[0014]

【発明の効果】本発明は、以上説明した寸法設定を行う
ことにより、大気突入等により固定翼に揚力が生じ、吸
気口側に向かって変形しても、その固定翼が回転翼に接
触するよりも先に、固定翼の内周側支えを回転翼の内周
側支えに摺接させることができる。そのため、固定翼の
一定以上の変形を禁止して、回転翼と接触することによ
る破損からタービンを確実に保護することができるとい
う効果が得られる。
According to the present invention, by setting the dimensions described above, a lift is generated in the fixed wing due to the entry into the atmosphere and the like, and even if the fixed wing is deformed toward the intake port side, the fixed wing contacts the rotating wing. Prior to this, the inner peripheral support of the fixed wing can be brought into sliding contact with the inner peripheral support of the rotary wing. Therefore, an effect is obtained that the deformation of the fixed wing over a certain level is prohibited and the turbine can be reliably protected from damage caused by contact with the rotating wing.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例を示す全体縦断面図。FIG. 1 is an overall vertical sectional view showing one embodiment of the present invention.

【図2】図1の要部拡大図。FIG. 2 is an enlarged view of a main part of FIG.

【図3】従来例を示す図1に対応した全体縦断面図。FIG. 3 is an overall vertical sectional view corresponding to FIG. 1 showing a conventional example.

【図4】同従来例で用いられている固定翼群を示す斜視
図。
FIG. 4 is a perspective view showing a fixed wing group used in the conventional example.

【図5】同従来例の固定翼と回転翼の相互作用を説明す
るための展開図。
FIG. 5 is an exploded view for explaining the interaction between the fixed wing and the rotary wing in the conventional example.

【図6】図3の要部拡大図。FIG. 6 is an enlarged view of a main part of FIG. 3;

【符号の説明】[Explanation of symbols]

1…ロータ 2…回転翼群 2a…内周側支え 2c…回転翼 2d…内周側排気口端 3…ステータ 4…固定翼群 4a…外周側支え 4b…内周側支え 4c…固定翼 4d…内周側吸気口端 d2 、d3 …軸方向離間距離 m…回転軸 T…タービンDESCRIPTION OF SYMBOLS 1 ... Rotor 2 ... Rotating blade group 2a ... Inner peripheral side support 2c ... Rotating blade 2d ... Inner peripheral side exhaust port end 3 ... Stator 4: Fixed blade group 4a ... Outer peripheral side support 4b ... Inner peripheral side support 4c ... Fixed blade 4d … Inner end of intake port d 2 , d 3 … Distance in axial direction m… Rotary axis T… Turbine

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】円環状をなす内周側支えを介してロータに
支持させた回転翼群と、外周側支えおよび内周側支えを
介してステータに支持させた固定翼群とを具備してな
り、それら回転翼群および固定翼群を軸方向に多段に交
互配置してタービンを形成してなるターボ分子ポンプに
おいて、ある固定翼群の内周側支えとこの内周側支えに
吸気口側において対面する回転翼群の内周側支えとの間
の軸方向離間距離を、当該固定翼の内周側吸気口端と当
該回転翼の内周側排気口端との間の軸方向離間距離より
も小さくしたことを特徴とするターボ分子ポンプ。
A rotating blade group supported by a rotor via an annular inner support, and a fixed blade group supported by a stator via an outer support and an inner support. In a turbo-molecular pump in which the rotating blade group and the fixed blade group are alternately arranged in multiple stages in the axial direction to form a turbine, an inner peripheral side support of a fixed blade group and an intake port side are attached to the inner peripheral side support. The axial separation distance between the inner peripheral side support of the rotating blade group facing in the axial direction, the axial separation distance between the inner peripheral side intake end of the fixed wing and the inner peripheral side exhaust end of the rotary wing. A turbo molecular pump characterized by being smaller than the above.
JP31942591A 1991-12-03 1991-12-03 Turbo molecular pump Expired - Fee Related JP3099475B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31942591A JP3099475B2 (en) 1991-12-03 1991-12-03 Turbo molecular pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31942591A JP3099475B2 (en) 1991-12-03 1991-12-03 Turbo molecular pump

Publications (2)

Publication Number Publication Date
JPH05157090A JPH05157090A (en) 1993-06-22
JP3099475B2 true JP3099475B2 (en) 2000-10-16

Family

ID=18110053

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31942591A Expired - Fee Related JP3099475B2 (en) 1991-12-03 1991-12-03 Turbo molecular pump

Country Status (1)

Country Link
JP (1) JP3099475B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3096020A1 (en) * 2015-05-18 2016-11-23 Pfeiffer Vacuum Gmbh Vacuum pump

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3013083B2 (en) 1998-06-23 2000-02-28 セイコー精機株式会社 Turbo molecular pump
JP5276321B2 (en) * 2005-07-01 2013-08-28 エドワーズ株式会社 Turbo molecular pump
JP2007309245A (en) * 2006-05-19 2007-11-29 Boc Edwards Kk Vacuum pump
JP4853266B2 (en) * 2006-12-12 2012-01-11 株式会社島津製作所 Turbo molecular pump
CN107044430B (en) * 2016-02-05 2021-10-15 埃地沃兹日本有限公司 Vacuum pump and rotor and stator used therein

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3096020A1 (en) * 2015-05-18 2016-11-23 Pfeiffer Vacuum Gmbh Vacuum pump

Also Published As

Publication number Publication date
JPH05157090A (en) 1993-06-22

Similar Documents

Publication Publication Date Title
JP4395210B2 (en) Improvement of vacuum pump
JP3099475B2 (en) Turbo molecular pump
JP3092063B2 (en) Turbo molecular pump
JP2003506631A (en) Stator ring for turbo molecular vacuum pump
US20060257249A1 (en) Hybrid turbomolecular vacuum pumps
KR890004933B1 (en) Turbo molecular pump
JPH07247996A (en) Passage form of compressor
JP2008530433A (en) Baffle structure for molecular drag vacuum pump
JPS6131695A (en) Turbo molecular pump
JPH0689756B2 (en) Dry vacuum pump
JPS6355396A (en) Turbo vacuum pump
JPS6361799A (en) Turbo molecular pump
CN107178508B (en) Vacuum pump and stationary blade used for the same
JPS63159695A (en) Turbo molecular pump
JPS6385290A (en) Vacuum pump
JP4853266B2 (en) Turbo molecular pump
JPH0640955Y2 (en) Magnetic bearing type turbo molecular pump
JPH078596U (en) Centrifugal compressor blade diffuser mounting structure
JPH0687691U (en) Turbo molecular pump
JPH03237297A (en) Turbo-molecular pump
JP2585265Y2 (en) Exhaust pump
JP3734616B2 (en) Turbo molecular pump
JP4400294B2 (en) MANUFACTURING METHOD FOR FIXED WING, AND TURBO MOLECULAR PUMP WITH THE FIXED WING
JPH0466395U (en)
JPH11218093A (en) Turbo molecular pump

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070818

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080818

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080818

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20090818

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090818

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100818

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20110818

LAPS Cancellation because of no payment of annual fees