JP3097608B2 - Depletion type semiconductor device and method of manufacturing the same - Google Patents

Depletion type semiconductor device and method of manufacturing the same

Info

Publication number
JP3097608B2
JP3097608B2 JP09181462A JP18146297A JP3097608B2 JP 3097608 B2 JP3097608 B2 JP 3097608B2 JP 09181462 A JP09181462 A JP 09181462A JP 18146297 A JP18146297 A JP 18146297A JP 3097608 B2 JP3097608 B2 JP 3097608B2
Authority
JP
Japan
Prior art keywords
shaped groove
type
forming
diffusion region
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP09181462A
Other languages
Japanese (ja)
Other versions
JPH1126761A (en
Inventor
伸幸 長島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP09181462A priority Critical patent/JP3097608B2/en
Publication of JPH1126761A publication Critical patent/JPH1126761A/en
Application granted granted Critical
Publication of JP3097608B2 publication Critical patent/JP3097608B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ディプレッション
型半導体装置に関し、特に縦型MOSFETにおいてチ
ャネル領域がソース領域と同じ導電型になっているディ
プレッション型半導体装置に関する。
The present invention relates to a depletion type semiconductor device, and more particularly to a depletion type semiconductor device in which a channel region of a vertical MOSFET has the same conductivity type as a source region.

【0002】[0002]

【従来の技術】図2は従来からのディプレッション型半
導体装置の一例として、ディプレッション型の縦型MO
SFETの構造を説明するための工程図である。
2. Description of the Related Art FIG. 2 shows an example of a conventional depletion type semiconductor device, which is a depletion type vertical MO.
FIG. 5 is a process diagram for describing the structure of the SFET.

【0003】この図に示したディプレッション型半導体
装置は縦型2重拡散MOSFET(VDMOSFET:
Vertical Double-diffused MOS FET)であり、ゲート電
極6への印加電圧が0Vのときオン状態である。ゲート
電極に負の電圧を印加することにより、オフ状態に移行
させることができる。
The depletion type semiconductor device shown in FIG. 1 is a vertical double diffusion MOSFET (VDMOSFET:
Vertical Double-diffused MOS FET), and is on when the voltage applied to the gate electrode 6 is 0V. By applying a negative voltage to the gate electrode, the gate electrode can be turned off.

【0004】以下に、このような従来からのVDMOS
FETの製造方法を説明する。
The following describes such a conventional VDMOS.
A method for manufacturing an FET will be described.

【0005】まず図2の(A)に示すように、ドレイン
領域となるN型シリコン半導体基板1上にゲート酸化膜
5をマスクとしてセルフアライン方式によりP型拡散領
域2と、ソース領域となるN型拡散層領域3とを2重拡
散して形成する。
First, as shown in FIG. 2A, a P-type diffusion region 2 and an N-type source region are formed on a N-type silicon semiconductor substrate 1 serving as a drain region by a self-alignment method using a gate oxide film 5 as a mask. The mold diffusion layer region 3 is formed by double diffusion.

【0006】次に図2の(B)に示すように、ゲート酸
化膜5を一旦除去し、N型シリコン基板1上の全面ある
いは一部分(図2では、P型拡散領域2の表面に露出し
た部分を覆う領域)にN型不純物を拡散して、チャネル
領域4を形成する。
Next, as shown in FIG. 2B, the gate oxide film 5 is once removed, and the entire surface or a part of the gate oxide film on the N-type silicon substrate 1 (in FIG. 2, exposed on the surface of the P-type diffusion region 2). The channel region 4 is formed by diffusing an N-type impurity into the region covering the portion.

【0007】さらに図2の(C)に示すように、再度ゲ
ート酸化膜5をチャネル領域4の上部に形成し、更にゲ
ート酸化膜5上にゲート電極6を形成する。次にN型拡
散領域3上にソース電極7を形成した後、N型シリコン
基板1の裏面にドレイン電極8を形成する。
As shown in FIG. 2C, a gate oxide film 5 is formed again on the channel region 4, and a gate electrode 6 is formed on the gate oxide film 5. Next, after forming a source electrode 7 on the N-type diffusion region 3, a drain electrode 8 is formed on the back surface of the N-type silicon substrate 1.

【0008】[0008]

【発明が解決しようとする課題】従来の技術においては
以下の2点について問題が発生する。
The conventional technique has the following two problems.

【0009】第一に、チャネル領域4を形成するにあた
り、N型不純物をN型シリコン基板1上の一部分に形成
するため、P型拡散領域2の間隔を広げる必要がある
(例えば約10μm)という問題である。
First, in forming the channel region 4, it is necessary to increase the interval between the P-type diffusion regions 2 (for example, about 10 μm) in order to form N-type impurities on a part of the N-type silicon substrate 1. It is a problem.

【0010】その理由としては、高耐圧MOSFET
(例えば、耐圧200V以上)の場合、N型シリコン基
板1の表面濃度が高くなると、空乏層が広がらなくな
り、耐圧が低下してしまう。よって、できるだけ表面濃
度を低くしておくことが望ましいが、N型不純物をN型
シリコン基板1上の一部分に形成する時、P型拡散領域
2形成時の横広がり(通常拡散深さの0.85倍)、及
びパターニング工程(PRともいう)での目ずれを考慮
する必要があるためである。
[0010] The reason is that high breakdown voltage MOSFET
In the case of (for example, withstand voltage of 200 V or more), if the surface concentration of the N-type silicon substrate 1 increases, the depletion layer does not spread and the withstand voltage decreases. Therefore, it is desirable to keep the surface concentration as low as possible. However, when an N-type impurity is formed in a part of the N-type silicon substrate 1, the P-type diffusion region 2 is formed to have a lateral spread (usually a diffusion depth of 0. This is because it is necessary to consider misalignment in the patterning step (also referred to as PR).

【0011】第二に、ゲート電極6を通常のエンハンス
メント型MOSFETに比べて、チャネル領域4上部に
多めに覆う必要がある。
Second, it is necessary to cover the gate electrode 6 over the channel region 4 more than in a normal enhancement type MOSFET.

【0012】その理由としては、エンハンスメント型M
OSFETの場合、ゲート電極(通常ポリシリコン膜)
の形成を拡散領域形成以前に行うためチャネル上部の覆
う幅を比較的小さくできる。しかし、ディプレッション
型MOSFETの場合、ゲート電極は拡散領域形成後に
形成するため、パターニング工程での目ずれを考慮する
必要がある。
The reason is that the enhancement type M
In the case of OSFET, the gate electrode (usually a polysilicon film)
Is formed before the formation of the diffusion region, the width of the upper portion of the channel can be relatively reduced. However, in the case of the depletion type MOSFET, since the gate electrode is formed after the formation of the diffusion region, it is necessary to consider misalignment in the patterning step.

【0013】本発明の目的は、上記従来技術の課題に鑑
み、P型拡散領域の間隔の低減及びパターニング工程で
の目ずれの考慮をなくすディプレッション型半導体装置
及びその製造方法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a depletion type semiconductor device and a method of manufacturing the same, which reduce the distance between P-type diffusion regions and eliminate misalignment in a patterning process in view of the above-mentioned problems in the prior art. .

【0014】[0014]

【課題を解決するための手段】上記目的を達成するため
に本発明のディプレッション型半導体装置の製造方法
は、N型半導体基板の一表面にV字型溝あるいはU字型
溝を形成し、該V字型溝あるいはU字型溝の内周面を第
1の絶縁膜で覆った後、前記V字型溝あるいはU字型溝
の外側の前記N型半導体基板の表面にP型拡散領域を形
成し、該P型拡散領域の表面を、前記V字型溝あるいは
U字型溝の縁部を除いて第2の絶縁膜で覆い、そして、
該第2の絶縁膜で覆われていない前記V字型溝あるいは
U字型溝の縁部よりN型不純物を拡散またはイオン注入
してチャネル領域を形成した後、前記第2の絶縁膜を除
去し、前記P型拡散領域の表面にソース領域となるN型
拡散領域を形成し、そして、前記第1の絶縁膜を除去
し、前記V字型溝あるいはU字型溝の内周面にゲート
膜、ゲート電極を順次形成し、前記N型拡散領域上にソ
ース電極を形成し、前記N型シリコン基板の裏面にドレ
イン電極を形成して縦型MOSFETを製造することを
特徴とする
In order to achieve the above object, a method of manufacturing a depletion type semiconductor device according to the present invention.
Is a V-shaped groove or a U-shaped groove on one surface of an N-type semiconductor substrate.
A groove is formed, and the inner peripheral surface of the V-shaped groove or the U-shaped groove is
After covering with the insulating film of No. 1, the V-shaped groove or the U-shaped groove
Forming a p-type diffusion region on the surface of the n-type semiconductor substrate outside
And forming the surface of the P-type diffusion region with the V-shaped groove or
Cover with a second insulating film except for the edge of the U-shaped groove, and
The V-shaped groove not covered with the second insulating film or
Diffusion or ion implantation of N-type impurities from the edge of U-shaped groove
After the formation of the channel region, the second insulating film is removed.
Then, an N-type source region is formed on the surface of the P-type diffusion region.
Forming a diffusion region and removing the first insulating film;
And a gate is provided on the inner peripheral surface of the V-shaped groove or the U-shaped groove.
A film and a gate electrode are sequentially formed, and a silicon layer is formed on the N-type diffusion region.
And a drain electrode is formed on the back surface of the N-type silicon substrate.
Manufacturing of vertical MOSFET by forming in-electrode
Features .

【0015】[0015]

【0016】(作用)上記のとおりの発明では、N型半
導体基板の表面に断面がV字型あるいはU字型の溝を形
成し、前記V字型あるいはU字型の溝の外側の前記N型
半導体基板の表面にP型拡散領域およびN型拡散領域を
この順で積層形成することにより、P型拡散領域の間隔
が低減される。その結果、従来からのVDMOSFET
と同特性を得るのにセルサイズを小さくできる。さら
に、ゲート電極をV字型あるいはU字型の溝の内周面に
形成するので、パターニング工程での目ずれを考慮する
必要もなくなる。
(Operation) In the invention described above, a groove having a V-shaped or U-shaped cross section is formed on the surface of the N-type semiconductor substrate, and the N-shaped groove is formed outside the V-shaped or U-shaped groove. By forming a P-type diffusion region and an N-type diffusion region in this order on the surface of the type semiconductor substrate, the distance between the P-type diffusion regions is reduced. As a result, the conventional VDMOSFET
The cell size can be reduced to obtain the same characteristics. Further, since the gate electrode is formed on the inner peripheral surface of the V-shaped or U-shaped groove, there is no need to consider misalignment in the patterning step.

【0017】[0017]

【発明の実施の形態】以下、本発明の実施の形態につい
て図面を参照して説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0018】図1は本発明のディプレッション型半導体
装置の一実施形態による縦型のU溝MOSFETの構造
を説明するための工程図であり、図2と同一部材には同
一番号が付してある。
FIG. 1 is a process diagram for explaining the structure of a vertical U-groove MOSFET according to an embodiment of the depletion type semiconductor device of the present invention. The same members as those in FIG. 2 are denoted by the same reference numerals. .

【0019】本形態のディプレッション型半導体装置
は、縦型2重拡散MOSFET(VDMOSFET)と
同特性を縦型のU溝MOSFETで実現している。すな
わち、図1の(c)において、N型シリコン基板1の表
面に断面がU字型の溝(以下、U字型溝という)11が
形成されている。このU字型溝11の内周面はゲート酸
化膜5で被覆されていて、ゲート酸化膜5上にはゲート
電極6が形成されている。また、U字型溝11の外側の
N型シリコン基板1の表面にはP型拡散領域2およびN
型拡散領域3がこの順で積層形成されており、このP型
拡散領域2に前記U字型の溝11の側壁に沿ってチャネ
ル領域4となるN型領域が形成されている。このような
形態では、チャネル領域4の形成方向が図2に示したV
DMOSFETと異なり、縦方向に形成される。
The depletion type semiconductor device of this embodiment realizes the same characteristics as a vertical double diffusion MOSFET (VDMOSFET) by a vertical U-groove MOSFET. That is, in FIG. 1C, a groove 11 having a U-shaped cross section (hereinafter, referred to as a U-shaped groove) 11 is formed on the surface of the N-type silicon substrate 1. The inner peripheral surface of the U-shaped groove 11 is covered with a gate oxide film 5, and a gate electrode 6 is formed on the gate oxide film 5. The surface of the N-type silicon substrate 1 outside the U-shaped groove 11 has a P-type diffusion region 2 and an N-type
D-type diffusion regions 3 are stacked in this order, and an N-type region serving as a channel region 4 is formed in the P-type diffusion region 2 along the side wall of the U-shaped groove 11. In such an embodiment, the direction in which channel region 4 is formed is V V shown in FIG.
Unlike the DMOSFET, it is formed in the vertical direction.

【0020】次に、本実施形態の製造方法を説明する。Next, the manufacturing method of this embodiment will be described.

【0021】まず図1の(a)に示すように、N型不純
物が低濃度に添加されてなるN型半導体基板1の一表面
にU字型溝11を異方性エッチングにより形成する。
First, as shown in FIG. 1A, a U-shaped groove 11 is formed on one surface of an N-type semiconductor substrate 1 to which an N-type impurity is added at a low concentration by anisotropic etching.

【0022】次に図1の(b)に示すように、U字型溝
11の内周面を絶縁膜12で覆った後、U字型溝11の
外側のN型シリコン基板1の表面に通常濃度のP型拡散
領域2を形成する。次にP型拡散領域2表面を、U字型
溝11の縁部を除いて絶縁膜13により覆う。そして、
絶縁膜13で覆われていないU字型溝11の縁部よりN
型不純物を拡散またはイオン注入して、チャネル領域4
となる低濃度のN型領域を形成する。
Next, as shown in FIG. 1B, after the inner peripheral surface of the U-shaped groove 11 is covered with an insulating film 12, the surface of the N-type silicon substrate 1 outside the U-shaped groove 11 is formed. A P-type diffusion region 2 having a normal concentration is formed. Next, the surface of the P-type diffusion region 2 is covered with the insulating film 13 except for the edge of the U-shaped groove 11. And
N from the edge of the U-shaped groove 11 not covered with the insulating film 13
Channel region 4 by diffusing or ion-implanting
To form a low concentration N-type region.

【0023】さらに絶縁膜13を除去し、図1の(c)
に示すようにP型拡散領域2表面にソース領域となる高
濃度のN型拡散領域3を形成した後、U字型溝11の内
周面を覆っていた絶縁膜12を除去し、U字型溝11の
内周面にゲート酸化膜(薄い絶縁膜)5、ゲート電極
(導電膜)6を順次形成する。そしてN型拡散領域3上
にソース電極7を形成した後、N型シリコン基板1の裏
面にドレイン電極8を形成する。
Further, the insulating film 13 is removed, and FIG.
After forming a high-concentration N-type diffusion region 3 serving as a source region on the surface of the P-type diffusion region 2, the insulating film 12 covering the inner peripheral surface of the U-shaped groove 11 is removed. A gate oxide film (thin insulating film) 5 and a gate electrode (conductive film) 6 are sequentially formed on the inner peripheral surface of the mold groove 11. Then, after forming the source electrode 7 on the N-type diffusion region 3, the drain electrode 8 is formed on the back surface of the N-type silicon substrate 1.

【0024】このような形態によれば、従来技術の有す
る問題は解決される。すなわち、本形態においてはチャ
ネル領域4を縦方向に形成していることにより、空乏層
が広がる領域はU字型溝11の下部であり、そしてU字
型溝の幅を約1μmにできるのでP型拡散領域2の間隔
を狭くする事ができる。しかもゲート電極6をU字型溝
11表面に形成できるので、パターニング工程での目ず
れを考慮する必要もなくなる。
According to such an embodiment, the problems of the prior art can be solved. That is, in the present embodiment, since the channel region 4 is formed in the vertical direction, the region where the depletion layer spreads is below the U-shaped groove 11, and the width of the U-shaped groove can be reduced to about 1 μm. The interval between the mold diffusion regions 2 can be reduced. Moreover, since the gate electrode 6 can be formed on the surface of the U-shaped groove 11, there is no need to consider misalignment in the patterning step.

【0025】なお、上記の実施形態はゲート膜に酸化膜
を使用したが、例えば窒化膜でもよい。またゲート電極
としてポリシリコン膜を使用したが、アルミ電極でも良
い。また、U字型溝11に代えてV字型溝であっても良
い。
In the above embodiment, an oxide film is used for the gate film. However, for example, a nitride film may be used. Although a polysilicon film is used as the gate electrode, an aluminum electrode may be used. Further, a V-shaped groove may be used instead of the U-shaped groove 11.

【0026】[0026]

【発明の効果】以上説明したように本発明は、N型半導
体基板の表面に断面がV字型あるいはU字型の溝が形成
され、このV字型あるいはU字型の溝の外側のN型半導
体基板の表面にP型拡散領域およびN型拡散領域がこの
順で積層形成され、このP型拡散領域に前記V字型ある
いはU字型の溝の側壁に沿ってチャネル領域となるN型
領域が縦方向に形成されている縦型MOSFETを構成
するディプレッション型半導体装置を提供することによ
り、P型拡散領域の間隔の低減及びパターニング工程で
の目ずれを考慮しなくても済むようになる。
As described above, according to the present invention, a groove having a V-shaped or U-shaped cross section is formed on the surface of an N-type semiconductor substrate, and an N-shaped groove outside the V-shaped or U-shaped groove is formed. A P-type diffusion region and an N-type diffusion region are formed in this order on the surface of the type semiconductor substrate, and an N-type channel region is formed in the P-type diffusion region along the side wall of the V-shaped or U-shaped groove. By providing a depletion-type semiconductor device that constitutes a vertical MOSFET in which regions are formed in the vertical direction, it is not necessary to consider the reduction of the interval between P-type diffusion regions and misalignment in a patterning process. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のディプレッション型半導体装置の一実
施形態による縦型のU溝MOSFETの構造を説明する
ための工程図である。
FIG. 1 is a process diagram for explaining a structure of a vertical U-groove MOSFET according to one embodiment of a depletion type semiconductor device of the present invention.

【図2】従来からのディプレッション型半導体装置の一
例として、ディプレッション型の縦型MOSFETの構
造を説明するための工程図である。
FIG. 2 is a process diagram for explaining a structure of a depression type vertical MOSFET as an example of a conventional depression type semiconductor device.

【符号の説明】[Explanation of symbols]

1 N型シリコン基板(ドレイン領域) 2 P型拡散領域 3 N型拡散領域(ソース領域) 4 チャネル領域(N型領域) 5 ゲート酸化膜 6 ゲート電極 7 ソース電極 8 ドレイン電極 11 U字型溝 12、13 絶縁膜 REFERENCE SIGNS LIST 1 N-type silicon substrate (drain region) 2 P-type diffusion region 3 N-type diffusion region (source region) 4 channel region (N-type region) 5 gate oxide film 6 gate electrode 7 source electrode 8 drain electrode 11 U-shaped groove 12 , 13 Insulating film

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 N型半導体基板の一表面にV字型溝ある
いはU字型溝を形成し、該V字型溝あるいはU字型溝の
内周面を第1の絶縁膜で覆った後、前記V字型溝あるい
はU字型溝の外側の前記N型半導体基板の表面にP型拡
散領域を形成し、該P型拡散領域の表面を、前記V字型
溝あるいはU字型溝の縁部を除いて第2の絶縁膜で覆
い、そして、該第2の絶縁膜で覆われていない前記V字
型溝あるいはU字型溝の縁部よりN型不純物を拡散また
はイオン注入してチャネル領域を形成した後、前記第2
の絶縁膜を除去し、前記P型拡散領域の表面にソース領
域となるN型拡散領域を形成し、そして、前記第1の絶
縁膜を除去し、前記V字型溝あるいはU字型溝の内周面
にゲート膜、ゲート電極を順次形成し、前記N型拡散領
域上にソース電極を形成し、前記N型シリコン基板の裏
面にドレイン電極を形成して縦型MOSFETを製造す
る、ディプレッション型半導体装置の製造方法。
After forming a V-shaped groove or a U-shaped groove on one surface of an N-type semiconductor substrate and covering an inner peripheral surface of the V-shaped groove or the U-shaped groove with a first insulating film. Forming a P-type diffusion region on the surface of the N-type semiconductor substrate outside the V-shaped groove or the U-shaped groove, and forming a surface of the P-type diffusion region on the surface of the V-shaped groove or the U-shaped groove; Except for the edge, the semiconductor substrate is covered with a second insulating film, and N-type impurities are diffused or ion-implanted from the edge of the V-shaped groove or the U-shaped groove which is not covered with the second insulating film. After forming the channel region, the second
Is removed, an N-type diffusion region serving as a source region is formed on the surface of the P-type diffusion region, and the first insulation film is removed, and the V-shaped groove or the U-shaped groove is removed. Forming a vertical MOSFET by sequentially forming a gate film and a gate electrode on the inner peripheral surface, forming a source electrode on the N-type diffusion region, and forming a drain electrode on the back surface of the N-type silicon substrate; A method for manufacturing a semiconductor device.
JP09181462A 1997-07-07 1997-07-07 Depletion type semiconductor device and method of manufacturing the same Expired - Fee Related JP3097608B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09181462A JP3097608B2 (en) 1997-07-07 1997-07-07 Depletion type semiconductor device and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09181462A JP3097608B2 (en) 1997-07-07 1997-07-07 Depletion type semiconductor device and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH1126761A JPH1126761A (en) 1999-01-29
JP3097608B2 true JP3097608B2 (en) 2000-10-10

Family

ID=16101188

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09181462A Expired - Fee Related JP3097608B2 (en) 1997-07-07 1997-07-07 Depletion type semiconductor device and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3097608B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000357795A (en) * 1999-06-17 2000-12-26 Nec Kansai Ltd Manufacture of depression-type semiconductor device
JP4678902B2 (en) * 1999-09-02 2011-04-27 富士電機システムズ株式会社 Silicon carbide UMOS semiconductor device and method of manufacturing the same
JP4797280B2 (en) * 2001-05-29 2011-10-19 パナソニック電工株式会社 Semiconductor device
JP2006344759A (en) * 2005-06-08 2006-12-21 Sharp Corp Trench type mosfet and its fabrication process

Also Published As

Publication number Publication date
JPH1126761A (en) 1999-01-29

Similar Documents

Publication Publication Date Title
US6614075B2 (en) Semiconductor device and method of manufacturing the same
JP3221766B2 (en) Method for manufacturing field effect transistor
KR100244282B1 (en) Transistor for high voltage and manufactruing method thereof
US5981997A (en) Horizontal field effect transistor and method of manufacturing the same
US20050205897A1 (en) High voltage insulated-gate transistor
KR960012539A (en) Semiconductor device and manufacturing method
JPH0897411A (en) Lateral trench mos fet having high withstanding voltage and its manufacture
JPH06333942A (en) Manufacture of transistor
KR950024326A (en) Semiconductor device having trench structure and manufacturing method thereof
US20020182810A1 (en) High power semiconductor device and fabrication method thereof
US20210217878A1 (en) Diffused field-effect transistor
JP3219045B2 (en) Manufacturing method of vertical MISFET
US5952700A (en) MOSFET device with unsymmetrical LDD region
US6022790A (en) Semiconductor process integration of a guard ring structure
US6207518B1 (en) Method of manufacturing semiconductor device
US20200251590A1 (en) Semiconductor structure and fabrication method thereof
KR100290913B1 (en) High voltage devicd and method for manufacturing the same
JPH0237777A (en) Vertical type field-effect transistor
JP3097608B2 (en) Depletion type semiconductor device and method of manufacturing the same
KR100227644B1 (en) Manufacturing method of a transistor
JP3320476B2 (en) Method for manufacturing semiconductor device
JP2807718B2 (en) Semiconductor device and manufacturing method thereof
US6875658B2 (en) High-voltage device with improved punch through voltage and process for same compatible with low-voltage device process
KR20050108201A (en) Method for manufacturing high voltage transistor
JP3223125B2 (en) Semiconductor device and method of manufacturing semiconductor device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070811

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080811

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080811

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090811

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090811

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100811

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100811

Year of fee payment: 10

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100811

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110811

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110811

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120811

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120811

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130811

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees