JP3096535B2 - Method and apparatus for charging secondary battery - Google Patents

Method and apparatus for charging secondary battery

Info

Publication number
JP3096535B2
JP3096535B2 JP05014751A JP1475193A JP3096535B2 JP 3096535 B2 JP3096535 B2 JP 3096535B2 JP 05014751 A JP05014751 A JP 05014751A JP 1475193 A JP1475193 A JP 1475193A JP 3096535 B2 JP3096535 B2 JP 3096535B2
Authority
JP
Japan
Prior art keywords
voltage
battery
charging
current
constant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP05014751A
Other languages
Japanese (ja)
Other versions
JPH06233468A (en
Inventor
幹隆 玉井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP05014751A priority Critical patent/JP3096535B2/en
Priority to TW082106130A priority patent/TW228615B/zh
Publication of JPH06233468A publication Critical patent/JPH06233468A/en
Priority to US08/588,294 priority patent/US5637979A/en
Application granted granted Critical
Publication of JP3096535B2 publication Critical patent/JP3096535B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、複数の二次電池を直列
に接続して充電する方法及び装置に関し、特に、非水系
二次電池を充電する方法及び装置として好適である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for charging a plurality of secondary batteries by connecting them in series, and is particularly suitable as a method and an apparatus for charging a non-aqueous secondary battery.

【0002】[0002]

【従来の技術】充電することにより繰り返し使用できる
二次電池は、過充電すると電池の性能が著しく低下する
性質がある。そこで、二次電池の1つであるリチウムイ
オン二次電池を充電する場合には、過充電を防止して充
電時間を短くするために、初期は定電流充電し、電圧が
設定値に近くなると定電圧充電に切り替える。電池電圧
が低いときには過充電とならないので、定電流充電して
所定の電流で急速充電し、電池電圧が設定値に近くなる
と、定電流から定電圧に切り替えて過充電を防止する。
2. Description of the Related Art A secondary battery which can be used repeatedly by charging has a property that the performance of the battery is significantly reduced when overcharged. Therefore, when charging a lithium ion secondary battery, which is one of the secondary batteries, in order to prevent overcharging and shorten the charging time, the battery is initially charged at a constant current, and the voltage approaches a set value. Switch to constant voltage charging. When the battery voltage is low, overcharging does not occur. Therefore, constant-current charging is performed and rapid charging is performed at a predetermined current. When the battery voltage approaches a set value, switching from constant current to constant voltage is performed to prevent overcharging.

【0003】このように、最初に定電流充電し、その後
の定電圧充電する充電方法は、特開平4−183232
号公報に記載されている。
[0003] As described above, a charging method in which constant current charging is performed first and then constant voltage charging is performed is disclosed in Japanese Patent Application Laid-Open No. 4-183232.
No., published in Japanese Unexamined Patent Publication No.

【0004】[0004]

【発明が解決しようとする課題】このような充電器を使
用して複数の電池を直列に接続して充電する場合、全て
の電池の容量あるいは内部抵抗が、常に同じであると、
バランス良く充電できる。しかしながら、実際には、電
池の容量あるいは内部抵抗には若干のバラツキが存在
し、更に、初期において同じ内部抵抗であったとして
も、充電サイクルが進んでいくうちに電池の内部特性が
変化し、内部抵抗も変化する。その結果、各電池の電圧
バランスが崩れ、電池の過充電が生じてしまう。
When a plurality of batteries are connected in series and charged using such a charger, if the capacities or internal resistances of all batteries are always the same,
Can be charged in good balance. However, in practice, there is a slight variation in the capacity or internal resistance of the battery, and even if the internal resistance is initially the same, the internal characteristics of the battery change as the charging cycle proceeds, The internal resistance also changes. As a result, the voltage balance of each battery is lost, and the batteries are overcharged.

【0005】例えば、リチウムイオン二次電池は、約
4.2Vで満充電になる。2個のリチウムイオン二次電
池を直列に接続して充電する場合、定電圧充電の設定電
圧を8.4Vとすることによって、正常な電池を満充電
できる。しかしながら、2個の電池の容量が同じでない
場合、一方の電池が4.5Vに、他方の電池が3.9V
となることがある。この場合、4.5Vに電圧が上昇し
た二次電池は過充電となっており、電池性能が著しく低
下する。
For example, a lithium ion secondary battery is fully charged at about 4.2V. When two lithium ion secondary batteries are connected in series and charged, a normal battery can be fully charged by setting the set voltage for constant voltage charging to 8.4V. However, if the capacities of the two batteries are not the same, one battery is at 4.5V and the other battery is at 3.9V.
It may be. In this case, the secondary battery whose voltage has risen to 4.5 V is overcharged, and the battery performance is significantly reduced.

【0006】また、2個の電池の内部抵抗が同じでない
場合、内部抵抗の大きい電池は充電過電圧(内部抵抗×
充電電流)が大きいため、充電するに従って内部抵抗の
小さい電池より電池電圧は上昇し、過充電される。この
電池は充電される毎にますます内部抵抗が上昇して過充
電され、電池性能が低下する。
[0006] If the internal resistances of the two batteries are not the same, a battery having a large internal resistance is charged overvoltage (internal resistance × internal resistance).
Since the charging current is large, the battery voltage rises as the battery is charged and becomes overcharged compared to a battery having a small internal resistance. Each time the battery is charged, the internal resistance increases and the battery is overcharged, and the battery performance deteriorates.

【0007】更に、リチウムイオン二次電池等の非水系
二次電池は、設定された定電圧を越えて過充電を行う
と、副反応である電解液の分解に伴ってガスが発生し、
電池性能が低下すると共に、内圧を上昇させる。この内
圧上昇は、密閉構造であるリチウムイオン二次電池のケ
ーシング破裂の原因となる。このため、非水系二次電池
は、過充電による弊害が極めて大きく、これを防止する
ことが極めて大切である。
Further, in a non-aqueous secondary battery such as a lithium ion secondary battery, when overcharging is performed beyond a set constant voltage, gas is generated due to decomposition of an electrolyte which is a side reaction,
As the battery performance decreases, the internal pressure increases. This increase in the internal pressure causes the casing of a lithium ion secondary battery having a closed structure to burst. For this reason, non-aqueous secondary batteries have extremely large adverse effects due to overcharging, and it is extremely important to prevent them.

【0008】そこで、実開平2−136445号公報に
おいては、複数の電池の各々の電池電圧を検出しながら
充電を行い、何れかの電池が設定電圧に到達すると、充
電を停止するようにしている。
Therefore, in Japanese Utility Model Laid-Open Publication No. 2-136445, charging is performed while detecting the battery voltage of each of a plurality of batteries, and when any one of the batteries reaches a set voltage, charging is stopped. .

【0009】しかし、この場合、いずれかの電池が設定
電圧に到達すると、充電を停止するため、設定電圧に達
していない残りの電池は充電不足のままとなる。
However, in this case, when any of the batteries reaches the set voltage, the charging is stopped, so that the remaining batteries that have not reached the set voltage remain undercharged.

【0010】また、このように各々の電池の電圧を検出
する回路とした場合、各々の電池の電池電圧を検出する
端子に異常が発生したり、各電池の電圧の検出が不可能
な電池の場合には、的確な充電の制御ができない。
[0010] Further, in the case of a circuit for detecting the voltage of each battery as described above, an abnormality may occur in the terminal for detecting the battery voltage of each battery, or a battery of which the voltage of each battery cannot be detected. In such a case, accurate charging control cannot be performed.

【0011】本発明は、斯る点に鑑みて成されたもので
あり、本発明の目的は、複数の二次電池を直列に接続し
て充電するに際し、各電池の電池電圧が検出可能なもの
もそうでないものも、過充電することなく、しかも各々
の電池を満充電に近付けて充電でき、更にサイクル特性
の優れた二次電池の充電方法及び充電装置を提供するこ
とにある。
The present invention has been made in view of the above points, and an object of the present invention is to detect the battery voltage of each battery when connecting and charging a plurality of secondary batteries in series. An object of the present invention is to provide a charging method and a charging apparatus for a secondary battery that can charge each battery without overcharging, and that can approach each battery to near full charge, and that has excellent cycle characteristics.

【0012】[0012]

【課題を解決するための手段】本発明は、複数の二次電
池を直列に接続して充電する方法において、各電池の電
池電圧の検出が可能な場合には、何れかの電池が設定電
圧になるまで通常充電し、何れかの電池が設定電圧に到
達した後は、各電池の電池電圧が設定電圧以下となるよ
うに充電電流を制御して充電を行い、前記検出が不可能
な場合には、電池全体の電池電圧が所定電圧を越えない
ように充電を制御することを特徴とする。
According to the present invention, in a method of charging a plurality of secondary batteries by connecting them in series, if the battery voltage of each battery can be detected, one of the batteries is set to a set voltage. Normal charging until the battery voltage reaches the set voltage, and then charging is performed by controlling the charging current so that the battery voltage of each battery becomes equal to or lower than the set voltage. Is characterized in that charging is controlled so that the battery voltage of the entire battery does not exceed a predetermined voltage.

【0013】更に、本発明は、複数の二次電池を直列に
接続して充電する充電装置において、各電池の電池電圧
を検出する第1検出手段と、電池全体の電池電圧を検出
する第2検出手段と、前記第1検出手段により何れかの
電池が設定電圧に到達したことが検出されると、各電池
の電池電圧が設定電圧以下となるように充電電流を制御
する第1制御手段と、第2検出手段により電池全体の電
池電圧が所定電圧に達したことが検出されると、この所
定電圧を越えないように充電を制御する第2制御手段と
を備えたことを特徴とする。
Further, according to the present invention, in a charging device for connecting and charging a plurality of secondary batteries in series, a first detecting means for detecting a battery voltage of each battery and a second detecting means for detecting a battery voltage of the whole battery. Detecting means, and first control means for controlling a charging current such that when the first detecting means detects that any of the batteries has reached a set voltage, the battery voltage of each battery becomes equal to or lower than the set voltage. And a second control means for controlling charging so that the battery voltage of the entire battery has reached a predetermined voltage by the second detection means so as not to exceed the predetermined voltage.

【0014】[0014]

【作用】本発明によれば、各電池の電池電圧の検出が可
能か否かに基づいて、充電を適宜に制御する。
According to the present invention, charging is appropriately controlled based on whether or not the battery voltage of each battery can be detected.

【0015】各電池の電池電圧の検出が可能な場合に
は、各々の電池の電圧を監視し、最も容量の小さい二次
電池の電圧が設定電圧に到達した後は、電池電圧が設定
電圧を越えないように充電電流を制御して充電する。即
ち、まず、最も容量の小さい二次電池の電圧が設定電圧
になるまでは、一定の電流で定電流する。
When the battery voltage of each battery can be detected, the voltage of each battery is monitored, and after the voltage of the secondary battery having the smallest capacity reaches the set voltage, the battery voltage decreases to the set voltage. Charging is performed by controlling the charging current so as not to exceed. That is, first, a constant current is maintained at a constant current until the voltage of the secondary battery having the smallest capacity reaches the set voltage.

【0016】小容量の二次電池の電圧が設定電圧になる
と、この二次電池の電圧が設定電圧を越えないように、
充電電流を制御する。充電電流の制御は、電流を減少
し、あるいは、充電と休止(または充電と休止と放電)
とを繰り返すデューティを変更して実質的な平均電流を
減少する。
When the voltage of the small-capacity secondary battery reaches the set voltage, the voltage of the secondary battery does not exceed the set voltage.
Control charging current. Controlling the charge current reduces the current or charges and pauses (or charges, pauses and discharges)
The actual average current is reduced by changing the duty that repeats the above.

【0017】このように、最初に設定電圧まで上昇した
二次電池の電圧を監視して、この電池電圧が設定電圧以
上にならないように監視しながら、更に充電を継続す
る。従って、他の二次電池の電圧も次第に上昇して満充
電に近づいて充電される。
As described above, the voltage of the secondary battery, which first rises to the set voltage, is monitored, and charging is further continued while monitoring that the battery voltage does not exceed the set voltage. Therefore, the voltages of the other secondary batteries also gradually rise and are charged close to full charge.

【0018】一方、各電池の電池電圧の検出が不可能な
場合には、複数の電池の全体の電池電圧を監視し、この
電池電圧が所定電圧を越えないように充電電流を制御し
て充電を行う。
On the other hand, when the battery voltage of each battery cannot be detected, the battery voltages of the plurality of batteries are monitored, and the charging current is controlled so that the battery voltages do not exceed a predetermined voltage. I do.

【0019】[0019]

【実施例】図1は、2個の二次電池B1、B2を内蔵す
るパック電池1を充電する第1実施例を示しており、充
電用の電源2と、二次電池B1、B2の充電電流を制御
する定電流充電回路3と、二次電池B1、B2の各々の
電圧を検出して電池電圧が設定電圧(E)以上に上昇す
るのを監視する第1定電圧充電回路4と、二次電池B
1、B2の全体の電圧を検出して電池電圧が所定電圧
(設定電圧の2倍である2E)以上に上昇するのを監視
する第2定電圧充電回路5と、第1定電圧充電回路4及
び第2定電圧充電回路5のいずれかを選択して切り替え
を行うスイッチ素子6とを備えている。
FIG. 1 shows a first embodiment for charging a battery pack 1 containing two rechargeable batteries B1 and B2, and includes a power supply 2 for charging and charging of rechargeable batteries B1 and B2. A constant current charging circuit 3 for controlling the current, a first constant voltage charging circuit 4 for detecting each voltage of the secondary batteries B1 and B2 and monitoring that the battery voltage rises above a set voltage (E); Secondary battery B
A second constant-voltage charging circuit 5 for detecting that the battery voltage rises to a predetermined voltage (2E which is twice the set voltage) or more, and a first constant-voltage charging circuit And a switch element 6 for selecting and switching any one of the second constant voltage charging circuit 5.

【0020】パック電池1は、直列接続された2個の非
水系二次電池B1、B2を内蔵しており、図1に示すよ
うに、二次電池B1、B2の両端の充電端子T1、T2
及び二次電池B1、B2の接続中点よりバッファ1Aを
介して設けられた電圧検出端子T3を備えるもの(以
下、3端子パック電池という)と、充電端子T1、T2
のみを備えるもの(図に示していないが、以下、2端子
パック電池という)がある。
The battery pack 1 incorporates two non-aqueous secondary batteries B1 and B2 connected in series, and as shown in FIG. 1, charging terminals T1 and T2 at both ends of the secondary batteries B1 and B2.
A battery having a voltage detection terminal T3 (hereinafter, referred to as a three-terminal pack battery) provided via a buffer 1A from a connection point between the secondary batteries B1 and B2, and charging terminals T1 and T2.
There is a battery provided with only a battery (not shown, but hereinafter referred to as a two-terminal battery).

【0021】定電流充電回路3は、2個のトランジスタ
TR1、TR2と、2個の抵抗R1R2とで構成されて
おり、パック電池1と電源2との直列回路に介挿されて
いる。この定電流充電回路2は、トランジスタTR1の
エミッタに直列接続された抵抗R1の電圧降下が約0.
6Vとなる電流に調整する。従って、充電電流Iは、I
=0.6/R1となる。この定電流充電回路3は、下記
の動作により二次電池B1、B2を定電流充電する。
The constant current charging circuit 3 comprises two transistors TR1 and TR2 and two resistors R1R2, and is inserted in a series circuit of the battery pack 1 and the power supply 2. In the constant current charging circuit 2, the voltage drop of the resistor R1 connected in series to the emitter of the transistor TR1 is about 0.5.
Adjust to a current of 6V. Therefore, the charging current I is I
= 0.6 / R1. The constant current charging circuit 3 performs constant current charging of the secondary batteries B1 and B2 by the following operation.

【0022】二次電池B1、B2の充電電流が増加する
と、抵抗R1の電圧降下が大きくなり、トランジスタT
R2のベース電流を増加させる。それは、エミッタに対
するベース電圧が高くなるからである。
When the charging current of the secondary batteries B1 and B2 increases, the voltage drop of the resistor R1 increases, and the transistor T
Increase the base current of R2. This is because the base voltage for the emitter increases.

【0023】トランジスタTR2のベース電流が増加す
ると、トランジスタTR2は、コレクタとエミッタ間の
抵抗が減少し、トランジスタTR1のベース電圧が低下
する。よって、トランジスタTR1のコレクタとエミッ
タ間の抵抗を増加し、二次電池B1、B2の充電電流が
減少する。
When the base current of the transistor TR2 increases, the resistance between the collector and the emitter of the transistor TR2 decreases, and the base voltage of the transistor TR1 decreases. Therefore, the resistance between the collector and the emitter of the transistor TR1 increases, and the charging current of the secondary batteries B1, B2 decreases.

【0024】反対に、二次電池B1、B2の充電電流が
減少すると、トランジスタTR1のコレクタとエミッタ
間の抵抗が減少して電流を増加させる。従って、この定
電流充電回路3は、抵抗R1の両端の電圧降下を一定電
圧とするように、言い換えると、充電電流を一定に制御
する。
Conversely, when the charging current of the secondary batteries B1 and B2 decreases, the resistance between the collector and the emitter of the transistor TR1 decreases and the current increases. Therefore, the constant current charging circuit 3 controls the voltage drop across the resistor R1 to a constant voltage, in other words, controls the charging current to be constant.

【0025】第1定電圧充電回路4は、二次電池B1、
B2の各々の電圧を検出して充電電流を制御するもので
あり、一方の二次電池B1の電池電圧を検出し、これを
増幅して出力する2段のオペアンプ4A、4B及びオペ
アンプ4Bの出力端子に接続されたダイオード4Cと、
他方の二次電池B2の電池電圧を検出し、これを増幅し
て出力する2段のオペアンプ4D、4E及びオペアンプ
4Eの出力端子に接続されたダイオード4Fと、スイッ
チ素子6を介してダイオード4C、4Fの出力を入力
し、これを基準電圧素子10の基準電圧(具体的には設
定電圧E)と比較するオペアンプ11と、オペアンプ1
1の出力及びトランジスタTR1のベースの間に接続さ
れたダイオード12とから構成されている。
The first constant voltage charging circuit 4 includes a secondary battery B1,
B2 detects the voltage of each of them and controls the charging current. The two-stage operational amplifiers 4A and 4B and the output of the operational amplifier 4B detect the battery voltage of one secondary battery B1, amplify and output the battery voltage. A diode 4C connected to the terminal;
The two-stage operational amplifiers 4D and 4E that detect the battery voltage of the other secondary battery B2, amplify and output the amplified voltage, and a diode 4F connected to the output terminals of the operational amplifier 4E and a diode 4C via the switch element 6. 4F, and an operational amplifier 11 for comparing the output with a reference voltage (specifically, a set voltage E) of the reference voltage element 10;
1 and the diode 12 connected between the base of the transistor TR1.

【0026】第2定電圧充電回路5は、二次電池B1、
B2の全体の電池電圧を検出して充電電流を制御するも
のであり、二次電池B1、B2の全体の電池電圧を1/
2に分圧して出力する2個の分圧抵抗R3、R4と、ス
イッチ素子6を介してこの分圧値と基準電圧素子10の
設定電圧(E)とを比較するオペアンプ11と、ダイオ
ード12とからなる。即ち、第2定電圧充電回路5は、
基準電圧素子10、オペアンプ11及びダイオード12
を第1定電圧充電回路4と共用している。
The second constant voltage charging circuit 5 includes a secondary battery B1,
The charging current is controlled by detecting the overall battery voltage of B2, and the overall battery voltage of secondary batteries B1 and B2 is reduced by 1 /.
An operational amplifier 11 for comparing the divided voltage value with the set voltage (E) of the reference voltage element 10 via a switch element 6; a diode 12; Consists of That is, the second constant voltage charging circuit 5
Reference voltage element 10, operational amplifier 11, and diode 12
Are shared with the first constant voltage charging circuit 4.

【0027】スイッチ素子6は、第1定電圧充電回路4
または第2定電圧充電回路5のいずれを用いて充電電流
を制御するかを選択するものであり、パック電池1の検
出端子T3に電池電圧が出力されているかどうかを判断
するコンパレータ13の出力に応答して切り替えられ
る。即ち、検出端子T3から二次電池B1、B2の接続
点の電圧が出力され、コンパレータ13がそれを検出す
ると、スイッチ素子6は接点A側(即ち、第1定電圧充
電回路4側)に接続され、そうでない場合には、スイッ
チ素子6は接点B側(即ち、第2定電圧充電回路5側)
に接続される。
The switch element 6 includes a first constant voltage charging circuit 4
Alternatively, which of the second constant voltage charging circuits 5 is used to control the charging current is selected, and the output of the comparator 13 that determines whether the battery voltage is output to the detection terminal T3 of the battery pack 1 is Switched in response. That is, the voltage at the connection point between the secondary batteries B1 and B2 is output from the detection terminal T3, and when the comparator 13 detects the voltage, the switch element 6 is connected to the contact A side (that is, the first constant voltage charging circuit 4 side). Otherwise, the switching element 6 is connected to the contact B side (that is, the second constant voltage charging circuit 5 side).
Connected to.

【0028】斯る構成において、3端子パック電池(即
ち、図1に示すパック電池1)の充電を行う場合、コン
パレータ13によって検出端子T3に電池電圧が出力さ
れていることが検出され、スイッチ素子6がA側に接続
される。従って、第1定電圧充電回路4は、下記の動作
により、図2に示すように、夫々の二次電池B1、B2
の電圧が設定電圧以上に上昇しないように、充電電流を
制御し、二次電池B1、B2の充電を行う。
In this configuration, when charging the three-terminal battery pack (that is, the battery pack 1 shown in FIG. 1), the comparator 13 detects that the battery voltage is output to the detection terminal T3, and 6 is connected to the A side. Accordingly, the first constant voltage charging circuit 4 operates the following operations as shown in FIG.
The charging current is controlled to charge the secondary batteries B1 and B2 so that the voltage of the secondary batteries B1 and B2 does not rise above the set voltage.

【0029】オペアンプ4B、4Eは夫々、二次電池B
1、B2の電池電圧V1、V2を出力し、オペアンプ1
1の−入力端子には、二次電池B1、B2の電池電圧V
1、V2の大きい方の電圧、言い換えれば、いずれかの
二次電池B1、B2の電池電圧が設定電圧(E)に達す
ると、その電圧が入力されることとなる。
The operational amplifiers 4B and 4E are respectively
1, the battery voltages V1 and V2 of B2 are output, and the operational amplifier 1
1 is connected to the battery voltage V of the secondary batteries B1 and B2.
When the voltage of the larger of 1, V2, in other words, the battery voltage of one of the secondary batteries B1, B2 reaches the set voltage (E), that voltage is input.

【0030】今、二次電池B1、B2の各電池電圧V
1、V2が、いずれも基準電圧素子10の設定電圧
(E)以下であると、オペアンプ11の出力は+とな
る。
Now, each battery voltage V of the secondary batteries B1 and B2
When both the voltage V1 and the voltage V2 are lower than the set voltage (E) of the reference voltage element 10, the output of the operational amplifier 11 becomes +.

【0031】オペアンプ11の出力が+であると、ダイ
オード12が逆バイアスされ、トランジスタTR1のベ
ース電流を引き込まない。即ち、定電流充電回路3は、
第1定電圧充電回路4の影響を受けないで、一定の電流
で二次電池B1、B2の全てを充電する。この状態は、
図2において、いずれかの二次電池B1、B2の電圧V
1、V2が設定電圧(E)に上昇するまで続く。
When the output of the operational amplifier 11 is +, the diode 12 is reverse-biased and does not draw in the base current of the transistor TR1. That is, the constant current charging circuit 3
The secondary batteries B1 and B2 are all charged with a constant current without being affected by the first constant voltage charging circuit 4. This state is
In FIG. 2, the voltage V of one of the secondary batteries B1, B2
1. Continue until V2 rises to the set voltage (E).

【0032】二次電池B1の電圧V1が設定電圧(E)
に上昇すると、オペアンプ11の出力電圧が0Vとな
る。これにより、トランジスタTR1のベース電流が、
ダイオード12からオペアンプ11に引き込まれる。
The voltage V1 of the secondary battery B1 is equal to the set voltage (E).
, The output voltage of the operational amplifier 11 becomes 0V. Thereby, the base current of the transistor TR1 becomes
It is pulled into the operational amplifier 11 from the diode 12.

【0033】その結果、トランジスタTR1のベース電
流が減少し、トランジスタTR1のコレクタとエミッタ
間の抵抗が増加し、充電電流を減少する。即ち、トラン
ジスタTR1によって制御される充電電流は、二次電池
B1の電池電圧V1が設定電圧(E)を越えないように
制御される。充電電流が減少すると、二次電池B1の電
池電圧V1が低下し、再び充電電流が増加するが、二次
電池B1の電池電圧V1が設定電圧(E)を越えないよ
うに制御される。
As a result, the base current of the transistor TR1 decreases, the resistance between the collector and the emitter of the transistor TR1 increases, and the charging current decreases. That is, the charging current controlled by the transistor TR1 is controlled so that the battery voltage V1 of the secondary battery B1 does not exceed the set voltage (E). When the charging current decreases, the battery voltage V1 of the secondary battery B1 decreases, and the charging current increases again. However, control is performed so that the battery voltage V1 of the secondary battery B1 does not exceed the set voltage (E).

【0034】以上の動作により、図2に示すように充電
電流は次第に減少するが、充電電流は0とならないの
で、残りの二次電池B2の電池電圧V2は次第に上昇
し、設定電圧(E)に近づくように充電される。
With the above operation, the charging current gradually decreases as shown in FIG. 2, but the charging current does not become 0, so that the battery voltage V2 of the remaining secondary battery B2 gradually increases and the set voltage (E) It is charged so that it approaches.

【0035】一方、3端子パック電池1の充電を行う場
合であっても、何らかの異常で検出端子T3に電池電圧
が出力されない場合、及び2端子パック電池の充電を行
う場合、コンパレータ13によって検出端子T3の電池
電圧が出力されていないことが検出され、スイッチ素子
6がB側に接続される。従って、第2定電圧充電回路5
の制御の下に、二次電池B1、B2の充電が行われる。
On the other hand, even when the three-terminal pack battery 1 is charged, if the battery voltage is not output to the detection terminal T3 due to some abnormality, or if the two-terminal pack battery is charged, the comparator 13 detects the detection terminal. It is detected that the battery voltage of T3 has not been output, and the switch element 6 is connected to the B side. Therefore, the second constant voltage charging circuit 5
Are controlled, the secondary batteries B1, B2 are charged.

【0036】第2定電圧充電回路5は、二次電池B1、
B2の全体の電池電圧を2個の分圧抵抗R3、R4にて
1/2に分圧し、これをスイッチ素子6を介してオペア
ンプ11に出力する。
The second constant voltage charging circuit 5 includes a secondary battery B1,
The entire battery voltage of B2 is divided into two by two voltage dividing resistors R3 and R4, and the divided voltage is output to the operational amplifier 11 via the switch element 6.

【0037】今、二次電池B1、B2全体の電池電圧
が、所定電圧(2E)以下であると、オペアンプ11の
出力は+となる。一方、二次電池B1、B2全体の電池
電圧が所定電圧(2E)に上昇すると、オペアンプ11
の出力電圧が0Vとなる。このオペアンプ11の出力電
圧により、前述と同様に、充電電流が制御され、二次電
池B1、B2は、全体の電池電圧が所定電圧(2E)を
越えないように充電される。
Now, when the battery voltages of the entire rechargeable batteries B1 and B2 are lower than a predetermined voltage (2E), the output of the operational amplifier 11 becomes +. On the other hand, when the battery voltage of the entire secondary batteries B1 and B2 rises to a predetermined voltage (2E), the operational amplifier 11
Becomes 0V. The charging current is controlled by the output voltage of the operational amplifier 11 in the same manner as described above, and the secondary batteries B1 and B2 are charged so that the entire battery voltage does not exceed the predetermined voltage (2E).

【0038】図3は、本発明の第2実施例を示してお
り、第1実施例とは、第1定電圧充電回路4と、第2定
電圧充電回路5と、スイッチ素子6との構成において若
干異なるものである。
FIG. 3 shows a second embodiment of the present invention. The first embodiment is composed of a first constant voltage charging circuit 4, a second constant voltage charging circuit 5, and a switch element 6. Are slightly different.

【0039】即ち、第1定電圧充電回路4は、ダイオー
ド4C、4Fの出力が、スイッチ素子6を介することな
く、オペアンプ11の−端子に入力される構成となって
いる。また、第2定電圧充電回路5は、第1定電圧充電
回路4と個別に、基準電圧素子14、オペアンプ15及
びダイオード16を備えている。そして、第1定電圧充
電回路4のダイオード12はスイッチ素子6を介して、
及び第2定電圧充電回路5のダイオード16は直接、ト
ランジスタTR1のベースに夫々接続されている。
That is, the first constant voltage charging circuit 4 is configured such that the outputs of the diodes 4C and 4F are input to the minus terminal of the operational amplifier 11 without passing through the switch element 6. The second constant voltage charging circuit 5 includes a reference voltage element 14, an operational amplifier 15, and a diode 16 separately from the first constant voltage charging circuit 4. Then, the diode 12 of the first constant voltage charging circuit 4 is
The diode 16 of the second constant voltage charging circuit 5 is directly connected to the base of the transistor TR1.

【0040】斯る構成において、3端子パック電池1の
充電を行う場合、コンパレータ13によって検出端子T
3に電池電圧が出力されていることが検出され、スイッ
チ素子6が接続される。従って、二次電池B1、B2
は、第1定電圧充電回路4により、第1実施例と同様
に、夫々の電池電圧が設定電圧(E)以上に上昇しない
ように、充電電流が制御されると共に、第2定電圧充電
回路5により、全体の電池電圧も所定電圧(2E)以上
に上昇しないように充電電流が制御される。
In this configuration, when charging the three-terminal pack battery 1, the comparator 13 detects the detection terminal T.
It is detected that the battery voltage is output to the switch 3, and the switch element 6 is connected. Therefore, the secondary batteries B1, B2
In the same manner as in the first embodiment, the charging current is controlled by the first constant voltage charging circuit 4 so that each battery voltage does not rise above the set voltage (E), and the second constant voltage charging circuit 5, the charging current is controlled so that the entire battery voltage does not rise above the predetermined voltage (2E).

【0041】換言すれば、夫々の二次電池B1、B2の
電池電圧及び全体の電池電圧のいずれにおいても、設定
電圧及び所定電圧を越えないように充電電流が制御され
る、所謂2重の制御が行われる。
In other words, the charging current is controlled so that the battery voltage of each of the secondary batteries B1 and B2 and the entire battery voltage does not exceed the set voltage and the predetermined voltage, so-called double control. Is performed.

【0042】一方、3端子パック電池1の充電を行う場
合であっても、何らかの異常で検出端子T3に電池電圧
が出力されない場合、及び2端子パック電池の充電を行
う場合は、第1実施例と全く同様にして、第2定電圧充
電回路5の制御の下に、二次電池B1、B2全体の電池
電圧が所定電圧を越えないように充電電流が制御され
る。
On the other hand, even when the three-terminal battery 1 is charged, if the battery voltage is not output to the detection terminal T3 due to some abnormality, or if the two-terminal battery is charged, the first embodiment is performed. The charging current is controlled under the control of the second constant voltage charging circuit 5 so that the battery voltages of the entire rechargeable batteries B1 and B2 do not exceed a predetermined voltage.

【0043】更に、図4は、本発明の第3実施例を示し
ており、第2実施例とは、第2定電圧充電回路5と、ス
イッチ素子6との構成において若干異なるものであり、
第2定電圧充電回路5は、分圧抵抗R3、R4の分圧を
増幅して出力する2段のオペアンプ5A、5B及びダイ
オード5Cを備え、その出力は直接、オペアンプ11に
印加されている。そして、ダイオード12は直接、トラ
ンジスタTR1のベースに接続されている。
FIG. 4 shows a third embodiment of the present invention, which is slightly different from the second embodiment in the configuration of the second constant voltage charging circuit 5 and the switch element 6.
The second constant voltage charging circuit 5 includes two stages of operational amplifiers 5A and 5B and a diode 5C for amplifying and outputting the divided voltage of the voltage dividing resistors R3 and R4, and the output is directly applied to the operational amplifier 11. The diode 12 is directly connected to the base of the transistor TR1.

【0044】従って、斯る構成によれば、3端子パック
電池1の充電を行う場合、二次電池B1、B2は、第1
定電圧充電回路4により、第1実施例と同様に、夫々の
電池電圧が設定電圧(E)以上に上昇しないように、充
電電流が制御されると共に、第2定電圧充電回路5によ
り、全体の電池電圧も所定電圧(2E)以上に上昇しな
いように充電電流が制御される。
Therefore, according to this configuration, when charging the three-terminal pack battery 1, the secondary batteries B 1 and B 2
As in the first embodiment, the charging current is controlled by the constant voltage charging circuit 4 so that the respective battery voltages do not rise above the set voltage (E). The charging current is controlled so that the battery voltage does not rise above the predetermined voltage (2E).

【0045】一方、3端子パック電池1の充電を行う場
合であっても、何らかの異常で検出端子T3に電池電圧
が出力されない場合、及び2端子パック電池の充電を行
う場合は、第1実施例や第2実施例と全く同様にして、
第2定電圧充電回路5の制御の下に、二次電池B1、B
2全体の電池電圧が所定電圧を越えないように充電電流
が制御される。
On the other hand, even when the three-terminal pack battery 1 is charged, if the battery voltage is not output to the detection terminal T3 due to some abnormality, or if the two-terminal pack battery is charged, the first embodiment will be described. And exactly the same as the second embodiment,
Under the control of the second constant voltage charging circuit 5, the secondary batteries B1, B
The charging current is controlled so that the overall battery voltage does not exceed a predetermined voltage.

【0046】図5は、本発明の第4実施例を示してお
り、本実施例は、第3実施例における第1定電圧充電回
路4と第2定電圧充電回路5とを、1つの定電圧充電回
路40として構成し、回路の簡略化を図ったものであ
る。
FIG. 5 shows a fourth embodiment of the present invention. In this embodiment, the first constant voltage charging circuit 4 and the second constant voltage charging circuit 5 in the third embodiment are connected to one constant voltage circuit. It is configured as a voltage charging circuit 40 to simplify the circuit.

【0047】定電圧充電回路40は、二次電池B1、B
2の充電端子T1、T2間に直列接続された2つの抵抗
R5、R6(なお、これらの抵抗値は等しい)を備え
る。そして、図に示す3端子パック電池1の場合にあっ
ては、これら抵抗R5、R6の接続中点に、バッファ1
Aの出力端子T3が接続される。
The constant voltage charging circuit 40 includes the secondary batteries B1, B
It has two resistors R5 and R6 connected in series between the two charging terminals T1 and T2 (these resistance values are equal). In the case of the three-terminal pack battery 1 shown in the figure, the buffer 1 is connected to the middle point of connection between the resistors R5 and R6.
A output terminal T3 is connected.

【0048】更に、定電圧充電回路40は、抵抗R5の
両端電圧、即ち二次電池B1の電池電圧を増幅して出力
するオペアンプ40A及びダイオード40Bと、抵抗R
6の両端電圧、即ち二次電池B2の電池電圧を増幅して
出力するオペアンプ40C及びダイオード40Dとを備
え、ダイオード40B及び40Dの出力が、オペアンプ
11に印加されている。
Further, the constant voltage charging circuit 40 includes an operational amplifier 40A and a diode 40B for amplifying and outputting the voltage across the resistor R5, that is, the battery voltage of the secondary battery B1, and a resistor R
6, that is, an operational amplifier 40 </ b> C and a diode 40 </ b> D that amplify and output the voltage across the secondary battery B <b> 2, and the outputs of the diodes 40 </ b> B and 40 </ b> D are applied to the operational amplifier 11.

【0049】斯る構成によれば、3端子パック電池1の
充電を行う場合、二次電池B1、B2の各々の電池電圧
は、定電圧充電回路40のオペアンプ40A、40Cに
より検出され、オペアンプ11に印加される。従って、
第1実施例と同様に、夫々の電池電圧が設定電圧(E)
以上に上昇しないように、充電電流が制御される。
According to this configuration, when charging the three-terminal pack battery 1, the respective battery voltages of the secondary batteries B 1 and B 2 are detected by the operational amplifiers 40 A and 40 C of the constant voltage charging circuit 40, and the operational amplifier 11 Is applied to Therefore,
As in the first embodiment, each battery voltage is equal to the set voltage (E).
The charging current is controlled so as not to increase as described above.

【0050】一方、3端子パック電池1の充電を行う場
合であっても、何らかの異常で端子T3に電池電圧が出
力されない場合、及び2端子パック電池の充電を行う場
合、オペアンプ40A、40Cの夫々は、二次電池B
1、B2全体の電池電圧の1/2の電圧を検出して出力
する。従って、前記各実施例と全く同様にして、二次電
池B1、B2全体の電池電圧が所定電圧を越えないよう
に、充電電流が制御される。
On the other hand, even when the three-terminal pack battery 1 is charged, when the battery voltage is not output to the terminal T3 due to some abnormality or when the two-terminal pack battery is charged, the operational amplifiers 40A and 40C respectively Is the secondary battery B
1. Detect and output 1/2 of the battery voltage of the entire battery B2. Therefore, the charging current is controlled so that the battery voltages of the entire secondary batteries B1 and B2 do not exceed the predetermined voltage, in exactly the same manner as in the above embodiments.

【0051】図6は、本発明の第5実施例を示してお
り、第1定電圧充電回路4は、第4実施例と同様の抵抗
R5、R6と、各抵抗R5、R6の両端電圧、即ち、二
次電池B1、B2の電池電圧を検出して出力するオペア
ンプ4A、4Dと、オペアンプ4A、4Dの出力を個別
に入力して基準電圧素子10A、10Bの設定電圧
(E)と比較するオペアンプ11A、11B及びダイオ
ード12A、12Bとからなる。また、第2定電圧充電
回路5は、二次電池B1、B2全体の電池電圧を1/2
に分圧して出力する分圧抵抗R3、R4と、この分圧出
力と基準電圧素子10Cの設定電圧(E)とを比較する
オペアンプ11C及びダイオード12Cとからなる。
FIG. 6 shows a fifth embodiment of the present invention. The first constant voltage charging circuit 4 includes resistors R5 and R6 similar to those of the fourth embodiment, and voltages across the resistors R5 and R6. That is, the operational amplifiers 4A and 4D for detecting and outputting the battery voltages of the secondary batteries B1 and B2, and the outputs of the operational amplifiers 4A and 4D are individually input and compared with the set voltage (E) of the reference voltage elements 10A and 10B. It comprises operational amplifiers 11A and 11B and diodes 12A and 12B. Further, the second constant voltage charging circuit 5 reduces the overall battery voltage of the secondary batteries B1 and B2 by 1 /.
Resistors R3 and R4 that divide the voltage and output the voltage, and an operational amplifier 11C and a diode 12C that compare the divided output with the set voltage (E) of the reference voltage element 10C.

【0052】斯る実施例は、前述の第3実施例と全く同
様に充電を制御する。即ち、3端子パック電池1の充電
を行う場合、二次電池B1、B2は、第1定電圧充電回
路4により、夫々の電池電圧が設定電圧(E)以上に上
昇しないように、充電電流が制御されると共に、第2定
電圧充電回路5により、全体の電池電圧も所定電圧(2
E)以上に上昇しないように充電電流が制御される。
This embodiment controls charging in exactly the same manner as the third embodiment. That is, when charging the three-terminal battery pack 1, the charging current of the secondary batteries B1 and B2 is increased by the first constant voltage charging circuit 4 so that the respective battery voltages do not rise to the set voltage (E) or more. The battery voltage is controlled by the second constant voltage charging circuit 5, and the entire battery voltage is also reduced to a predetermined voltage (2
E) The charging current is controlled so as not to rise more than the above.

【0053】一方、二次電池B1、B2の各々の電離電
圧が検出されない場合には、第2定電圧充電回路5の制
御の下に、二次電池B1、B2全体の電池電圧が所定電
圧を越えないように充電電流が制御される。
On the other hand, when the ionization voltage of each of the rechargeable batteries B1 and B2 is not detected, under the control of the second constant voltage charging circuit 5, the battery voltage of the entire rechargeable batteries B1 and B2 decreases to a predetermined voltage. The charging current is controlled so as not to exceed.

【0054】[0054]

【発明の効果】本発明によれば、複数の二次電池を直列
に接続して充電するに際し、各電池の電池電圧の検出が
可能な場合には、何れかの電池が設定電圧になるまで通
常充電し、何れかの電池が設定電圧に到達した後は、各
電池の電池電圧が設定電圧を越えないように充電電流を
制御して充電を行うので、いずれの電池の電圧も異常に
高く上昇させることなく、即ち、副反応による電池の性
能を低下させることなく、各電池を満充電できる。
According to the present invention, when a plurality of rechargeable batteries are connected in series and charged, if the battery voltage of each battery can be detected, until any one of the batteries reaches the set voltage. Normal charging, and after any one of the batteries reaches the set voltage, charging is performed by controlling the charging current so that the battery voltage of each battery does not exceed the set voltage. Each battery can be fully charged without raising, that is, without lowering the performance of the battery due to side reactions.

【0055】また、各電池の電池電圧が検出できない場
合にあっても、電池全体の電池電圧が所定電圧を越えな
いように充電を制御するので、この場合も異常な電池の
劣化を招くことなく、電池を充電することができる。
Even when the battery voltage of each battery cannot be detected, charging is controlled so that the battery voltage of the entire battery does not exceed a predetermined voltage. In this case as well, abnormal battery deterioration does not occur. , Can charge the battery.

【0056】従って、直列接続された各電池の電池電圧
が検出可能なものもそうでないものも、適宜に充電電流
を制御して充電を行うことができ、汎用性荷富んだもの
とすることができる。
Therefore, charging can be performed by appropriately controlling the charging current, regardless of whether the battery voltage of each battery connected in series can be detected or not, and the battery can be versatile. it can.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施例の充電回路図である。FIG. 1 is a charging circuit diagram according to a first embodiment of the present invention.

【図2】本発明における二次電池を充電する電圧、電流
特性を示すグラフである。
FIG. 2 is a graph showing voltage and current characteristics for charging a secondary battery according to the present invention.

【図3】本発明の第2実施例の充電回路図である。FIG. 3 is a charging circuit diagram according to a second embodiment of the present invention.

【図4】本発明の第3実施例の充電回路図である。FIG. 4 is a charging circuit diagram according to a third embodiment of the present invention.

【図5】本発明の第4実施例の充電回路図である。FIG. 5 is a charging circuit diagram according to a fourth embodiment of the present invention.

【図6】本発明の第5実施例の充電回路図である。FIG. 6 is a charging circuit diagram according to a fifth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 パック電池 3 定電流充電回路 4 第1定電圧充電回路 5 第2定電圧充電回路 6 スイッチ素子 Reference Signs List 1 pack battery 3 constant current charging circuit 4 first constant voltage charging circuit 5 second constant voltage charging circuit 6 switch element

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H02J 7/00 - 7/10 H02J 7/34 - 7/35 H01M 10/42 - 10/48 301 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 7 , DB name) H02J 7/ 00-7/10 H02J 7 /34-7/35 H01M 10/42-10/48 301

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 複数の二次電池を直列に接続して充電す
る方法において、各電池の電池電圧の検出が可能な場合
には、何れかの電池が設定電圧になるまで通常充電し、
何れかの電池が設定電圧に到達した後は、各電池の電池
電圧が設定電圧以下となるように充電電流を制御して充
電を行い、前記検出が不可能な場合には、電池全体の電
池電圧が所定電圧を越えないように充電を制御すること
を特徴とする二次電池の充電方法。
In a method of charging by connecting a plurality of secondary batteries in series, if the battery voltage of each battery can be detected, normal charging is performed until any battery reaches a set voltage,
After any one of the batteries reaches the set voltage, the battery is charged by controlling the charging current so that the battery voltage of each battery becomes equal to or lower than the set voltage. A charging method for a secondary battery, comprising controlling charging so that a voltage does not exceed a predetermined voltage.
【請求項2】 複数の二次電池を直列に接続して充電す
る充電装置において、各電池の電池電圧を検出する第1
検出手段と、電池全体の電池電圧を検出する第2検出手
段と、前記第1検出手段により何れかの電池が設定電圧
に到達したことが検出されると、各電池の電池電圧が設
定電圧以下となるように充電電流を制御する第1制御手
段と、第2検出手段により電池全体の電池電圧が所定電
圧に達したことが検出されると、この所定電圧を越えな
いように充電を制御する第2制御手段とを備えたことを
特徴とする充電装置。
2. A charging apparatus for connecting and charging a plurality of secondary batteries in series, wherein a first voltage detecting means detects a battery voltage of each battery.
Detecting means, second detecting means for detecting the battery voltage of the entire battery, and when the first detecting means detects that any of the batteries has reached the set voltage, the battery voltage of each battery is equal to or less than the set voltage. When the battery voltage of the whole battery reaches a predetermined voltage by the first control means for controlling the charging current and the second detection means, the charging is controlled so as not to exceed the predetermined voltage. A charging device comprising: a second control unit.
【請求項3】 前記第1制御手段及び第2制御手段のい
ずれかを選択する選択手段を備えたことを特徴とする請
求項2の充電装置。
3. The charging device according to claim 2, further comprising a selection unit that selects one of the first control unit and the second control unit.
JP05014751A 1992-08-27 1993-02-01 Method and apparatus for charging secondary battery Expired - Lifetime JP3096535B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP05014751A JP3096535B2 (en) 1993-02-01 1993-02-01 Method and apparatus for charging secondary battery
TW082106130A TW228615B (en) 1992-08-27 1993-07-31
US08/588,294 US5637979A (en) 1992-08-27 1996-01-18 Rechargeable battery charging method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05014751A JP3096535B2 (en) 1993-02-01 1993-02-01 Method and apparatus for charging secondary battery

Publications (2)

Publication Number Publication Date
JPH06233468A JPH06233468A (en) 1994-08-19
JP3096535B2 true JP3096535B2 (en) 2000-10-10

Family

ID=11869819

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05014751A Expired - Lifetime JP3096535B2 (en) 1992-08-27 1993-02-01 Method and apparatus for charging secondary battery

Country Status (1)

Country Link
JP (1) JP3096535B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09140067A (en) * 1995-11-15 1997-05-27 Mitsumi Electric Co Ltd Circuit for monitoring secondary battery
JPH10304588A (en) * 1997-02-25 1998-11-13 Matsushita Electric Ind Co Ltd Power source equipment
US7307402B2 (en) * 2004-07-19 2007-12-11 Avestor Limited Partnership Method of charging alkali metal polymer batteries
JP4824040B2 (en) * 2007-12-14 2011-11-24 富士通株式会社 BATTERY CIRCUIT CONTROL DEVICE, CHARGE CONTROL DEVICE, ELECTRONIC DEVICE USING THE SAME, AND CONTROL METHOD
JP2009225632A (en) * 2008-03-18 2009-10-01 Panasonic Corp Charging control circuit, battery pack, and charging system
JP4766095B2 (en) * 2008-10-09 2011-09-07 ソニー株式会社 Charger
US8698458B2 (en) * 2010-07-08 2014-04-15 Samsung Sdi Co., Ltd. Battery pack having boosting charge function and method thereof
TW201325018A (en) * 2011-12-12 2013-06-16 Powerflash Technology Corp Method of controlling the power status of a battery pack and related smart battery device
CN112701735A (en) * 2019-10-22 2021-04-23 华为技术有限公司 Electronic equipment, charging method and charging system

Also Published As

Publication number Publication date
JPH06233468A (en) 1994-08-19

Similar Documents

Publication Publication Date Title
US11121566B2 (en) Power supply and battery pack including same
US8860372B2 (en) Multiple cell battery charger configured with a parallel topology
US5861730A (en) Battery charging apparatus
JP2846800B2 (en) Charging device
EP0657982A1 (en) Battery use system for portable electric equipment
US7656130B2 (en) Battery charger
EP1040547A1 (en) Method and apparatus for charging a rechargeable battery
US6456046B1 (en) Protection circuit for terminating trickle charge when the battery terminal voltage is greater than a predetermined value
JP3096535B2 (en) Method and apparatus for charging secondary battery
JPH06133465A (en) Method and apparatus for charging secondary battery
JPH07105986A (en) Battery pack
JP3177955B2 (en) Rechargeable battery charging method and charging system
JPH0787673A (en) Charging controlling system
JPH11187587A (en) Charge control circuit
US7560899B1 (en) Circuit and method for adjusting safety time-out with charge current
JP3268513B2 (en) Battery pack charger
JPH07123604A (en) Charger for secondary battery
JP3328976B2 (en) Battery device
JP3492903B2 (en) Lithium ion secondary battery charging system and charger
JP2995142B2 (en) Series battery charger
JP3216595B2 (en) Rechargeable battery charger
JPH0749731A (en) Portable computer
JPH05336675A (en) Charging circuit for secondary battery
CN215733590U (en) Charge and discharge control device, semiconductor chip, battery management system and electric equipment
JPH02273036A (en) Hybrid battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070804

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080804

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090804

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100804

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110804

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120804

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130804

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130804

Year of fee payment: 13