JP3095499B2 - Fluidized bed combustion boiler - Google Patents

Fluidized bed combustion boiler

Info

Publication number
JP3095499B2
JP3095499B2 JP03345821A JP34582191A JP3095499B2 JP 3095499 B2 JP3095499 B2 JP 3095499B2 JP 03345821 A JP03345821 A JP 03345821A JP 34582191 A JP34582191 A JP 34582191A JP 3095499 B2 JP3095499 B2 JP 3095499B2
Authority
JP
Japan
Prior art keywords
combustion
fluidized bed
zone
furnace
heat transfer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03345821A
Other languages
Japanese (ja)
Other versions
JPH05180413A (en
Inventor
善久 荒川
壽夫 羽田
汎 高塚
幸久 藤間
田頭  健二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP03345821A priority Critical patent/JP3095499B2/en
Publication of JPH05180413A publication Critical patent/JPH05180413A/en
Application granted granted Critical
Publication of JP3095499B2 publication Critical patent/JP3095499B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Fluidized-Bed Combustion And Resonant Combustion (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は原動機製品の流動層方式
の流動層燃焼ボイラに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fluidized bed combustion boiler for a motor product in a fluidized bed system.

【0002】[0002]

【従来の技術】気泡型流動層燃焼では、従来、空気の多
段投入によりNOx発生の抑制は可能であったが、脱硫
は層内で行なわれるため、NOx,SOx両者を抑制す
る事が困難であった。また、流動層温度の制御機構もな
く、燃料、ボイラ負荷等の変化に対応する事も困難であ
った。
2. Description of the Related Art In bubble-type fluidized bed combustion, it has been conventionally possible to suppress the generation of NOx by multi-stage injection of air. However, since desulfurization is performed in the bed, it is difficult to suppress both NOx and SOx. there were. Also, there is no control mechanism for the fluidized bed temperature, and it is difficult to cope with changes in fuel, boiler load, and the like.

【0003】図2に従来の流動層ボイラの一実施例を示
す。同図に示すように、火炉11下部には1次空気12
が投入され、流動層13が形成される。燃料としての石
炭14は流動層13内に投入され、脱硫剤(石灰石等)
15とともに層内で燃焼、脱硫反応が進行する。
FIG. 2 shows an embodiment of a conventional fluidized bed boiler. As shown in FIG.
And the fluidized bed 13 is formed. Coal 14 as fuel is injected into the fluidized bed 13 and a desulfurizing agent (limestone, etc.)
Combustion and desulfurization reactions proceed in the bed together with 15.

【0004】火炉11の中間点より2次空気16を投入
するが、NOx抑制のためこの量を増加させると流動層
内の空気比が低下し脱硫反応が起きにくくなるという欠
点がある。火炉11を出た燃焼ガスは、火炉上部伝熱面
17、対流伝熱面18で冷却され、集塵装置を経て大気
へ放出される。一方、ガス中から分離された未燃分は、
未燃灰リサイクル19を経て流動層内へ投入される。
尚、流動層13の内部には、層温度を制御するために層
内管20が設置されている。
[0004] The secondary air 16 is supplied from the intermediate point of the furnace 11, but if this amount is increased to suppress NOx, there is a disadvantage that the air ratio in the fluidized bed is reduced and desulfurization reaction is less likely to occur. The combustion gas that has exited the furnace 11 is cooled by the furnace upper heat transfer surface 17 and the convection heat transfer surface 18 and is discharged to the atmosphere via a dust collector. On the other hand, the unburned matter separated from the gas is
The unburned ash is fed into the fluidized bed through the recycle 19.
In addition, inside the fluidized bed 13, an inner tube 20 is installed to control the bed temperature.

【0005】[0005]

【発明が解決しようとする課題】ところで、気泡型流動
層燃焼方式においては、二段燃焼はNOx低減手段とし
て従来から採用されているが、二段燃焼を行なうと、流
動層内の空気比が低下し、酸化雰囲気下での反応である
石灰石による脱硫反応が防げられるという問題がある。
また、流動層燃焼は、一般に800〜900℃の低温燃
焼であるため、N2Oの発生量が多く、ダイオキシンの
分解にも充分な温度となっていないという不具合があ
る。
By the way, in the bubble type fluidized bed combustion system, the two-stage combustion has been conventionally employed as the NOx reduction means. However, when the two-stage combustion is performed, the air ratio in the fluidized bed is reduced. Therefore, there is a problem that the desulfurization reaction by limestone, which is a reaction under an oxidizing atmosphere, can be prevented.
Further, since fluidized bed combustion is generally low-temperature combustion at 800 to 900 ° C., there is a problem that a large amount of N 2 O is generated and the temperature is not sufficient for decomposition of dioxin.

【0006】本発明は上記問題に鑑み、NOx,SOx
の発生を抑制しつつ流動層温度の制御を可能とした流動
層燃焼ボイラを提供することを目的とする。
The present invention has been made in view of the above problems, and has been developed for NOx, SOx
It is an object of the present invention to provide a fluidized-bed combustion boiler capable of controlling the temperature of a fluidized bed while suppressing generation of the fluidized bed.

【0007】[0007]

【課題を解決するための手段】前記目的を達成する本発
明に係る流動層燃焼ボイラの構成は、石油,油,ガス,
各種廃棄物等を燃料とし、石灰石等を脱硫剤として使用
する流動層燃焼方式のボイラであって、火炉下部に気泡
型流動層となる濃厚層を有し、該濃厚層の空気比を理論
燃焼空気量の0.5〜0.8の還元雰囲気を形成したガ
ス化1次燃焼域と、上記層上に2次空気投入口を設け、
2次空気投入後の空気比を理論燃焼空気量の0.8〜
1.0としてNOx分解領域を形成した2次脱硝燃焼域
と、該2次脱硝燃焼域の上部に3次空気投入口を設け、
未燃ガス燃焼による雰囲気温度の上昇によるN2O,ダ
イオキシン分解領域を形成した3次高温完全燃焼域と、
火炉出口部に伝熱管のガス流速が下部燃焼炉の空塔速度
よりも早くなる伝熱管群を設置し、伝熱管群出口の空塔
速度を下部燃焼炉の空塔速度よりも遅くして伝熱管群上
部に粒子の滞留する領域を形成すると共に、伝熱面積を
適宜選定して雰囲気ガス温度800℃〜900℃の脱硫
反応域を形成した脱硫域とを具備してなることを特徴と
する。
A fluidized bed combustion boiler according to the present invention, which achieves the above object, comprises oil, oil, gas,
A fluidized bed combustion type boiler that uses various wastes as fuel and limestone etc. as a desulfurizing agent. A gasification primary combustion zone in which a reducing atmosphere having an air amount of 0.5 to 0.8 is formed, and a secondary air inlet provided on the layer,
The air ratio after secondary air injection is 0.8 to the theoretical combustion air amount.
A secondary denitration combustion zone in which a NOx decomposition zone is formed as 1.0, and a tertiary air inlet above the secondary denitration combustion zone;
A tertiary high-temperature complete combustion region in which an N 2 O and dioxin decomposition region is formed due to an increase in ambient temperature due to unburned gas combustion;
Install a heat transfer tube group at the furnace exit where the gas flow velocity of the heat transfer tubes is faster than the superficial velocity of the lower combustion furnace. A desulfurization zone is provided, in which a region where particles stay is formed at the top of the heat tube group, and a desulfurization zone in which a heat transfer area is appropriately selected to form a desulfurization reaction zone at an ambient gas temperature of 800 ° C to 900 ° C. .

【0008】[0008]

【作用】前記構成において、気泡流動層域では、理論燃
焼用空気の0.5〜0.8倍の1次空気を投入し、還元雰囲
気でガス化燃焼を行なう。流動層上方に導かれた未燃ガ
スは、層上に投入された2次空気で一部燃焼し、空気比
0.8〜1.0の高温還元雰囲気を形成し、NOxの還
元分解反応が進行する。2次空気投入後の残留未燃ガス
は、3次空気投入により燃焼し、高温酸化雰囲気を形成
し、N2O、ダイオキシンの分解を促進する。炉出口の
燃焼ガスは酸素を含んではいるが高温状態であり、脱硫
反応に適した温度まで冷却する必要が有る。炉出口に設
置した冷却面は、このガスを冷却する目的と、燃焼炉と
脱硫部とを分割する役割を持っている。炉下部より上昇
してきた石灰石を含む微粒子は、炉出口冷却面を通過し
て炉上部の脱硫域に達する。冷却面内のガス速度は、炉
下部より早くなる様寸法が決められており、冷却面出口
のガス速度は炉下部より遅くなる様寸法が決められてい
るため、炉を上昇してきた粒子の一部は冷却面上部で落
下、上昇をくり返す。そして、炉上部に石灰石を含む濃
厚な微粒子の群が形成され、この部分の温度雰囲気を8
00〜850℃に維持する事により、脱硫反応を促進す
る事が出来る。
In the above structure, in the bubble fluidized bed region, primary air 0.5 to 0.8 times the theoretical combustion air is supplied, and gasification combustion is performed in a reducing atmosphere. The unburned gas introduced above the fluidized bed is partially burned by the secondary air charged on the bed to form a high-temperature reducing atmosphere having an air ratio of 0.8 to 1.0, and the NOx reduction decomposition reaction is performed. proceed. The residual unburned gas after charging the secondary air is burned by the charging of the tertiary air to form a high-temperature oxidizing atmosphere, thereby promoting the decomposition of N 2 O and dioxin. The combustion gas at the furnace outlet contains oxygen but is in a high temperature state, and needs to be cooled to a temperature suitable for the desulfurization reaction. The cooling surface installed at the furnace outlet has the purpose of cooling this gas and the role of dividing the combustion furnace from the desulfurization section. The fine particles containing limestone that have risen from the lower part of the furnace pass through the furnace outlet cooling surface and reach the desulfurization zone at the upper part of the furnace. The gas velocity in the cooling surface is dimensioned to be faster than the lower part of the furnace, and the gas velocity at the cooling surface outlet is dimensioned to be lower than that in the lower part of the furnace. The part falls and rises repeatedly at the upper part of the cooling surface. Then, a group of dense particles including limestone is formed in the upper part of the furnace, and the temperature atmosphere in this part is reduced to 8%.
By maintaining the temperature at 00 to 850 ° C., the desulfurization reaction can be promoted.

【0009】[0009]

【実施例】以下、本発明に係る流動層ボイラの好適な一
実施例を図面を参照して説明する。図1は本実施例に係
る流動層ボイラの概念図を示す。同図に示すように、気
泡型流動層となる濃厚層を有する火炉21内には、火炉
下部から火炉上部へ向ってガス化1次燃焼域22、2次
脱硝燃焼域23、3次高温完全燃焼域24及び火炉上部
出口に脱硫域25を各々機能別に形成してなり、例えば
石炭,油,ガス,各種廃棄物等を燃料26とし石灰石等
を脱硫剤27として使用することで気泡型流動層燃焼を
行っている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A preferred embodiment of a fluidized bed boiler according to the present invention will be described below with reference to the drawings. FIG. 1 is a conceptual diagram of a fluidized-bed boiler according to the present embodiment. As shown in the figure, in a furnace 21 having a dense layer that becomes a bubble-type fluidized bed, a gasification primary combustion zone 22, a secondary denitration combustion zone 23, and a tertiary high-temperature complete zone are provided from the furnace lower part toward the furnace upper part. A desulfurization zone 25 is formed for each function at the combustion zone 24 and the furnace upper exit. For example, coal, oil, gas, various wastes, etc. are used as a fuel 26 and limestone is used as a desulfurization agent 27. Burning.

【0010】ガス化1次燃焼域22は、濃厚層としての
気泡型の流動層28が形成され、投入された燃料例えば
石炭26はここで導入される1次空気29によって燃焼
される。ここで、導入する1次空気29の量は濃厚層の
空気比を理論燃焼空気量の0.5〜0.8としており、
還元雰囲気を形成し、上記石炭26は還元燃焼となる。
低NOx燃焼を行なうには、この空気比の範囲が望まし
い。
In the gasification primary combustion zone 22, a bubble type fluidized bed 28 is formed as a dense layer, and the injected fuel, for example, coal 26 is burned by the primary air 29 introduced here. Here, the amount of the primary air 29 to be introduced is such that the air ratio of the rich layer is 0.5 to 0.8 of the theoretical combustion air amount,
A reducing atmosphere is formed, and the coal 26 undergoes reduction combustion.
This range of air ratio is desirable for performing low NOx combustion.

【0011】2次脱硝燃焼域23は、上記流動層28の
上方から導入する2次空気投入口を設け、投入後の空気
比が理論燃焼空気量の0.8〜1.0となる2次空気3
0を投入し、流動層28から上昇する未燃ガスの一部を
燃焼し、3次空気投入までの間に脱硝反応に最適な雰囲
気を形成している。
The secondary denitrification combustion zone 23 is provided with a secondary air inlet for introducing the fluid from above the fluidized bed 28, and the secondary air ratio after the injection becomes 0.8 to 1.0 of the theoretical combustion air amount. Air 3
0 is injected, a part of the unburned gas rising from the fluidized bed 28 is burned, and an optimum atmosphere for the denitration reaction is formed before the tertiary air is injected.

【0012】3次高温完全燃焼域24は3次空気投入口
を設け、未燃ガス燃焼による雰囲気温度の上昇によるN
2O、ダイオキシンを、3次空気31の導入により火炉
上部伝熱面32までの間で高温の酸化雰囲気を形成し、
完全燃焼させている。
The tertiary high-temperature complete combustion zone 24 is provided with a tertiary air inlet, and N 3 is generated by an increase in ambient temperature due to unburned gas combustion.
2 O and dioxin form a high-temperature oxidizing atmosphere up to the furnace upper heat transfer surface 32 by introducing tertiary air 31;
Completely burned.

【0013】脱硫域25は火炉出口部近傍に設けられた
伝熱管群よりなる火炉上部伝熱面32を有し、伝熱管の
ガス流速が下部燃焼炉の空塔速度よりも早くすると共
に、伝熱管出口の空塔速度を下部燃焼炉の空塔速度より
も遅くすることで伝熱管群上部に粒子の滞留する領域を
形成している。すなわち、炉を上昇してきた粒子の一部
は冷却面上部で落下,上昇をくり返すこととなる。そし
て、伝熱面積を適宜選定することで脱硫反応に最適な雰
囲気ガス温度800〜900℃の脱硫反応域をサイクロ
ン33までの間に形成することとなる。
The desulfurization zone 25 has a furnace upper heat transfer surface 32 composed of a group of heat transfer tubes provided in the vicinity of the furnace outlet. The gas flow rate of the heat transfer tubes is higher than the superficial velocity of the lower combustion furnace, and the heat transfer is performed. By making the superficial velocity at the heat tube outlet lower than the superficial superficial velocity of the lower combustion furnace, an area where particles stay in the upper part of the heat transfer tube group is formed. In other words, some of the particles that have risen in the furnace repeatedly fall and rise above the cooling surface. By appropriately selecting the heat transfer area, a desulfurization reaction zone having an atmosphere gas temperature of 800 to 900 ° C. optimal for the desulfurization reaction is formed up to the cyclone 33.

【0014】よって流動層28から飛散した脱硫剤27
は火炉21、火炉上部伝熱面32を通過し火炉出口の脱
硫域25で減速され、濃度の高い脱硫雰囲気が形成さ
れ、SOxが脱硫剤に吸着される。
The desulfurizing agent 27 scattered from the fluidized bed 28
Passes through the furnace 21 and the furnace upper heat transfer surface 32 and is decelerated in the desulfurization zone 25 at the furnace outlet to form a highly-desulfurized atmosphere, and SOx is adsorbed by the desulfurizing agent.

【0015】火炉出口の脱硫域25から飛散した粒子は
下端に循環粒子ホッパ34を備えたサイクロン33で捕
集され、当該循環粒子ホッパ34で貯えられ、次いで当
該循環粒子ホッパ34出口に設けられた循環粒子調整バ
ルブ35により循環流動層を制御し、流動層式熱交換器
流動用ガス36を導入する流動層式熱交換器37に導か
れる。
The particles scattered from the desulfurization zone 25 at the furnace outlet are collected by a cyclone 33 having a circulating particle hopper 34 at the lower end, stored in the circulating particle hopper 34, and then provided at the circulating particle hopper 34 outlet. The circulating fluidized bed is controlled by a circulating particle regulating valve 35 and guided to a fluidized bed heat exchanger 37 for introducing a fluidized bed heat exchanger flowing gas 36.

【0016】流動層式熱交換器37の中には、層内管3
8が設置されており、循環灰を冷却後前記流動層28に
戻すことにより、燃焼温度の制御が可能となる。
The fluidized bed heat exchanger 37 contains an inner tube 3
8 is installed, and after the circulating ash is cooled and returned to the fluidized bed 28, the combustion temperature can be controlled.

【0017】また、粒子が分離されたガスは、その後サ
イクロン33の出口から対流伝熱面39を経て冷却後、
集塵器、煙突へと導かれている。
The gas from which the particles have been separated is cooled after passing through the convection heat transfer surface 39 from the outlet of the cyclone 33.
It is led to a dust collector and a chimney.

【0018】[0018]

【発明の効果】以上、実施例と共に説明したように、本
発明に係る流動層燃焼ボイラは、燃料の燃焼過程をガス
化1次燃焼域、2次脱硝燃焼域、3次高温完全燃焼域及
び脱硫域というプロセスに分け、それぞれ最適な条件を
実現し、NOx,SOxの発生を抑制しつつ流動層温度
の制御を可能とするという効果を奏する。
As described above, in the fluidized bed combustion boiler according to the present invention, the combustion process of the fuel is performed in a gasification primary combustion zone, a secondary denitrification combustion zone, a tertiary high temperature complete combustion zone, The process is divided into desulfurization zones, and the optimum conditions are realized, and the effect of controlling the temperature of the fluidized bed while suppressing the generation of NOx and SOx is achieved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本実施例に係る流動層燃焼ボイラの概念図であ
る。
FIG. 1 is a conceptual diagram of a fluidized bed combustion boiler according to the present embodiment.

【図2】従来技術に係る流動層燃焼ボイラの概念図であ
る。
FIG. 2 is a conceptual diagram of a fluidized bed combustion boiler according to the related art.

【符号の説明】[Explanation of symbols]

21 火炉 22 ガス化1次燃焼域 23 2次脱硝燃焼域 24 3次高温完全燃焼域 25 脱硫域 26 燃料 27 脱硫剤 28 流動層 29 1次空気 30 2次空気 31 3次空気 32 火炉上部伝熱面 33 サイクロン 34 循環粒子ホッパ 35 循環粒子調整バルブ 36 流動層式熱交換器流動層用ガス 37 流動層式熱交換器 38 層内管 39 対流伝熱面 DESCRIPTION OF SYMBOLS 21 Furnace 22 Gasification primary combustion zone 23 Secondary denitrification combustion zone 24 Tertiary high-temperature complete combustion zone 25 Desulfurization zone 26 Fuel 27 Desulfurizer 28 Fluidized bed 29 Primary air 30 Secondary air 31 Tertiary air 32 Heat transfer at upper part of furnace Surface 33 Cyclone 34 Circulating particle hopper 35 Circulating particle regulating valve 36 Fluidized bed heat exchanger Gas for fluidized bed 37 Fluidized bed heat exchanger 38 Inner tube 39 Convection heat transfer surface

───────────────────────────────────────────────────── フロントページの続き (72)発明者 藤間 幸久 長崎県長崎市深堀町五丁目717番1号 三菱重工業株式会社 長崎研究所内 (72)発明者 田頭 健二 長崎県長崎市深堀町五丁目717番1号 三菱重工業株式会社 長崎研究所内 (56)参考文献 特開 昭64−79503(JP,A) 特開 平2−247407(JP,A) 実開 昭58−66210(JP,U) (58)調査した分野(Int.Cl.7,DB名) F23C 10/00 - 10/32 F22B 1/02 F23G 5/30 ──────────────────────────────────────────────────の Continuing on the front page (72) Inventor Yukihisa Fujima 5-717-1, Fukahori-cho, Nagasaki-city, Nagasaki Prefecture Mitsubishi Heavy Industries, Ltd. Nagasaki Research Laboratory (72) Inventor Kenji Tagami 5-717, Fukahori-cho, Nagasaki-city, Nagasaki Prefecture 1 Nagasaki Research Laboratory, Mitsubishi Heavy Industries, Ltd. (56) References JP-A-64-79503 (JP, A) JP-A-2-247407 (JP, A) JP-A-58-66210 (JP, U) (58) Field surveyed (Int.Cl. 7 , DB name) F23C 10/00-10/32 F22B 1/02 F23G 5/30

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 石油,油,ガス,各種廃棄物等を燃料と
し、石灰石等を脱硫剤として使用する流動層燃焼方式の
ボイラであって、 火炉下部に気泡型流動層となる濃厚層を有し、該濃厚層
の空気比を理論燃焼空気量の0. 5〜0. 8の還元雰囲
気を形成したガス化1次燃焼域と、 上記層上に2次空気投入口を設け、2次空気投入後の空
気比を理論燃焼空気量の0. 8〜1. 0としてNOx分
解領域を形成した2次脱硝燃焼域と、 該2次脱硝燃焼域の上部に3次空気投入口を設け、未燃
ガス燃焼による雰囲気温度の上昇によるN2O,ダイオ
キシン分解領域を形成した3次高温完全燃焼域と、 火炉出口部に伝熱管のガス流速が下部燃焼炉の空塔速度
よりも早くなる伝熱管群を設置し、伝熱管群出口の空塔
速度を下部燃焼炉の空塔速度よりも遅くして伝熱管群上
部に粒子の滞留する領域を形成すると共に、伝熱面積を
適宜選定して雰囲気ガス温度800℃〜900℃の脱硫
反応域を形成した脱硫域とを具備してなることを特徴と
する流動層燃焼ボイラ。
1. A fluidized bed combustion type boiler using petroleum, oil, gas, various wastes, etc. as fuel and limestone etc. as a desulfurizing agent. And a gasification primary combustion zone in which a reducing atmosphere having a theoretical combustion air volume of 0.5 to 0.8 is formed, and a secondary air inlet is provided on the layer, and the secondary air A secondary denitrification combustion zone in which the NOx decomposition zone is formed by setting the air ratio after the injection to 0.8 to 1.0 of the theoretical combustion air amount, and a tertiary air inlet is provided above the secondary denitration combustion zone. A tertiary high-temperature complete combustion zone in which an N 2 O and dioxin decomposition zone is formed due to an increase in ambient temperature due to combustion of gas, and a heat transfer tube in which the gas flow velocity of the heat transfer tube at the furnace outlet is higher than the superficial velocity of the lower combustion furnace Install a group and set the superficial velocity at the outlet of the heat transfer tube group lower than the superficial velocity of the lower combustion furnace. Forming a region where particles stay in the upper part of the heat transfer tube group, and a desulfurization region in which a heat transfer area is appropriately selected to form a desulfurization reaction region at an ambient gas temperature of 800 ° C to 900 ° C. Fluidized bed combustion boiler.
【請求項2】 請求項1記載の流動層燃焼ボイラにおい
て、 脱硫域出口部に脱硫反応域から飛散した脱硫剤及び未燃
分を捕集するサイクロンと、該サイクロン下部にこれら
の粒子を貯えるホッパと、該ホッパ出口に粒子の循環量
を制御する循環粒子調整バルブとを設けてなることを特
徴とする流動層燃焼ボイラ。
2. A fluidized bed combustion boiler according to claim 1, wherein a cyclone for collecting desulfurizing agent and unburned matter scattered from a desulfurization reaction zone at a desulfurization zone outlet, and a hopper for storing these particles under the cyclone. And a circulating particle adjusting valve for controlling a circulating amount of particles at an outlet of the hopper.
【請求項3】 請求項1又は2記載の流動層燃焼ボイラ
において、 サイクロン捕集粒子を流動層式熱交換器に導き、冷却粒
子量を制御しながら火炉に再投入し燃焼温度を制御可能
することを特徴とする流動層燃焼ボイラ。
3. The fluidized-bed combustion boiler according to claim 1, wherein the cyclone trapping particles are guided to a fluidized-bed heat exchanger, and the combustion temperature can be controlled by re-charging the particles into the furnace while controlling the amount of cooling particles. A fluidized bed combustion boiler, characterized in that:
JP03345821A 1991-12-27 1991-12-27 Fluidized bed combustion boiler Expired - Fee Related JP3095499B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03345821A JP3095499B2 (en) 1991-12-27 1991-12-27 Fluidized bed combustion boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03345821A JP3095499B2 (en) 1991-12-27 1991-12-27 Fluidized bed combustion boiler

Publications (2)

Publication Number Publication Date
JPH05180413A JPH05180413A (en) 1993-07-23
JP3095499B2 true JP3095499B2 (en) 2000-10-03

Family

ID=18379207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03345821A Expired - Fee Related JP3095499B2 (en) 1991-12-27 1991-12-27 Fluidized bed combustion boiler

Country Status (1)

Country Link
JP (1) JP3095499B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07198111A (en) * 1993-12-29 1995-08-01 Mitsui Eng & Shipbuild Co Ltd Combustor inside temperature control method for circulating fluidized bed boiler
JPH1182968A (en) * 1997-09-08 1999-03-26 Ishikawajima Harima Heavy Ind Co Ltd Rdf fired circulation fluidized bed furnace
JP4817459B2 (en) * 2007-12-10 2011-11-16 メタウォーター株式会社 Sludge incineration apparatus and sludge incineration method using the same
JP5435973B2 (en) * 2009-01-30 2014-03-05 メタウォーター株式会社 Fluidized incinerator
JP5336898B2 (en) * 2009-03-27 2013-11-06 三菱重工業株式会社 Bubble type fluidized bed boiler and operation method thereof
CN106989386A (en) * 2017-05-08 2017-07-28 中国华能集团清洁能源技术研究院有限公司 A kind of depth presses down the CFBB of nitrogen minimum discharge
JP7075574B2 (en) * 2017-05-29 2022-05-26 国立研究開発法人産業技術総合研究所 Combustion furnace of organic waste and treatment system of organic waste using the combustion furnace
CN114135897B (en) * 2021-11-24 2023-12-19 吉林省电力科学研究院有限公司 Online monitoring method for high-sulfur coal fired boiler

Also Published As

Publication number Publication date
JPH05180413A (en) 1993-07-23

Similar Documents

Publication Publication Date Title
KR100595042B1 (en) Fuel gasification system
US4873930A (en) Sulfur removal by sorbent injection in secondary combustion zones
CA1261593A (en) Fluidized bed reactor and process for the operation of a fluidized bed reactor
US5156099A (en) Composite recycling type fluidized bed boiler
CN1156329C (en) Circulating fluidized bed reactor with selective catalytic reduction
JPH0618610B2 (en) NOx reduction method in flue gas
TW201248086A (en) Oxycombustion in transport oxy-combustor
JPH0610526B2 (en) Fluidized bed combustion method and apparatus
JP2693864B2 (en) Device for reacting gas and powder in the enclosure
US4308810A (en) Apparatus and method for reduction of NOx emissions from a fluid bed combustion system through staged combustion
JP3095499B2 (en) Fluidized bed combustion boiler
EP0698763A2 (en) Circulating fluidized bed repowering to reduce SOx and NOx emissions from industrial and utility boilers
US6709636B1 (en) Method and apparatus for gasifying fluidized bed
EP0431163B1 (en) Composite circulation fluidized bed boiler
EP0294024B1 (en) Process for removing nitrous oxides from a gas
US5396849A (en) Combustion method producing low levels of pollutants and apparatus for same
US4470254A (en) Process and apparatus for coal combustion
WO1993018341A1 (en) Method and apparatus for combusting a carbonaceous material
EP0301714A2 (en) Sulfur removal by sorbent injection in secondary combustion zones
JP3034865B1 (en) Method and apparatus for recovering heat from a fluidized bed
CN100353116C (en) Cinder cooler for regulating hearth temperature of circulating fluidized bed boiler and its regulation method
JP3763656B2 (en) Circulating fluidized bed combustor
JPH02195104A (en) Reducing nox in exhaust gas of internally circulating fluidized bed boiler
JP3030016B2 (en) Operating method of fluidized bed incinerator and its incinerator
KR20020063961A (en) Circulation Fluidized Bed Boiler System Mounted with Pelletizer for Anthracite

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000704

LAPS Cancellation because of no payment of annual fees