JP3090773B2 - Manufacturing method of heat exchanger made of aluminum material - Google Patents

Manufacturing method of heat exchanger made of aluminum material

Info

Publication number
JP3090773B2
JP3090773B2 JP9729692A JP9729692A JP3090773B2 JP 3090773 B2 JP3090773 B2 JP 3090773B2 JP 9729692 A JP9729692 A JP 9729692A JP 9729692 A JP9729692 A JP 9729692A JP 3090773 B2 JP3090773 B2 JP 3090773B2
Authority
JP
Japan
Prior art keywords
temperature
heat transfer
flux
heat exchanger
transfer tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP9729692A
Other languages
Japanese (ja)
Other versions
JPH05277723A (en
Inventor
達也 藤吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Calsonic Kansei Corp
Original Assignee
Calsonic Kansei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Calsonic Kansei Corp filed Critical Calsonic Kansei Corp
Priority to JP9729692A priority Critical patent/JP3090773B2/en
Publication of JPH05277723A publication Critical patent/JPH05277723A/en
Application granted granted Critical
Publication of JP3090773B2 publication Critical patent/JP3090773B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明に係るアルミニウム材製
熱交換器の製造方法は、例えばラジエータやコンデンサ
等、エンジンルームの前端部で、自動車のフロントグリ
ルを通じて前方から見える部分に設置する熱交換器を造
る為に利用する。
BACKGROUND OF THE INVENTION A method of manufacturing a heat exchanger made of aluminum according to the present invention relates to a heat exchanger installed at a front end of an engine room, such as a radiator or a condenser, at a portion visible from the front through a front grill of an automobile. Use to build

【0002】[0002]

【従来の技術】アルミニウム又はアルミニウム合金(本
明細書ではこれらを合わせて『アルミニウム材』とす
る。)により、ラジエータやコンデンサ等の熱交換器を
造る場合が増えている。そしてこの様なアルミニウム材
製熱交換器を造る場合には、例えば特開昭61−497
71号公報、同62−101396号公報、特開平1−
143794号公報に記載されている様に、フィン、伝
熱管を含む、熱交換器の構成部品を組み合わせた状態で
加熱する事により、各構成部品同士の接触部に存在する
ろう材を加熱溶融させ、上記各構成部品の接触部をろう
付け結合する。
2. Description of the Related Art A heat exchanger such as a radiator or a condenser is increasingly made of aluminum or an aluminum alloy (these are collectively referred to as "aluminum material" in this specification). When such an aluminum heat exchanger is manufactured, for example, Japanese Patent Application Laid-Open No. 61-497 / 1986
No. 71, 62-101396, JP-A-1-
As described in JP-A-143794, by heating in a state where the components of the heat exchanger including the fins and the heat transfer tubes are combined, the brazing material present at the contact portion between the components is heated and melted. Then, the contact portions of the above components are brazed and connected.

【0003】ところで、この様にして造られたアルミニ
ウム材製熱交換器の表面は、アルミニウム材の色(銀色
光沢)そのままである。この為、上記アルミニウム材製
熱交換器を、エンジンルームの前端部でフロントグリル
の直後部分に設置した場合には、このフロントグリルを
通じてアルミニウム材製熱交換器をはっきりと目視する
事が出来、自動車を前方から見た場合の体裁が悪くなっ
てしまう。
[0003] The surface of the aluminum heat exchanger manufactured in this way has the same color (silver luster) of the aluminum material. Therefore, when the heat exchanger made of aluminum is installed immediately after the front grill at the front end of the engine compartment, the heat exchanger made of aluminum can be clearly seen through the front grill, and Looks worse when viewed from the front.

【0004】この為従来から、ろう付け後のアルミニウ
ム材製熱交換器の表面を、炭素、モリブデン等の粉体に
より黒色に塗装し、フロントグリルの直後部分に存在す
るアルミニウム材製熱交換器が、自動車を前方から見た
場合にも目立たない様にする事が行なわれている。
[0004] For this reason, conventionally, the surface of an aluminum heat exchanger after brazing has been painted black with a powder of carbon, molybdenum or the like, and an aluminum heat exchanger existing immediately after a front grille has been used. In some cases, the vehicle is made inconspicuous when viewed from the front.

【0005】[0005]

【発明が解決しようとする課題】ところが、従来は、ろ
う付け作業が完了したアルミニウム材製熱交換器を、別
工程に移してから、黒色に塗装していた為、塗装の為に
余分な薬品及び工程が必要になり、アルミニウム材製熱
交換器の製作費が嵩む原因となっていた。
Conventionally, however, the heat exchanger made of aluminum, for which the brazing operation has been completed, has been transferred to another process and then painted in black. And a process are required, which causes an increase in the manufacturing cost of the heat exchanger made of aluminum.

【0006】本発明のアルミニウム材製熱交換器の製造
方法は、上述の様な事情に鑑みて考えられたものであ
る。
The method of manufacturing an aluminum heat exchanger according to the present invention has been conceived in view of the above-described circumstances.

【0007】[0007]

【課題を解決するための手段】本発明のアルミニウム材
製熱交換器の製造方法は、少なくともフィンと伝熱管と
を備え、このフィンと伝熱管とを組み合わせた状態で加
熱する事により、両部材同士の接触部に存在するろう材
を加熱溶融させ、上記フィンと伝熱管との接触部をろう
付け結合するアルミニウム材製熱交換器の製造方法であ
って、次の(a)〜(d)の条件を満たす。
A method of manufacturing an aluminum heat exchanger according to the present invention includes at least a fin and a heat transfer tube, and heats the fin and the heat transfer tube in a combined state to thereby heat both members. A method for manufacturing a heat exchanger made of aluminum, which heats and melts a brazing material present in a contact portion between the fins and brazes a contact portion between the fin and the heat transfer tube, and comprises the following (a) to (d). Satisfies the condition.

【0008】(a)上記フィンと伝熱管との接触部にろ
う付け作業に先立って塗布するフラックスとして、弗化
物系のフラックスを、このフラックスの分散媒としてポ
リブテンを、それぞれ使用する。
(A) A fluoride-based flux is used as a flux applied to the contact portion between the fin and the heat transfer tube prior to the brazing operation, and polybutene is used as a dispersion medium of the flux.

【0009】(b)互いに組み合わされ、フラックスを
分散したポリブテンを塗布されたフィンと伝熱管とをコ
ンベアに載せて加熱炉内を移動させ、室温から徐々に温
度上昇させてろう付け温度に迄到達させた後、徐々に温
度低下させる。
(B) The fins and the heat transfer tubes, which are combined with each other and are coated with polybutene in which a flux is dispersed, are placed on a conveyor and moved in a heating furnace, and the temperature is gradually raised from room temperature to the brazing temperature. After that, the temperature is gradually lowered.

【0010】(c)上記加熱炉の途中で、上記フィンと
伝熱管との温度が、ポリブテンの昇華温度よりも高く、
フラックスが活性化する温度よりも低い部分で、且つ上
記ろう付け温度に達するより前の部分に、送気管の一端
を開口させ、この送気管内に、ポリブテンが昇華する事
で生じた気体を吸引する。
(C) In the middle of the heating furnace, the temperature of the fin and the heat transfer tube is higher than the sublimation temperature of polybutene;
One end of an air supply pipe is opened at a part lower than the temperature at which the flux is activated and before the brazing temperature is reached, and the gas generated by sublimation of polybutene is sucked into the air supply pipe. I do.

【0011】(d)上記送気管の他端を、上記ろう付け
温度に達した後の部分で、上記フィンと伝熱管との温度
が、未だフラックスを活性化させる為に十分な部分に開
口させ、この部分に於いて上記気体を、フィンと伝熱管
との表面に吹き付ける。
(D) Opening the other end of the air supply pipe to a part after the brazing temperature is reached, where the temperature of the fins and the heat transfer pipe is still sufficient to activate the flux. At this portion, the gas is blown onto the surfaces of the fins and the heat transfer tubes.

【0012】[0012]

【作用】上述の様な構成を有するアルミニウム材製熱交
換器の製造方法によれば、フィンと伝熱管とをろう付け
接合するのに引き続いて、このフィン及び伝熱管の表面
に黒色の皮膜を形成出来る。
According to the method of manufacturing an aluminum heat exchanger having the above-described structure, a black coating is formed on the surfaces of the fins and the heat transfer tubes following the brazing of the fins and the heat transfer tubes. Can be formed.

【0013】即ち、イソブチレンを主体とした共重合体
で、末端に1個の二重結合を有し、構造式
That is, a copolymer mainly composed of isobutylene, having one double bond at a terminal, and having a structural formula

【0014】[0014]

【化1】 Embedded image

【0015】で表わされるポリブテンは、200〜40
0℃で解重合する事により昇華して、プロパン等の炭化
水素ガスとなる。そして、この炭化水素ガスとフラック
スが活性化する事で生じた弗素ガスとが反応する事によ
り、上記炭化水素ガス中の炭素が分離し、上記フィン及
び伝熱管の表面で、上記弗素ガスが存在する部分に付着
する。この為、上記フィン及び伝熱管の表面の広い範囲
に黒色の皮膜が形成される。
The polybutene represented by the formula:
By depolymerizing at 0 ° C., it sublimates to hydrocarbon gas such as propane. Then, by reacting the hydrocarbon gas with the fluorine gas generated by activating the flux, carbon in the hydrocarbon gas is separated, and the fluorine gas is present on the surfaces of the fins and the heat transfer tube. Attached to the part to be. For this reason, a black film is formed on a wide area of the surface of the fin and the heat transfer tube.

【0016】[0016]

【実施例】図1は、本発明の製造方法の効果を確認する
為の実験に使用した加熱炉を示す、略横断平面図であ
る。ろう付けすると共に表面に黒色の皮膜を形成する熱
交換器1は、アルミニウム材を押し出し成形する事で造
られた扁平な伝熱管2を蛇行させ、この蛇行部分の間に
コルゲート型のフィン3、3を挟持する事で構成され
る。実験に使用した伝熱管2は、 JIS1050材(0.25
重量%以下のSiと、0.40重量%以下のFeと、0.0
5重量%以下のCuと、0.05重量%以下のMnと、0.
05重量%以下のMgと、0.05重量%以下のZnと、
0.03重量%以下のTiとを含み、残りをAlと不可避不
純物としたアルミニウム合金)の表面にZnの溶射皮膜を
形成した、厚さが0.8mmのものを使用した。又、フィ
ン3、3としては、 JIS3003材中のZnの添加量を1.5
重量%に増やしたもの(0.6重量%以下のSiと、0.
7重量%以下のFeと、0.05〜0.20重量%のCu
と、1.0〜1.5重量%のMnと、1.5重量%のZnと
を含み、残りをAlと不可避不純物としたアルミニウム合
金)を芯材とし、この芯材の両面にろう材として、 JIS
4045材(9.0〜11.0重量%のSiと、0.8重量%
以下のFeと、0.30重量%以下のCuと、0.05重量
%以下のMnと、0.05重量%以下のMgと、0.10重
量%以下のZnと、0.20重量%以下のTiとを含み、残
りをAlと不可避不純物としたアルミニウム合金)を被覆
して、全体の厚さを0.16mmとしたものを使用した。
FIG. 1 is a schematic cross-sectional plan view showing a heating furnace used in an experiment for confirming the effect of the manufacturing method of the present invention. The heat exchanger 1 that forms a black film on the surface by brazing makes a flat heat transfer tube 2 made by extruding and forming an aluminum material meander, and a corrugated fin 3 is formed between the meandering portions. 3 is sandwiched. The heat transfer tube 2 used in the experiment was made of JIS1050 material (0.25
Wt% or less Si, 0.40 wt% or less Fe, 0.0
5% by weight or less of Cu, 0.05% by weight or less of Mn,
0.05% by weight or less of Mg, 0.05% by weight or less of Zn,
An aluminum alloy containing 0.03% by weight or less of Ti, the remainder being Al and an unavoidable impurity) having a thickness of 0.8 mm with a sprayed Zn film formed on the surface. For the fins 3, 3, the amount of Zn added to the JIS3003 material is 1.5.
% By weight (0.6% by weight or less of Si;
7% by weight or less of Fe and 0.05 to 0.20% by weight of Cu
And an aluminum alloy containing 1.0 to 1.5% by weight of Mn and 1.5% by weight of Zn, with the balance being Al and unavoidable impurities. As JIS
4045 material (9.0-11.0 wt% Si and 0.8 wt%
The following Fe, 0.30 wt% or less Cu, 0.05 wt% or less Mn, 0.05 wt% or less Mg, 0.10 wt% or less Zn, and 0.20 wt% An aluminum alloy containing the following Ti and covering the remainder with Al and unavoidable impurities) was used to make the overall thickness 0.16 mm.

【0017】上述の様な伝熱管2とフィン3、3とは、
熱交換器1を構成する状態に組み立てると共に、両部材
2、3同士の接触部分に、弗化物系フラックスの1種で
ある『NOCOLOK FLUX』(特公昭58−27037号公報
に記載されている、K3AlF6とKAlF4 との共晶フラック
ス)をポリブテンに分散させたものを、(ポリブテンの
重量を除く)フラックスの重量で、3〜5g/m2の割合で
塗布した。
The heat transfer tube 2 and the fins 3, 3 as described above are
The heat exchanger 1 is assembled so as to constitute the heat exchanger 1, and a contact portion between the two members 2 and 3 is provided with "NOCOLOK FLUX" which is a kind of fluoride-based flux (described in Japanese Patent Publication No. 58-27037, A dispersion of eutectic flux of K 3 AlF 6 and KAlF 4 in polybutene was applied at a rate of 3 to 5 g / m 2 by weight of flux (excluding weight of polybutene).

【0018】そして、組み立てられてフラックス及びポ
リブテンを塗布された熱交換器1をコンベア4に載せ、
トンネル型の加熱炉5内に送り込み、この熱交換器1の
温度を、室温から徐々に温度上昇させてろう付け温度に
迄到達させ、上記ろう材( JIS4045材)を溶融させた
後、上記熱交換器1の温度を徐々に低下させて、上記ろ
う材を硬化させ、上記伝熱管2とフィン3、3とをろう
付けした。この際に於ける熱交換器1の温度を経過時間
との関係で表わすと、図2の様になる。
Then, the assembled heat exchanger 1 coated with flux and polybutene is placed on a conveyor 4 and
After being sent into a tunnel type heating furnace 5, the temperature of the heat exchanger 1 is gradually raised from room temperature to reach a brazing temperature, and after the brazing material (JIS4045 material) is melted, The temperature of the exchanger 1 was gradually lowered to harden the brazing material, and the heat transfer tube 2 and the fins 3 and 3 were brazed. FIG. 2 shows the temperature of the heat exchanger 1 at this time in relation to the elapsed time.

【0019】尚、加熱炉5の途中には、ステンレス鋼板
製のカーテン6を設けている。そして、上記加熱炉5内
の温度は、このカーテン6の直前部分(図1の左側部
分)で最も高くなり、上記熱交換器1の温度を、600
℃に3分間保持する。尚、上記直前部分にはN2ガスを導
入し、当該部分を露点が−30℃以下のN2ガス雰囲気と
している。
In the middle of the heating furnace 5, a curtain 6 made of a stainless steel plate is provided. Then, the temperature in the heating furnace 5 becomes highest immediately before the curtain 6 (the left part in FIG. 1), and the temperature of the heat exchanger 1 is raised to 600
Hold at 0 ° C. for 3 minutes. Note that N 2 gas is introduced into the immediately preceding portion, and the portion is set to an N 2 gas atmosphere having a dew point of −30 ° C. or less.

【0020】上記加熱炉5の途中で、上記フィン3、3
と伝熱管2とにより構成される熱交換器1の温度が、ポ
リブテンの昇華温度よりも高くフラックスが活性化する
温度よりも低い部分で、且つ上記ろう付け温度に達する
より前の部分、即ち、前記カーテン6の前側(図1の左
側)で、上記熱交換器1の温度が200〜400℃程度
に達する部分には、送気管7の一端(上流端)を開口さ
せている。そして、図示しない送風機によりこの送気管
7内に、ポリブテンが昇華する事で生じた気体、即ち、
プロパン等の炭化水素ガスを吸引自在とした。
In the middle of the heating furnace 5, the fins 3, 3
Where the temperature of the heat exchanger 1 constituted by the heat transfer tube 2 is higher than the sublimation temperature of polybutene and lower than the temperature at which the flux is activated, and before the brazing temperature is reached, that is, At the front side of the curtain 6 (left side in FIG. 1), one end (upstream end) of the air supply pipe 7 is opened at a portion where the temperature of the heat exchanger 1 reaches about 200 to 400 ° C. Then, a gas generated by sublimation of polybutene into the air supply pipe 7 by a blower (not shown),
Hydrocarbon gas such as propane can be sucked freely.

【0021】上記送気管7の他端(下流端)は、上記ろ
う付け温度に達した後の部分で、上記熱交換器1の温度
が、未だ前記弗化物系フラックスを活性化させる為に十
分な部分、即ち、前記カーテン6の後側(図1の右側)
で、熱交換器1の温度が570〜580℃程度の部分に
開口させ、この部分に於いて上記気体を、熱交換器1の
表面に吹き付ける様に構成した。
The other end (downstream end) of the air supply pipe 7 is a portion after the brazing temperature is reached, and the temperature of the heat exchanger 1 is sufficient for activating the fluoride-based flux. Important part, that is, the rear side of the curtain 6 (the right side in FIG. 1).
The heat exchanger 1 was opened at a portion where the temperature was about 570 to 580 ° C., and the gas was blown onto the surface of the heat exchanger 1 at this portion.

【0022】上述の様にして伝熱管2とフィン3、3と
をろう付けし、アルミニウム材製の熱交換器1を製造す
る事で、これら伝熱管2とフィン3、3とを良好にろう
付けすると共に、これらフィン3、3及び伝熱管2の表
面に黒色の皮膜を形成する事が出来た。
As described above, the heat transfer tube 2 and the fins 3 and 3 are brazed to produce the heat exchanger 1 made of aluminum material, so that the heat transfer tube 2 and the fins 3 and 3 can be satisfactorily brazed. At the same time, a black film could be formed on the surfaces of the fins 3 and 3 and the heat transfer tube 2.

【0023】即ち、前述の様にポリブテンは、200〜
400℃で解重合する事により昇華して、プロパン等の
炭化水素ガスとなる。そして、この炭化水素ガスとフラ
ックスが活性化する事で生じた弗素ガスとが反応する事
により、上記炭化水素ガス中の炭素が分離し、上記フィ
ン3、3及び伝熱管2の表面で、上記弗素ガスが存在す
る部分に付着する。この為、上記フィン3、3及び伝熱
管2の表面の広い範囲に黒色の皮膜が形成される。そし
て、本発明者の行なった実験の結果、本発明の製造方法
により得られた熱交換器1の表面は、フロントグリルを
通じてこの熱交換器1を見た場合に、この熱交換器1が
目立たない程度に、十分に黒く着色され、しかもその黒
色皮膜の強度(剥離し難さ)が十分に大きい事を確認出
来た。
That is, as described above, polybutene is 200 to
By depolymerizing at 400 ° C., it sublimates to hydrocarbon gas such as propane. Then, by reacting the hydrocarbon gas with the fluorine gas generated by activating the flux, carbon in the hydrocarbon gas is separated, and on the surfaces of the fins 3 and 3 and the heat transfer tube 2, Fluorine gas adheres to existing parts. For this reason, a black coating is formed on a wide area of the surfaces of the fins 3 and 3 and the heat transfer tube 2. As a result of an experiment conducted by the inventor, the surface of the heat exchanger 1 obtained by the manufacturing method of the present invention is conspicuous when the heat exchanger 1 is viewed through the front grill. It was confirmed that the black film was sufficiently colored to the extent that it was not present, and that the strength (hardness of peeling) of the black film was sufficiently large.

【0024】尚、ポリブテンが昇華する事で生じた炭化
水素ガスを、熱交換器1と共に、そのまま弗化物系フラ
ックスが活性化する部分に迄送り込むと、ろう付け以前
に伝熱管2やフィン3、3の表面に炭素の微粒子が付着
し、ろう付け性が不良となる。これに対して、本発明の
場合、上記炭化水素ガスを一度加熱炉5外に取り出し、
ろう付け後の熱交換器1に向けて、この炭化水素ガスを
吹き付ける為、炭化水素ガスの存在によってろう付け不
良を起こす事はない。
When the hydrocarbon gas produced by the sublimation of polybutene is sent to the portion where the fluoride-based flux is activated together with the heat exchanger 1, the heat transfer tube 2, the fins 3, The carbon fine particles adhere to the surface of No. 3 and the brazing property becomes poor. In contrast, in the case of the present invention, the hydrocarbon gas is once taken out of the heating furnace 5 and
Since this hydrocarbon gas is blown toward the heat exchanger 1 after brazing, brazing failure does not occur due to the presence of the hydrocarbon gas.

【0025】[0025]

【発明の効果】本発明は、以上に述べた通り構成され作
用する為、自動車の体裁を整える為、表面を黒くしたア
ルミニウム材製熱交換器の製作費の低廉化を図れる。
Since the present invention is constructed and operates as described above, the appearance of the automobile is adjusted, and the production cost of the aluminum heat exchanger having a blackened surface can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の製造方法の効果を確認する為の実験に
使用した加熱炉を示す、略横断平面図。
FIG. 1 is a schematic cross-sectional plan view showing a heating furnace used in an experiment for confirming the effect of the manufacturing method of the present invention.

【図2】加熱炉内に送り込まれた熱交換器の温度を経過
時間との関係で表わす線図。
FIG. 2 is a diagram showing a temperature of a heat exchanger sent into a heating furnace in relation to an elapsed time.

【符号の説明】[Explanation of symbols]

1 熱交換器 2 伝熱管 3 フィン 4 コンベア 5 加熱炉 6 カーテン 7 送気管 DESCRIPTION OF SYMBOLS 1 Heat exchanger 2 Heat transfer tube 3 Fin 4 Conveyor 5 Heating furnace 6 Curtain 7 Air supply tube

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) B23K 1/00 - 3/08 ──────────────────────────────────────────────────続 き Continuation of front page (58) Field surveyed (Int.Cl. 7 , DB name) B23K 1/00-3/08

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 少なくともフィンと伝熱管とを備え、こ
のフィンと伝熱管とを組み合わせた状態で加熱する事に
より、両部材同士の接触部に存在するろう材を加熱溶融
させ、上記フィンと伝熱管との接触部をろう付け結合す
るアルミニウム材製熱交換器の製造方法であって、次の
(a)〜(d)の条件を満たすアルミニウム材製熱交換
器の製造方法。 (a)上記フィンと伝熱管との接触部にろう付け作業に
先立って塗布するフラックスとして、弗化物系のフラッ
クスを、このフラックスの分散媒としてポリブテンを、
それぞれ使用する。 (b)互いに組み合わされ、フラックスを分散したポリ
ブテンを塗布されたフィンと伝熱管とをコンベアに載せ
て加熱炉内を移動させ、室温から徐々に温度上昇させて
ろう付け温度に迄到達させた後、徐々に温度低下させ
る。 (c)上記加熱炉の途中で、上記フィンと伝熱管との温
度が、ポリブテンの昇華温度よりも高く、フラックスが
活性化する温度よりも低い部分で、且つ上記ろう付け温
度に達するより前の部分に、送気管の一端を開口させ、
この送気管内に、ポリブテンが昇華する事で生じた気体
を吸引する。 (d)上記送気管の他端を、上記ろう付け温度に達した
後の部分で、上記フィンと伝熱管との温度が、未だフラ
ックスを活性化させる為に十分な部分に開口させ、この
部分に於いて上記気体を、フィンと伝熱管との表面に吹
き付ける。
1. A heating device comprising at least a fin and a heat transfer tube, wherein the fin and the heat transfer tube are heated in a combined state, thereby heating and melting a brazing material present at a contact portion between the two members, thereby heating and melting the fin and the heat transfer tube. A method for manufacturing an aluminum heat exchanger in which a contact portion with a heat tube is brazed and bonded, wherein the method includes the following conditions (a) to (d). (A) A fluoride-based flux is applied as a flux to be applied to a contact portion between the fin and the heat transfer tube prior to a brazing operation, and polybutene is used as a dispersion medium of the flux.
Use each. (B) After the fins and the heat transfer tubes combined with each other and coated with the polybutene in which the flux is dispersed are placed on a conveyor and moved in the heating furnace, the temperature is gradually raised from room temperature to reach the brazing temperature. , Gradually lower the temperature. (C) In the middle of the heating furnace, the temperature between the fin and the heat transfer tube is higher than the sublimation temperature of polybutene, lower than the temperature at which the flux is activated, and before reaching the brazing temperature. In one part, open one end of the air pipe,
The gas generated by the sublimation of polybutene is sucked into the air supply pipe. (D) Opening the other end of the air supply pipe to a part after the brazing temperature is reached, where the temperature of the fins and the heat transfer pipe is still sufficient to activate the flux; The above gas is blown onto the surfaces of the fins and the heat transfer tubes.
JP9729692A 1992-03-25 1992-03-25 Manufacturing method of heat exchanger made of aluminum material Expired - Fee Related JP3090773B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9729692A JP3090773B2 (en) 1992-03-25 1992-03-25 Manufacturing method of heat exchanger made of aluminum material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9729692A JP3090773B2 (en) 1992-03-25 1992-03-25 Manufacturing method of heat exchanger made of aluminum material

Publications (2)

Publication Number Publication Date
JPH05277723A JPH05277723A (en) 1993-10-26
JP3090773B2 true JP3090773B2 (en) 2000-09-25

Family

ID=14188539

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9729692A Expired - Fee Related JP3090773B2 (en) 1992-03-25 1992-03-25 Manufacturing method of heat exchanger made of aluminum material

Country Status (1)

Country Link
JP (1) JP3090773B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3036715B2 (en) * 1992-07-15 2000-04-24 富士写真フイルム株式会社 Photo film winding method and apparatus, and photo film drawer separation method and apparatus
JP3175463B2 (en) * 1994-02-24 2001-06-11 三菱電機株式会社 Laser cutting method
TW415867B (en) 1998-07-29 2000-12-21 Calsonic Corp Method for applying flux for use in brazing aluminum material, flux coating apparatus, and method for manufacturing a heat exchanger
US6199750B1 (en) 1998-08-25 2001-03-13 Calsonic Kansei Corporation Method of manufacturing core of heat exchanger
CN101920369B (en) * 2010-08-25 2012-08-22 盐城市康杰机械制造有限公司 Nitrogen supply structure in aluminium soldering furnace

Also Published As

Publication number Publication date
JPH05277723A (en) 1993-10-26

Similar Documents

Publication Publication Date Title
KR100202158B1 (en) Method of joining zinc coated aluminum members
US5956846A (en) Method and apparatus for controlled atmosphere brazing of unwelded tubes
ES2346535T3 (en) THERMAL WELDING MATERIAL THERMAL SPRAYING APPLICATION FOR THE MANUFACTURE OF HEAT TRANSFER DEVICES.
EP1287934B1 (en) Method of producing a heat exchanger
JP3672962B2 (en) Substrate surface modification and method
EP0605323B1 (en) A method of producing a corrosion-resistant and brazeable aluminum material
JP3090773B2 (en) Manufacturing method of heat exchanger made of aluminum material
US4571352A (en) Method for coating aluminum metal body with aluminum alloy brazing filler metal
JP3534450B2 (en) Heat exchanger manufacturing method
JPH09137245A (en) Aluminum tubular body for heat exchanger and aluminum-made heat exchanger using the same body
US7828914B2 (en) Method for producing aluminum alloy sheet material and an aluminium alloy sheet
JP3408864B2 (en) Method of producing anticorrosion aluminum material for brazing and brazing method
JP2005220425A (en) High strength aluminum alloy material for brazing used for heat exchanger
KR20010062366A (en) Flux for cab brazing aluminum heat exchangers
JPH07106445B2 (en) Aluminum alloy heat exchanger and method of manufacturing the same
JP3164413B2 (en) Materials for joining aluminum heat exchanger parts and joining method
JPS58171580A (en) Method for preventing corrosion of heat exchanger made of aluminum
JPH03114654A (en) Heat exchanger
JPH0577039A (en) Manufacture of header pipe for heat exchanger
JPH02127992A (en) Heat exchanger made of aluminum
JP3392484B2 (en) Aluminum material for brazing and method for producing the same
JP3356856B2 (en) Anticorrosion aluminum material for brazing and method for producing the same
JP3164409B2 (en) Composite tube for aluminum heat exchanger and method of manufacturing the same
JP3090772B2 (en) Brazing method for aluminum parts
JP3194778B2 (en) Aluminum alloy for castings brazed with fluoride flux

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees