JP3090503B2 - Method for measuring protein - Google Patents

Method for measuring protein

Info

Publication number
JP3090503B2
JP3090503B2 JP03163899A JP16389991A JP3090503B2 JP 3090503 B2 JP3090503 B2 JP 3090503B2 JP 03163899 A JP03163899 A JP 03163899A JP 16389991 A JP16389991 A JP 16389991A JP 3090503 B2 JP3090503 B2 JP 3090503B2
Authority
JP
Japan
Prior art keywords
protein
complex
metal
measurement
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP03163899A
Other languages
Japanese (ja)
Other versions
JPH04361160A (en
Inventor
浩司 岸
正光 高橋
吉史 渡津
Original Assignee
国際試薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国際試薬株式会社 filed Critical 国際試薬株式会社
Priority to JP03163899A priority Critical patent/JP3090503B2/en
Publication of JPH04361160A publication Critical patent/JPH04361160A/en
Application granted granted Critical
Publication of JP3090503B2 publication Critical patent/JP3090503B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は蛋白質の測定法に関す
る。より詳細には、臨床検査等の分野で用いられ、尿な
どの検体中の蛋白質を測定する方法に関する。
The present invention relates to a method for measuring a protein. More specifically, the present invention relates to a method for measuring a protein in a sample such as urine, which is used in a field such as a clinical test.

【0002】[0002]

【従来の技術】従来、臨床検査等の分野では、尿、髄液
などの検体中の蛋白質の測定が頻繁に行われており、臨
床上重要な情報が得られている。例えば、尿中の蛋白質
(アルブミン、グロブリン等)は正常人でも認められる
が、腎疾患時の腎性蛋白尿、心不全等でみられる心臓性
蛋白尿、白血病、癌腫等で出現する悪液質性蛋白尿、発
熱疾患の際にみられる熱性蛋白尿、脳出血、てんかん等
のときの神経性蛋白尿、薬物中毒による中毒性蛋白尿な
どのように、各種の疾患時には尿中の蛋白質が増加する
ことが知られている。通常、正常人の蛋白質の尿中排出
量は1日10〜100mgで、1日150mgを超えた場合には異常
な蛋白尿と考えられており、臨床検査的には5〜10mg/dl
以上になると蛋白尿陽性と判断される。このように、尿
中の蛋白質の測定(定性及び定量)は臨床検査上重要な
試験である。
2. Description of the Related Art Conventionally, in the field of clinical examinations and the like, proteins in samples such as urine and cerebrospinal fluid have been frequently measured, and clinically important information has been obtained. For example, protein (albumin, globulin, etc.) in urine is found in normal individuals, but renal proteinuria in renal disease, cardiac proteinuria seen in heart failure, etc., cachexia appearing in leukemia, carcinoma, etc. Increased protein in urine during various diseases, such as proteinuria, febrile proteinuria seen in fever, cerebral hemorrhage, nervous proteinuria in epilepsy, and toxic proteinuria due to drug intoxication. It has been known. Normally, the urine excretion of protein in normal humans is 10 to 100 mg per day, and if it exceeds 150 mg per day, it is considered abnormal proteinuria, and clinical examination indicates 5 to 10 mg / dl.
Above this, it is determined that proteinuria is positive. Thus, the measurement (qualitative and quantitative) of protein in urine is an important test in clinical examination.

【0003】従来、蛋白質の測定法としては、ケルダー
ル法、ローリー法、ビュウレット法、クマシー・ブリリ
アント・ブルー法などが知られている。これらの方法に
おいて、ケルダール法は操作が複雑であり、日常のルー
チン作業に不向きである。ローリー法は検体中のアミノ
酸の影響を受け、尿中にはアミノ酸が多量に含まれてい
るので尿中の蛋白質を測定するには不適当である。ビュ
ウレット法は感度が低く、尿中の蛋白質のような微量成
分の測定には応用できない。クマシー・ブリリアント・
ブルー法は検体中の夾雑物の影響を受けやすく、また測
定できる濃度範囲が狭く、更に反応管や測定セルに青色
の付着物が残りやすいという問題があり、連続測定には
不適当である。
Hitherto, as a protein measuring method, the Kjeldahl method, the Lowry method, the buret method, the Coomassie brilliant blue method and the like have been known. In these methods, the Kjeldahl method is complicated in operation and unsuitable for daily routine work. The Lowry method is not suitable for measuring protein in urine because it is affected by amino acids in the sample and contains a large amount of amino acids in urine. The buret method has low sensitivity and cannot be applied to the measurement of trace components such as proteins in urine. Coomassie Brilliant
The blue method is unsuitable for continuous measurement because it is susceptible to contaminants in the sample, has a narrow measurable concentration range, and has a tendency for blue deposits to remain on the reaction tube and the measurement cell.

【0004】[0004]

【発明が解決しようとする課題】このような従来法の問
題から、金属と色素からなる錯体(以下、便宜上、金属
−色素錯体という)を使用し、蛋白質の存在下における
当該錯体の吸収波長のシフトを用いて蛋白質を測定する
方法(以下、便宜上、金属−色素錯体法という)が提案
されている。例えば、ピロガロールレッドとモリブデン
酸塩とからなる錯体(極大吸収:470nm)は、蛋白質(ア
ルブミン等)が存在すると当該錯体の吸収波長が長波長
側(極大吸収:604nm)へシフトするので、シフトした波
長における吸光度を測定することにより蛋白質を比色定
量できることが報告されている(例えば、分析化学、第
32巻、379頁、1983年参照)。
In view of the problems of the conventional method, a complex comprising a metal and a dye (hereinafter referred to as a metal-dye complex for convenience) is used to determine the absorption wavelength of the complex in the presence of a protein. A method of measuring a protein using shift (hereinafter, referred to as a metal-dye complex method for convenience) has been proposed. For example, a complex composed of pyrogallol red and molybdate (maximum absorption: 470 nm) was shifted because the absorption wavelength of the complex was shifted to a longer wavelength side (maximum absorption: 604 nm) in the presence of a protein (such as albumin). It has been reported that a protein can be colorimetrically quantified by measuring absorbance at a wavelength (for example, analytical chemistry,
32, p. 379, 1983).

【0005】この金属−色素錯体法は、微量の蛋白質を
高感度で測定することができ、また夾雑アミノ酸の影響
を受けず、更にセルなどの汚染も少ないという利点を有
する。しかし、この方法を尿などの検体中の蛋白質の測
定に用いると、検体中に含まれているキレート性成分
(例えば、クエン酸、シュウ酸、リン酸等)の影響を受
け、蛋白質の測定ができない。即ち、検体中のキレート
性成分により、金属−色素錯体の金属の一部が錯体から
脱離し、検体中のキレート性成分と錯体を形成する結
果、正常尿の多くの検体で吸光度が試薬ブランクよりも
低値を示し、蛋白質濃度として負値となることが認めら
れた。そのため、当該方法は測定感度に優れるものの実
用に供することができなかった。
[0005] The metal-dye complex method has the advantages that a trace amount of protein can be measured with high sensitivity, there is no influence from contaminating amino acids, and there is little contamination of cells and the like. However, when this method is used to measure protein in urine and other samples, the measurement of protein is affected by the chelating components (eg, citric acid, oxalic acid, phosphoric acid, etc.) contained in the sample. Can not. That is, due to the chelating component in the sample, a part of the metal of the metal-dye complex is eliminated from the complex, forming a complex with the chelating component in the sample. Also showed a low value, indicating that the protein concentration was negative. For this reason, the method was excellent in measurement sensitivity but could not be put to practical use.

【0006】かかる問題を回避するため、ピロガロール
レッド−モリブデン錯体と、キレート剤及び/又は検体
中のキレート性成分と結合し得る金属を併用する方法
(通常、ピロガロールレッド法と称される)が実用化さ
れている。しかし、ピロガロールレッド法においては、
反応が遅く、測定時間が長い(通常、20分間程度)と
いう問題がある。本発明は上記従来技術の問題点を解消
するためになされたもので、生体試料などの検体中の蛋
白質を高精度且つ迅速に測定する方法を提供することを
目的とする。
In order to avoid such a problem, a method of using a pyrogallol red-molybdenum complex in combination with a chelating agent and / or a metal capable of binding to a chelating component in a sample (usually referred to as a pyrogallol red method) is practical. Has been However, in the pyrogallol red method,
There is a problem that the reaction is slow and the measurement time is long (usually about 20 minutes). SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems of the prior art, and has as its object to provide a method for measuring a protein in a specimen such as a biological sample with high accuracy and speed.

【0007】[0007]

【課題を解決するための手段】本発明者らは上記事情に
鑑み、金属−色素錯体法による蛋白質の測定法を鋭意検
討した結果、測定時に多価アルコールを存在させること
により、キレート性成分を含有する検体であっても蛋白
質を高精度且つ迅速に測定できることを見出して、本発
明を完成した。即ち、本発明の測定法は、金属と色素か
らなる錯体を使用し、蛋白質の存在下における当該錯体
の吸収波長のシフトを用いて蛋白質を測定する方法(金
属−色素錯体法)において、多価アルコールの存在下に
測定を行うことからなる。
Means for Solving the Problems In view of the above circumstances, the present inventors have intensively studied a method for measuring a protein by a metal-dye complex method. As a result, the presence of a polyhydric alcohol at the time of measurement allows the chelating component to be eliminated. The present inventors have found that the protein can be measured with high accuracy and speed even in the case of the contained sample, and completed the present invention. That is, the measurement method of the present invention uses a complex comprising a metal and a dye, and uses a shift in the absorption wavelength of the complex in the presence of the protein to measure the protein (metal-dye complex method). It consists in performing the measurement in the presence of alcohol.

【0008】本発明の方法に用いられる金属−色素錯体
において、色素としては、金属と錯体を形成して着色
(又は着色度の増加)し且つ蛋白質の存在により当該錯
体の吸収波長のシフトが認められる色素であれば何れの
色素も用いることができ、例えば、ピロカテコールバイ
オレット、ピロガロールレッド、ガレイン等が好適に用
いられる。色素の使用量としては、通常、測定試料液中
の色素濃度が0.0005〜0.1(W/V)%[以下、特に明示のな
い限り、%は(W/V)を示す]、好ましくは0.001〜0.05%と
なるように調整して用いられる。
In the metal-dye complex used in the method of the present invention, the dye forms a complex with a metal to color (or increase the degree of coloring), and the presence of protein causes a shift in the absorption wavelength of the complex. Any dye can be used as long as it is obtained, and for example, pyrocatechol violet, pyrogallol red, galein and the like are preferably used. The amount of the dye used is usually 0.0005 to 0.1 (W / V)% of the dye concentration in the measurement sample solution [hereinafter, unless otherwise specified,% indicates (W / V)], preferably 0.001 to 0.1 (W / V). Adjusted to be 0.05%.

【0009】また、金属としては、上記の色素と錯体を
形成して着色(又は着色度の増加)するものであれば各
種の金属を用いることができ、例えば、モリブデン、ス
ズ、鉄等が挙げられる。これらの金属は、通常、酸素酸
塩、ハロゲン化物、錯塩、有機又は無機酸塩の形態で用
いられ、例えば、モリブデン酸塩(アルカリ金属塩、ア
ンモニウム塩等)、スズ酸塩(アルカリ金属塩、アンモ
ニウム塩等)、塩化スズ、硫酸スズ、鉄酸塩(アルカリ
金属塩、アンモニウム塩等)、塩化鉄等が挙げられる。
金属の使用量としては、通常、測定試料液中の金属イオ
ン濃度が0.0005〜0.1%、好ましくは0.001〜0.05%となる
ように調整して用いられる。
As the metal, various metals can be used as long as they form a complex with the above-mentioned dyes and are colored (or the degree of coloring is increased), for example, molybdenum, tin, iron and the like. Can be These metals are generally used in the form of oxyacid salts, halides, complex salts, organic or inorganic acid salts, and include, for example, molybdate (alkali metal salt, ammonium salt, etc.), stannate (alkali metal salt, Ammonium salt), tin chloride, tin sulfate, ferrate (alkali metal salt, ammonium salt, etc.), iron chloride and the like.
The amount of the metal used is usually adjusted so that the metal ion concentration in the measurement sample solution is 0.0005 to 0.1%, preferably 0.001 to 0.05%.

【0010】本発明で用いられる多価アルコールとして
は、グリコール類、糖アルコール類などの各種の多価ア
ルコールを用いることができ、例えば、マンニトール、
ソルビトール、ズルシトール、グリセロール、ポリグリ
セロール等が挙げられる。これらの多価アルコールは2
種以上を併用してもよい。多価アルコールの使用量は、
検体中のキレート性成分の含量などに応じて適宜調整す
ることができ、通常、測定試料液中の濃度が0.1〜10%程
度、好ましくは0.5〜5%程度となるように調整して用い
られる。多価アルコールの使用量が0.1%未満では添加効
果が認められず、また10%を超えて添加しても問題はな
いが、10%までで十分な効果が得られる。本発明におい
ては、多価アルコールは測定時に存在しておればよく、
金属−色素錯体を含有する試薬液に多価アルコールを添
加してもよく、また尿などの検体に多価アルコールを添
加してもよく、更に、試薬液と検体の混合時に多価アル
コールを添加してもよい。好適には、金属−色素錯体を
含有する試薬液に多価アルコールを予め添加しておくの
がよい。
As the polyhydric alcohol used in the present invention, various polyhydric alcohols such as glycols and sugar alcohols can be used.
Sorbitol, dulcitol, glycerol, polyglycerol and the like. These polyhydric alcohols are 2
More than one species may be used in combination. The amount of polyhydric alcohol used is
It can be appropriately adjusted according to the content of the chelating component in the sample and the like, and is usually used by adjusting the concentration in the measurement sample solution to about 0.1 to 10%, preferably about 0.5 to 5%. . If the amount of the polyhydric alcohol used is less than 0.1%, the effect of addition is not recognized, and if it exceeds 10%, there is no problem. However, a sufficient effect can be obtained up to 10%. In the present invention, the polyhydric alcohol may be present at the time of measurement,
A polyhydric alcohol may be added to the reagent solution containing the metal-dye complex, or a polyhydric alcohol may be added to a sample such as urine. May be. Preferably, a polyhydric alcohol is added to the reagent solution containing the metal-dye complex in advance.

【0011】本発明の方法は、測定に際して多価アルコ
ールの存在下に行う以外は従来法と同様にして行うこと
ができる。その一例を示すと、まず、適当な溶媒(例え
ば、グリシン緩衝液等)に前記の色素と金属を所定量添
加して金属−色素錯体を形成させ、必要に応じてpH調
整をすることにより、当該錯体を含有する試薬液を調製
する。この試薬液と、蛋白質を含有する検体(必要に応
じて、適宜希釈した希釈試料)とを混合して測定試料液
とし、室温程度で一定時間(例えば、1〜10分間程度)
放置する。蛋白質により金属−色素錯体の吸収波長はシ
フトするので、シフトした波長における吸光度を測定す
る。一方、検体の代りに、蛋白質濃度既知の標準試料液
を用いて、同様な操作を行い、シフトした波長における
吸光度を測定し、検量線を作成する。この検量線と、上
記の検体で得られた吸光度とを対比することにより、検
体中の蛋白質濃度を求めることができる。なお、本発明
は上記の方法に限定されるものではなく、金属−色素錯
体法の何れの方法にも適用できるものである。
The method of the present invention can be carried out in the same manner as the conventional method except that the measurement is carried out in the presence of a polyhydric alcohol. As an example, first, a suitable solvent (e.g., glycine buffer or the like) is added to the dye and metal in a predetermined amount to form a metal-dye complex, and by adjusting the pH as necessary, A reagent solution containing the complex is prepared. This reagent solution is mixed with a protein-containing sample (diluted sample appropriately diluted as necessary) to prepare a measurement sample solution, which is kept at about room temperature for a certain period of time (for example, about 1 to 10 minutes).
put. Since the absorption wavelength of the metal-dye complex shifts depending on the protein, the absorbance at the shifted wavelength is measured. On the other hand, the same operation is performed using a standard sample solution having a known protein concentration instead of the sample, and the absorbance at the shifted wavelength is measured to prepare a calibration curve. By comparing this calibration curve with the absorbance obtained with the above-mentioned sample, the protein concentration in the sample can be determined. The present invention is not limited to the above method, but can be applied to any of the metal-dye complex methods.

【0012】本発明においては、反応管、測定セル等の
汚染を防止するために、界面活性剤(例えば、ラウリル
硫酸ナトリウム、トリトンX-405等)を用いるのが好まし
い。界面活性剤は、好ましくは、金属−色素錯体を含有
する試薬液に予め添加され、界面活性剤の使用量は試薬
液中の界面活性剤濃度が0.1〜2%程度となるように調整
すればよい。
In the present invention, it is preferable to use a surfactant (eg, sodium lauryl sulfate, Triton X-405, etc.) in order to prevent contamination of the reaction tube, measurement cell, and the like. The surfactant is preferably added in advance to the reagent solution containing the metal-dye complex, and the amount of the surfactant to be used is adjusted so that the surfactant concentration in the reagent solution is about 0.1 to 2%. Good.

【0013】本発明の測定法は、尿、髄液などの検体中
の蛋白質の測定に用いられ、特に短時間(通常、1〜10
分程度)に測定が終了するので自動分析装置を用いた測
定に好適である。また、試験紙法による蛋白質の測定に
も適用することができる。
The measuring method of the present invention is used for measuring a protein in a sample such as urine or cerebrospinal fluid, and particularly for a short time (usually 1 to 10
(Approximately minutes), which is suitable for measurement using an automatic analyzer. Further, the present invention can be applied to the measurement of protein by a test paper method.

【0014】[0014]

【実施例】以下、実施例に基づいて本発明をより詳細に
説明するが、本発明はこれらの例に限定されるものでは
ない。 実施例1検量線の作成 精製水に下記の試薬を配合し、塩酸にてpHを2.2に
調整して下記の組成からなる試薬液を調製した。 試薬: グリシン 100mM モリブデン酸アンモニウム 0.006% ピロカテコールバイオレット 0.005% マンニトール 1.0% トライトンX−405 1.0% 蛋白標準液として、ヒト血清アルブミンを用いて、300m
g/dlとなるよう調製した。この標準液を使い、30、60、
90、150、240、300mg/dlの希釈系列を調製した。この検
体5μlに試薬液200μlを添加し、25℃における5分後の6
75nmの吸光度を測定した。上記の検体の代りに精製水を
用いて同様な操作を行い、アルブミン濃度0mg/dlにおけ
る吸光度を求めた。各アルブミン濃度に対して吸光度を
プロットして、検量線を作成した。その結果を図1に示
す。図1から明らかなように、広い濃度範囲にわたって
直線性を有する良好な検量線が得られた。
EXAMPLES Hereinafter, the present invention will be described in more detail based on Examples.
Explain, but the invention is not limited to these examples
Absent. Example 1Creating a calibration curve  Mix the following reagents in purified water and adjust the pH to 2.2 with hydrochloric acid
This was adjusted to prepare a reagent solution having the following composition. Reagent: glycine 100 mM ammonium molybdate 0.006% pyrocatechol violet 0.005% mannitol 1.0% Triton X-405 1.0% Using human serum albumin as a protein standard solution, 300 mM
It was prepared to be g / dl. Using this standard solution, 30, 60,
Dilution series of 90, 150, 240, 300 mg / dl were prepared. This inspection
Add 200 μl of reagent solution to 5 μl of the body, and add
The absorbance at 75 nm was measured. Use purified water instead of the above sample
Perform the same operation with the albumin concentration of 0 mg / dl.
Absorbance was determined. Absorbance for each albumin concentration
Plotted to create a calibration curve. Fig. 1 shows the results.
You. As is clear from FIG. 1, over a wide concentration range
A good calibration curve having linearity was obtained.

【0015】実施例2ヒト尿中の蛋白質の測定 実施例1と同様の操作で、ヒト尿検体10例について、
蛋白質濃度の測定を行った。その結果を表1に示す。表
1に示されるように、本発明の方法によれば負値を示さ
ず、良好な測定値が得られた。また、比較例として、同
じ検体の蛋白質濃度を、従来法のピロガロールレッド法
(市販試薬を使用)により測定した。その結果を表1に
併せて示した。本発明方法と従来法との相関係数は0.96
5(回帰式Y=0.951X-0.005)であり、良好な相関性を示
した。
Embodiment 2Measurement of protein in human urine  In the same operation as in Example 1, for 10 human urine samples,
The protein concentration was measured. The results are shown in Table 1. table
As shown in FIG. 1, the method of the present invention exhibits a negative value.
And good measurement values were obtained. As a comparative example,
The protein concentration of the same sample was determined using the conventional pyrogallol red method.
(Using a commercially available reagent). Table 1 shows the results.
Also shown. The correlation coefficient between the method of the present invention and the conventional method is 0.96
5 (regression equation Y = 0.951X-0.005), indicating good correlation
did.

【0016】表1 Table 1

【0017】[0017]

【発明の効果】以上のように、本発明の蛋白質の測定法
においては、検体中のキレート性成分の影響を受けるこ
とがないので、測定値が負値を示すことがない。また、
短時間に測定を行うことができる。従って、本発明の方
法によれば、検体中の微量の蛋白質であっても高精度且
つ迅速に測定することができるという効果を奏する。
As described above, in the method for measuring the protein of the present invention, the measurement value does not show a negative value because it is not affected by the chelating component in the sample. Also,
Measurement can be performed in a short time. Therefore, according to the method of the present invention, there is an effect that even a small amount of protein in a sample can be measured with high accuracy and speed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の測定法による検量線を示す図である。FIG. 1 is a diagram showing a calibration curve according to the measurement method of the present invention.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) G01N 33/68 ──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int.Cl. 7 , DB name) G01N 33/68

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 金属と色素からなる錯体を使用し、
蛋白質の存在下における当該錯体の吸収波長のシフトを
用いて蛋白質を測定する方法において、多価アルコール
の存在下に測定を行うことを特徴する蛋白質の測定法。
1. Use of a complex comprising a metal and a dye,
A method for measuring a protein using a shift of the absorption wavelength of the complex in the presence of the protein, wherein the measurement is performed in the presence of a polyhydric alcohol.
【請求項2】 多価アルコールが、マンニトール、
ソルビトール、ズルシトール、グリセロール及びポリグ
リセロールから選ばれた1種又は2種以上を用いる請求
項1記載の蛋白質の測定法。
2. The polyhydric alcohol is mannitol,
2. The method for measuring a protein according to claim 1, wherein one or more selected from sorbitol, dulcitol, glycerol and polyglycerol are used.
【請求項3】 色素が、ピロカテコールバイオレッ
ト又はピロガロールレッドである請求項1又は2記載の
蛋白質の測定法
3. The method according to claim 1, wherein the pigment is pyrocatechol violet or pyrogallol red.
A method for measuring protein .
【請求項4】 金属が、モリブデン、スズ又は鉄で
ある請求項1から3の何れかに記載の蛋白質の測定法
4. The method for measuring a protein according to claim 1, wherein the metal is molybdenum, tin or iron.
【請求項5】 金属と色素からなる錯体を使用し、蛋5. A protein comprising a complex comprising a metal and a dye,
白質の存在下における当該錯体の吸収波長のシフトを用Using the shift of the absorption wavelength of the complex in the presence of white matter
いて蛋白質を測定する方法に使用される試薬であって、Reagent used in a method for measuring protein,
当該試薬が多価アルコールを含有することを特徴とするCharacterized in that the reagent contains a polyhydric alcohol
蛋白質測定用試薬。Reagent for protein measurement.
JP03163899A 1991-06-07 1991-06-07 Method for measuring protein Expired - Lifetime JP3090503B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03163899A JP3090503B2 (en) 1991-06-07 1991-06-07 Method for measuring protein

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03163899A JP3090503B2 (en) 1991-06-07 1991-06-07 Method for measuring protein

Publications (2)

Publication Number Publication Date
JPH04361160A JPH04361160A (en) 1992-12-14
JP3090503B2 true JP3090503B2 (en) 2000-09-25

Family

ID=15782935

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03163899A Expired - Lifetime JP3090503B2 (en) 1991-06-07 1991-06-07 Method for measuring protein

Country Status (1)

Country Link
JP (1) JP3090503B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3516012B2 (en) * 1998-12-25 2004-04-05 アークレイ株式会社 Composition for measuring trace amounts of protein
AU2002311527A1 (en) 2001-06-25 2003-01-08 Bayer Healthcare Llc Total protein detection methods and devices at low ph
US7563621B2 (en) 2002-03-05 2009-07-21 Siemens Healhcare Diagnostics Inc Absorbing organic reagents into diagnostic test devices by formation of amine salt complexes

Also Published As

Publication number Publication date
JPH04361160A (en) 1992-12-14

Similar Documents

Publication Publication Date Title
EP0345582B1 (en) Composition and method of assaying for trace amounts of proteins
EP1881328B1 (en) Method of determining iron concentration
EP0517914B1 (en) Reagent and methods for calcium determination
Miyada et al. Albumin quantitation by dye binding and salt fractionation techniques
US5087575A (en) Composition for determining trace amount of protein
JP3524602B2 (en) Method for analyzing protein in urine and composition for measuring the same
JP3516012B2 (en) Composition for measuring trace amounts of protein
US6326208B1 (en) Assay for total and direct bilirubin
JP3090503B2 (en) Method for measuring protein
JPH11153602A (en) All-protein detecting method
JPH07218511A (en) Method for measuring iron and reagent thereof
JPS61155757A (en) Assay of trace protein
JPH0771515B2 (en) Bilirubin Optical Assay and Reagent
JP3220378B2 (en) Method and reagent for quantification of total protein
Miller et al. Benzidine reagent in paper chromatography
Huang Development and evaluation of an automated dye-binding assay for protein in cerebrospinal fluid.
JP2001099826A (en) Method for developing color of complex, and reagent for developing color
JP2632989B2 (en) Method for measuring unsaturated iron binding ability
JPH0690207B2 (en) Method and combined reagent for quantifying iron in serum
JPS6049256B2 (en) Shiyaku for protein analysis
JPH0743387B2 (en) Direct determination of bilirubin
JP4733596B2 (en) Liquid reagent for measuring total protein in liquid samples
JPH1146794A (en) Measurement of direct type bilirubin and kit for the measurement
WO1995000843A1 (en) Assay for total bilirubin
JPS62206449A (en) Creatinine measuring agent

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090721

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110721

Year of fee payment: 11

EXPY Cancellation because of completion of term