JP3089887B2 - Charge control method for battery charger - Google Patents

Charge control method for battery charger

Info

Publication number
JP3089887B2
JP3089887B2 JP05093081A JP9308193A JP3089887B2 JP 3089887 B2 JP3089887 B2 JP 3089887B2 JP 05093081 A JP05093081 A JP 05093081A JP 9308193 A JP9308193 A JP 9308193A JP 3089887 B2 JP3089887 B2 JP 3089887B2
Authority
JP
Japan
Prior art keywords
battery
charging
voltage
battery set
battery voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP05093081A
Other languages
Japanese (ja)
Other versions
JPH06311662A (en
Inventor
信宏 高野
茂 篠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koki Holdings Co Ltd
Original Assignee
Hitachi Koki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Koki Co Ltd filed Critical Hitachi Koki Co Ltd
Priority to JP05093081A priority Critical patent/JP3089887B2/en
Priority to DE4319861A priority patent/DE4319861B4/en
Priority to US08/077,051 priority patent/US5444353A/en
Priority to TW082208668U priority patent/TW364697U/en
Publication of JPH06311662A publication Critical patent/JPH06311662A/en
Application granted granted Critical
Publication of JP3089887B2 publication Critical patent/JP3089887B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は例えばニッケル・カドミ
ウム電池(以下ニカド電池という)等の2次電池を充電
する電池充電装置の充電制御法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a charge control method for a battery charger for charging a secondary battery such as a nickel cadmium battery (hereinafter referred to as a nickel cadmium battery).

【0002】[0002]

【従来の技術】近年、ニカド電池等の2次電池の充電装
置として、素電池の個数が異なる種々の電池組(電圧の
異なる電池組)を1台の充電装置で全て充電することが
できる充電装置(以下汎用充電装置という)が普及して
いる。これら汎用充電装置の満充電検出方法としては、
充電時の電池電圧を検出し、該検出した電池電圧が、予
め充電末期の電池電圧のピーク値より低めに設定されて
いる満充電判別基準カットオフ電圧Vcに達した時に充
電を停止させる方法(定電圧カット法)等がある。
2. Description of the Related Art In recent years, as a charging device for a secondary battery such as a nickel-cadmium battery, a charging device capable of fully charging various battery sets (battery sets having different voltages) having different numbers of cells with a single charging device. Devices (hereinafter referred to as general-purpose charging devices) have become widespread. Full charge detection methods for these general-purpose charging devices include:
A method of detecting a battery voltage at the time of charging and stopping charging when the detected battery voltage reaches a full-charge determination reference cut-off voltage Vc set lower than a peak value of the battery voltage at the end of charging in advance ( Constant voltage cut method).

【0003】充電末期の電池電圧は、図3の充電特性に
示すように、電池組内の素電池数が多い程大きくなる。
そのため、前記満充電検出法を用いて充電制御を行う汎
用充電装置においては、充電初期に電池組の素電池数判
別を行い、該検出した素電池数に応じてカットオフ電圧
nVc(nは素電池数)を設定して満充電検出処理を行
っている。電池組の素電池数判別法には、充電開始から
所定時間経過した時の電池電圧を検出し、該検出電池電
圧を素電池数判別基準電池電圧値nVaと比較して素電
池数を判別する方法等がある。
[0003] The battery voltage at the end of charging, as shown in the charging characteristics of FIG. 3, increases as the number of cells in the battery set increases.
Therefore, in a general-purpose charging device that performs charge control using the full charge detection method, the number of cells in a battery group is determined at the beginning of charging, and the cutoff voltage nV c (n is determined in accordance with the detected number of cells). (The number of cells) to perform the full charge detection process. The battery set in the battery cell number determination method, and detects a battery voltage when a predetermined time has elapsed since the start of charging determines the number of unit cells of the detection battery voltage as compared to the unit cell number determination reference battery voltage nV a There is a method to do.

【0004】[0004]

【発明が解決しようとする課題】ところが図4の充放電
特性に示すように、例えばコードレス電動工具のような
極端な大電流で深く放電(電池電圧が0V近辺まで)さ
れる場合、このような状態まで放電された電池組は、温
度が高く、電池電圧は極端に小さくなっている。そのた
め、このような深い放電を行った直後に電池組を充電し
た場合、上記した従来の素電池数判別法では、素電池数
n個の電池組をそれより素電池数が1ランク少ない電池
組と誤判別し(例えば素電池が1個づつ異なる電池組の
場合、素電池数n個の電池組を素電池数n−1個の電池
組と判別すること)、カットオフ電圧も1ランク小さく
設定され(n個の電池組をn−1個と判別するので、カ
ットオフ電圧も(n−1)Vcに設定される)、充電初
期に充電が停止してしまい充電不足が生じる。本発明の
目的は、上記した従来技術の欠点をなくし、いかなる電
池組でも確実に満充電となるまで充電できるようにする
ことである。
However, as shown in the charge / discharge characteristics of FIG. 4, when the battery is deeply discharged (to a battery voltage of about 0 V) with an extremely large current, such as a cordless power tool, such a problem occurs. The battery set discharged to the state has a high temperature and an extremely low battery voltage. Therefore, when the battery group is charged immediately after performing such deep discharge, the battery group having n unit cells is replaced by the battery group having one less cell number in the conventional cell number determination method described above. (E.g., in the case of a battery group in which each unit cell is different one by one, it is determined that a battery group having n unit cells is a battery group having n-1 unit cells), and the cutoff voltage is also reduced by one rank. (since the n-number of battery set for determining the n-1 and the cut-off voltage is also set to (n-1) V c) set, insufficient charge will stop charging the initial charging occurs. An object of the present invention is to eliminate the above-mentioned disadvantages of the prior art and to ensure that any battery set can be charged until it is fully charged.

【0005】[0005]

【課題を解決する手段】上記した目的を達成するため
に、本発明は、充電開始前に電池組が深い放電直後か否
かを判別し、該判別結果に応じて素電池数判別までの小
電流充電時間を変えるようにしたことを特徴とするもの
である。
In order to achieve the above-mentioned object, the present invention determines whether or not a battery set is immediately after deep discharge before starting charging, and according to the result of the determination, determines whether or not the number of cells is small. The present invention is characterized in that the current charging time is changed.

【0006】[0006]

【作用】上記したような充電制御法によれば、電池組の
素電池数を正確に判別することが可能となり、いかなる
放電状態の電池組であっても満充電となるまで確実に充
電できるようになる。
According to the charging control method as described above, the number of cells in a battery set can be accurately determined, and any battery set in a discharged state can be reliably charged until it is fully charged. become.

【0007】[0007]

【実施例】図1は本発明の一実施例を示す回路図であ
る。1は交流電源、2は複数の充電可能な素電池を複数
個直列に接続した電池組、3は電池組2に流れる充電電
流を検出するための電流検出抵抗、4、5はホトカプラ
等からなる信号伝達手段、10は全波整流回路11と平
滑コンデンサ12からなる整流平滑回路、20は高周波
トランス21、MOSFET22,PWM制御IC23
からなるスイッチング回路であり、PWM制御IC23
はMOSFET22の駆動パルス幅を変えて整流平滑回
路10の出力電圧を調整するスイッチング電源用ICで
ある。30はダイオード31、32、チョークコイル3
3、平滑用コンデンサ34からなる整流平滑回路、40
は抵抗41、42からなる電池電圧検出手段で、電池組
2の電池電圧を分圧する。50はCPU51、ROM5
2、RAM53、タイマ54、A/Dコンバータ55、
出力ポート56、リセット入力端57からなるマイコン
である。60は演算増幅器61、62、抵抗63〜6
7、アナログスイッチ68からなり、充電電流を所定値
に制御する充電電流制御手段であり、アナログスイッチ
68は例えばCMOSIC4066等からなる。充電電
流をI1と小さくする時は、マイコン50の出力ポート
56からの信号によりアナログスイッチ68をオンして
初段の増幅度を上げる。反対に充電電流をI2(I1<I
2)と大きくする時は、アナログスイッチ68をオフし
て初段の増幅度を下げる。70は電源トランス71、全
波整流回路72、平滑コンデンサ73、三端子ボルテー
ジレギュレータ74、リセットIC75からなる定電圧
電源で、マイコン50、充電電流制御手段60等の電源
となる。リセットIC75はマイコン50を初期状態に
するためにリセット入力端75にリセット信号を出力す
る。80はLED81,抵抗82からなり、充電完了で
あることを表示する表示手段である。
FIG. 1 is a circuit diagram showing an embodiment of the present invention. 1 is an AC power supply, 2 is a battery set in which a plurality of rechargeable cells are connected in series, 3 is a current detection resistor for detecting a charging current flowing through the battery set 2, and 4 and 5 are photocouplers and the like. Signal transmission means 10 is a rectifying / smoothing circuit including a full-wave rectifying circuit 11 and a smoothing capacitor 12, 20 is a high-frequency transformer 21, MOSFET 22, PWM control IC 23
And a PWM control IC 23
Is a switching power supply IC for adjusting the output voltage of the rectifying and smoothing circuit 10 by changing the drive pulse width of the MOSFET 22. 30 is a diode 31, 32, a choke coil 3
3. a rectifying / smoothing circuit including a smoothing capacitor 34;
Is a battery voltage detecting means comprising resistors 41 and 42, which divides the battery voltage of the battery set 2. 50 is a CPU 51 and a ROM 5
2, RAM 53, timer 54, A / D converter 55,
It is a microcomputer comprising an output port 56 and a reset input terminal 57. Reference numeral 60 denotes operational amplifiers 61 and 62, resistors 63 to 6
7. A charge current control means which comprises an analog switch 68 and controls the charge current to a predetermined value. The analog switch 68 comprises, for example, a CMOS IC 4066 or the like. When reducing the charging current and I 1 raises the first-stage amplification degree by turning on the analog switch 68 by a signal from the output port 56 of the microcomputer 50. Conversely, the charging current is reduced to I 2 (I 1 <I
To increase the value to 2 ), the analog switch 68 is turned off to lower the amplification of the first stage. Reference numeral 70 denotes a constant-voltage power supply including a power transformer 71, a full-wave rectifier circuit 72, a smoothing capacitor 73, a three-terminal voltage regulator 74, and a reset IC 75. The reset IC 75 outputs a reset signal to a reset input terminal 75 to initialize the microcomputer 50. Numeral 80 is a display means which comprises an LED 81 and a resistor 82 and indicates that charging is completed.

【0008】次に図1の回路図及び図2のフローチャー
トを参照して動作の説明をする。電源1を投入すると、
マイコン50は電池組2の接続待機状態となる(ステッ
プ101)。電池組2を接続すると、マイコン50は電
池組接続を電池電圧検出手段40の出力信号により判別
し、電池組2が深い放電直後か否かの判別を開始するた
めに、電池電圧検出手段40の出力信号をA/Dコンバ
ータ55を介して充電開始前の初期電池電圧値Vin0
して取り込む(ステップ102)。T1時間経過をチェ
ックし(ステップ103)、T1時間経過後の電池電圧
値Vin1を入力し(ステップ104)、入力した電池電
圧値Vin1からVin0を減算して電池電圧勾配値ΔVin
を算出し、電池電圧勾配値ΔVinから判別基準値ΔV
refを減算してΔVsを求め(ステップ105)、減算
したΔVsが正か否かの判別を行う(ステップ10
6)。
Next, the operation will be described with reference to the circuit diagram of FIG. 1 and the flowchart of FIG. When power supply 1 is turned on,
The microcomputer 50 enters a connection standby state of the battery set 2 (step 101). When the battery set 2 is connected, the microcomputer 50 determines the connection of the battery set based on the output signal of the battery voltage detection means 40, and starts the determination of whether or not the battery set 2 is immediately after the deep discharge. The output signal is fetched via the A / D converter 55 as an initial battery voltage value Vin 0 before the start of charging (step 102). Check the T 1 times elapsed (step 103), enter the battery voltage Vin 1 of 1 hour after T (step 104), the battery voltage Vin 1 inputted by subtracting the Vin 0 battery voltage gradient value ΔVin
Is calculated, and the determination reference value ΔV is calculated from the battery voltage gradient value ΔVin.
Ref is subtracted to obtain ΔVs (step 105), and it is determined whether the subtracted ΔVs is positive (step 10).
6).

【0009】ΔVsが負の場合、通常の放電が行われた
電池組2もしくは放電後所定時間以上休止した電池組2
と判別し、初期充電時間t1を設定し、出力ポート56
より信号伝達手段4を介してPWM制御IC23に充電
開始信号を伝達し、充電電流I1で充電を開始する(ス
テップ107)。充電開始と同時に電池組2に流れる充
電電流を電流検出抵抗3により検出し、この充電電流値
と、定電流制御基準値との差を充電電流制御手段60よ
り信号伝達手段5を介して、PWM制御IC23に帰還
をかける。すなわち、充電電流が大きい場合はパルス幅
を狭め、逆の場合はパルス幅を広げ、パルス幅に比例し
たパルスを高周波トランス21に与え、整流平滑回路3
0で直流に平滑して充電電流を一定に保つ。電流検出抵
抗3、充電電流制御手段60、信号伝達手段5、スイッ
チング回路20、整流平滑回路30を介して定電流制御
をする。初期充電を開始してt1時間経過をチェックし
(ステップ108)、t1時間経過後の電池電圧値Vt1
を入力し(ステップ109)、基準電池電圧値nVa
比較し、電池組2の素電池数(この実施例での充電装置
は、電池組2の素電池数は1個づつ異なるものとする)
nを判別し(ステップ110)、満充電検出でのカット
オフ電圧値nVcを設定する(ステップ115)と共に
充電電流をI2に増加させる(ステップ116)。
When ΔVs is negative, the battery set 2 that has undergone normal discharge or the battery set 2 that has been inactive for a predetermined time or more after discharge
And sets the initial charging time t 1, and sets the output port 56
Transmits the charging start signal to the PWM control IC23 via more signal transmission means 4 to start charging at a charging current I 1 (step 107). At the same time as the start of charging, the charging current flowing through the battery set 2 is detected by the current detection resistor 3, and the difference between the charging current value and the constant current control reference value is determined by the charging current control unit 60 via the signal transmission unit 5 via the PWM. The control IC 23 is fed back. That is, when the charging current is large, the pulse width is narrowed, and when the charging current is reversed, the pulse width is widened.
At 0, it is smoothed to DC to keep the charging current constant. The constant current control is performed via the current detection resistor 3, the charging current control means 60, the signal transmission means 5, the switching circuit 20, and the rectifying / smoothing circuit 30. It is checked whether the time t 1 has elapsed after the start of the initial charge (step 108), and the battery voltage V t1 after the time t 1 has elapsed.
Enter the (step 109), as compared to the reference battery voltage nV a, number cell of cell group 2 (charger in this embodiment, the unit cell number of battery set 2 is made different one by one )
Determine n (step 110), sets the cut-off voltage value nV c at full charge detection increases the charging current to the I 2 (step 115) (step 116).

【0010】前記ステップ106においてΔVsが正の
場合、深い放電を行った直後の電池組2と判別し、初期
充電時間t2(t2>t1)を設定し、充電電流I1で充電
を開始する(ステップ111)。初期充電を開始してt
2時間経過をチェックし(ステップ112)、t2時間経
過後の電池電圧値Vt2を入力し(ステップ113)、基
準電池電圧値nVaと比較し、電池組2の素電池数nを
判別し(ステップ114)、満充電検出のカットオフ電
圧値nVcを設定する(ステップ115)と共に充電電
流をI2に増加させる(ステップ116)。
If ΔVs is positive in step 106, it is determined that the battery group 2 has just been deeply discharged, an initial charging time t 2 (t 2 > t 1 ) is set, and charging is performed with the charging current I 1. Start (step 111). Start initial charging and t
Check the lapse of 2 hours (step 112), enter the battery voltage value V t2 after a lapse of t 2 h (step 113), as compared to the reference battery voltage nV a, determines the unit cell number n of the battery set 2 (step 114), the charging current increases to I 2 as well as the cut-off voltage value nV c of full-charge detection (step 115) (step 116).

【0011】次いで、満充電検出を開始し、電池電圧検
出手段40からの検出電池電圧をA/Dコンバータ55
を介して電池電圧値Vinとして取り込む(ステップ1
17)。電池電圧値Vinよりカットオフ電圧値nVc
減算し、該減算した値が負の場合ステップ117に戻
る。減算した値が正の場合、マイコン50は出力ポート
56より信号伝達手段4を介して充電停止信号をPWM
制御IC23に伝達して充電を停止する(ステップ11
9)。次いで、電池組2が取り出されるのを判別し(ス
テップ120)、電池組2の取り出しが判別したらステ
ップ101に戻り、次の電池組2の充電のための待機を
する。上記動作に基づく充放電特性を図5(通常の放電
が行われた電池組2の場合)、図6(深い放電を行った
直後の電池組2の場合)、また、従来技術に基づく充
電特性を図4(深い放電を行った直後の電池組2の場
合)に示す。
Next, full charge detection is started, and the detected battery voltage from the battery voltage detecting means 40 is converted to an A / D converter 55.
(Step 1)
17). Subtracting the cutoff voltage nV c than the battery voltage value Vin, a value obtained by subtraction is returned to negative when step 117. If the subtracted value is positive, the microcomputer 50 outputs a charge stop signal from the output port 56 via the signal transmitting means 4 to the PWM.
The charge is transmitted to the control IC 23 to stop the charging (step 11).
9). Next, it is determined that the battery set 2 is to be removed (step 120). When the removal of the battery set 2 is determined, the process returns to step 101 to wait for charging of the next battery set 2. The charge and discharge characteristics based on the above operation 5 (when normal discharge of the battery set 2 performed), (in the case of battery set 2 immediately after the deep discharge) 6, also, release charge and according to the prior art The electrical characteristics are shown in FIG. 4 (in the case of battery group 2 immediately after deep discharge was performed).

【0012】上記実施例においては定電カット法によ
って満充電を検出するとしたが、充電時の電池電圧がピ
ーク値から所定電圧低下したことを検出して満充電とす
る−ΔV検出法または充電時の電池電圧の2階微分値
(Δ2V)が負になるのを検出して満充電と検出するΔ2
V検出法等の満充電検出法にも適用できるものであり、
以下本発明を前記Δ2V検出法に適用した例について説
明する。
[0012] In the above embodiment has been to detect the full charge by the constant-voltage cut method, - [Delta] V detection method or the charging to be detected to full charge that the battery voltage during charging is the predetermined voltage drop from the peak value Detects that the second derivative (Δ 2 V) of the battery voltage at the time becomes negative and detects that the battery is fully charged Δ 2
It can be applied to full charge detection methods such as V detection method,
Hereinafter, an example in which the present invention is applied to the Δ 2 V detection method will be described.

【0013】ニカド電池は、周知の如くまた本出願人が
先に出願した特願平04−156676号において示し
た如く、充電開始時の残容量の多少によって充電特性が
異なる。すなわち残容量が少ない電池組2の場合は、図
9に示す如く、充電初期に電池電圧の2階微分値が負に
なる特性が現われ、これは残容量が少ないほど顕著にな
る。反対に、残容量が多い電池組2の場合は、図10に
示す如くその傾向はなくなる。
As is well known, as shown in Japanese Patent Application No. 04-156676 filed earlier by the present applicant, the charging characteristics of the nickel-cadmium battery vary depending on the remaining capacity at the start of charging. That is, in the case of the battery set 2 having a small remaining capacity, as shown in FIG. 9, a characteristic in which the second-order differential value of the battery voltage becomes negative at the beginning of charging appears, and this becomes more remarkable as the remaining capacity decreases. Conversely, in the case of the battery set 2 having a large remaining capacity, the tendency disappears as shown in FIG.

【0014】このため充電初期に残容量の判別を行い、
残容量が少ない電池組2の場合には、充電開始から所定
時間経過するまでΔ2V検出を行わない不感時間を設け
る充電制御法を前記先願によって提案した。なお残容量
の判別は、充電開始からt1時間経過後の電池組2の電
池電圧を検出し、該電池電圧と残容量判別基準電圧値n
bを比較することにより行い、電池電圧がnVbより大
きい時は残容量の多い電池組2、nVbより小さい時は
残容量の少ない電池組2としている。
Therefore, the remaining capacity is determined at the beginning of charging,
If the remaining capacity is less battery set 2, a charging control method providing a dead time is not performed delta 2 V detected until a predetermined time elapses from start of charging proposed by the prior application. The remaining capacity is determined by detecting the battery voltage of the battery set 2 after the elapse of the time t 1 from the start of charging, and determining the battery voltage and the remaining capacity determination reference voltage value n.
Performed by comparing V b, when the battery voltage is greater than nV b is battery set 2, nV b smaller during busy remaining capacity is a battery set 2 little remaining capacity.

【0015】しかし、上記したような極端に深い放電を
行った電池組2の場合、図12に示す如く、従来の素電
池数判別では、素電池数を1ランク少ない(n−1)個
と誤判別し、更に検出電池電圧が(n−1)Vbより大
きいので残容量が多いと誤判別し、この結果、前記不感
時間を設けることなく充電を継続してしまうので、充電
初期に満充電になったと誤検出して充電を終了してしま
い、電池組2がほとんど充電されないという問題があっ
た。。
However, in the case of the battery group 2 which has performed extremely deep discharge as described above, as shown in FIG. 12, in the conventional cell number discrimination, the cell number is reduced by one rank to (n-1). The battery is erroneously determined and the detected battery voltage is higher than (n-1) Vb, so that the remaining capacity is erroneously determined to be large. As a result, charging is continued without providing the dead time. Erroneously detected that the battery pack 2 has been charged, and the charging is terminated, so that the battery set 2 is hardly charged. .

【0016】本発明はかかる問題をなくし、いかなる放
電状態の電池組2でも確実に充電できるようにしたもの
で、以下図7、図8のフローチャートを参照して説明す
る。電源1を投入すると、マイコン50は電池組2の接
続待機状態となる(ステップ701)。電池組2を接続
すると、マイコン50は電池組接続を電池電圧検出手段
40の出力信号により判別し、電池組2が深い放電直後
か否かの判別を開始するために電池電圧検出手段40の
出力信号をA/Dコンバータ55を介して充電開始前の
初期電池電圧値Vin0として取り込む(ステップ70
2)。T1時間経過をチェックし(ステップ703)、
1時間経過後の電池電圧値Vin1を入力し(ステップ7
04)、電池電圧値Vin1からVin0を減算して電池電圧
勾配値ΔVinを算出し、電池電圧勾配値ΔVinから
判別基準値ΔVrefを減算してΔVsを求める(ステッ
プ705)。
The present invention eliminates such a problem and ensures that the battery set 2 in any discharged state can be charged. This will be described below with reference to the flowcharts of FIGS. When the power supply 1 is turned on, the microcomputer 50 enters a connection standby state of the battery set 2 (step 701). When the battery set 2 is connected, the microcomputer 50 determines the connection of the battery set based on the output signal of the battery voltage detecting means 40, and outputs the output of the battery voltage detecting means 40 to start determining whether or not the battery set 2 is immediately after deep discharge. signals through the a / D converter 55 taking as an initial battery voltage value Vin 0 before the start of charging (step 70
2). Check the T 1 hour elapsed (step 703),
Input the battery voltage value Vin 1 after elapse of T 1 time (step 7).
04), the battery voltage gradient value ΔVin is calculated by subtracting Vin 0 from the battery voltage value Vin 1 , and the determination reference value ΔVref is subtracted from the battery voltage gradient value ΔVin to obtain ΔVs (step 705).

【0017】次に減算したΔVsが正か否かの判別を行
う(ステップ706)。ΔVsが負の場合、通常の放電
が行われた電池組2もしくはある一定時間以上休止した
電池組2と判別し、素電池数判別及び残容量判別までの
初期充電時間t1を設定し、出力ポート56より信号伝
達手段4を介してPWM制御IC23に充電開始信号を
伝達し充電を開始する(ステップ707)。初期充電を
開始してt1時間経過をチェックし(ステップ70
8)、t1時間経過後の電池電圧Vt1を入力し(ステッ
プ709)、電池組2の素電池数判別、残容量判別を開
始し、t1時間経過後の電池組2の電池電圧値Vt1を基
準電池電圧値nVaと比較し、電池組2の素電池数nを
判別する(ステップ710)。また、電池電圧値Vt1
ら残容量判別電圧値nVbを減算して、その値が負か否
かの判別で残容量判別を行う(ステップ711)。負の
場合は、電池組2の残容量が少ないと判断し、Δ2Vを
検出しない不感時間T2を設定する(ステップ712)
と共に充電電流をI2に増加させて充電時間の短縮を図
る(ステップ719)。ステップ711において正の場
合は、電池組2の残容量が多いと判断し、過充電を抑制
するため充電電流I1のまま充電を続ける(ステップ7
13)。
Next, it is determined whether or not the subtracted ΔVs is positive (step 706). If ΔVs is negative, it is determined that the battery set 2 has been discharged normally or the battery set 2 has been suspended for a certain period of time or more, and an initial charging time t 1 until the determination of the number of cells and the remaining capacity is determined. A charge start signal is transmitted from the port 56 to the PWM control IC 23 via the signal transmission means 4 to start charging (step 707). After the initial charging is started, it is checked whether t 1 time has elapsed (step 70).
8) The battery voltage Vt 1 after the lapse of time t 1 is input (step 709), and the determination of the number of cells and the remaining capacity of the battery group 2 are started, and the battery voltage value of the battery group 2 after the lapse of time t 1 the V t1 is compared with a reference battery voltage value nV a, determines the unit cell number n of the battery set 2 (step 710). Further, by subtracting the remaining capacity determination voltage value nV b from the battery voltage V t1, performs remaining capacity determination the value is negative determination of whether or not (step 711). If negative, it is determined that the remaining capacity of the battery set 2 is small, and a dead time T 2 during which Δ 2 V is not detected is set (step 712).
The charging current is increased to I 2 with shortened charge time (step 719). If at step 711 the positive, it is determined that the remaining capacity of the battery set 2 is large, while continuing the charging of the charging current I 1 for suppressing overcharge (Step 7
13).

【0018】前記ステップ706においてΔVsが正の
場合、深い放電を行った直後の電池組2と判別し、素電
池数判別及び残容量判別までの初期充電時間t2(t2
1)を設定し、充電電流I1で充電を開始する(ステッ
プ714)。充電開始と同時に電池組2に流れる充電電
流を電流検出抵抗3、充電電流制御手段60、信号伝達
手段5、スイッチング回路20、整流平滑回路30を介
して定電流制御を行う。初期充電を開始してt2時間経
過をチェックし(ステップ715)、t2時間経過後の
電池電圧Vt2を入力し(ステップ716)、電池組2
の素電池数判別を開始し、前記電池電圧値Vt2と基準電
池電圧値nVaを比較し、電池組2の素電池数nを判別
し(ステップ717)、Δ2Vを検出しない不感時間T3
(T3≧T2)を設定する(ステップ718)と共に充電
電流をI2に増加させる(ステップ719)。
If ΔVs is positive in step 706, it is determined that the battery group 2 has just been deeply discharged, and the initial charging time t 2 (t 2 >) until the number of cells and the remaining capacity are determined.
t 1 ) is set, and charging is started with the charging current I 1 (step 714). At the same time as the start of charging, constant current control is performed on the charging current flowing through the battery set 2 via the current detection resistor 3, the charging current control means 60, the signal transmission means 5, the switching circuit 20, and the rectifying and smoothing circuit 30. Start the initial charging check t 2 hours elapsed (step 715), enter the cell voltage Vt 2 after a lapse of t 2 h (step 716), the battery set 2
Start the unit cell number determination, the comparison battery voltage value V t2 and the reference battery voltage nV a, determines the unit cell number n of the battery set 2 (step 717), dead time is not detected delta 2 V T 3
(T 3 ≧ T 2 ) is set (step 718), and the charging current is increased to I 2 (step 719).

【0019】次に、Δ2V検出を開始し、電池電圧検出
手段40からの検出電池電圧をA/Dコンバータ55を
介して電池電圧値Vinxとして取り込む(ステップ72
0)。電池電圧値Vinxより前回入力したVprexを減算
してΔVinxを求めると共に、ΔVinxより前回演算した
電池電圧変化値ΔVprexを減算してΔ2Vを求める(ス
テップ721)。減算したΔ2Vが負か否かの判別を行
い(ステップ722)、Δ2Vが正の場合、VinxをVpr
exに、ΔVinxをΔVprexにし(ステップ723)、tx
時間経過をチェックし(ステップ724)、ステップ7
20に戻る。ステップ722においてΔ2Vが負の場
合、マイコン50は出力ポート56より信号伝達手段4
を介して充電停止信号をPWM制御IC23に伝達し、
充電を停止する(ステップ725)。次いで、電池組2
が取り出されるのを判別する(ステップ726)。電池
組2の取り出しが判別したらステップ701に戻り、次
の電池組2の充電のための待機をする。上記動作に基づ
く充電特性を図9(残容量が少ない電池組の場合)、図
10(残容量が多い電池組の場合)、図11(深い放電
を行った直後の電池組を充電した場合)に示す。
Next, Δ 2 V detection is started, and the detected battery voltage from the battery voltage detecting means 40 is taken in as a battery voltage value Vin x via the A / D converter 55 (step 72).
0). With obtaining the .DELTA.Vin x by subtracting Vpre x the previously inputted from the battery voltage value Vin x, subtracts the battery voltage variation value DerutaVpre x where the last calculated from .DELTA.Vin x by finding a delta 2 V (Step 721). It is determined whether or not the subtracted Δ 2 V is negative (step 722). If Δ 2 V is positive, Vin x is changed to Vpr
to e x, the ΔVin x to ΔVpre x (step 723), t x
Check the elapse of time (step 724), and step 7
Return to 20. If Δ 2 V is negative in step 722, the microcomputer 50 sends the signal
The charge stop signal is transmitted to the PWM control IC 23 via
The charging is stopped (Step 725). Next, battery pack 2
Is determined (step 726). When the removal of the battery set 2 is determined, the process returns to step 701 to wait for charging of the next battery set 2. The charging characteristics based on the above operation are shown in FIG. 9 (in the case of a battery set with a small remaining capacity), FIG. 10 (in the case of a battery set with a large remaining capacity), and FIG. 11 (in the case of charging the battery set immediately after performing deep discharge). Shown in

【0020】[0020]

【発明の効果】以上のように本発明によれば、電池組の
素電池数を正確に判別することが可能となり、いかなる
放電状態の電池組であっても確実に満充電まで充電でき
るようになり、不足充電となる恐れがなくなる。
As described above, according to the present invention, it is possible to accurately determine the number of cells in a battery set, and to ensure that a battery set in any discharged state can be charged to full charge. And there is no danger of undercharging.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明充電制御法を採用した充電回路の一実施
例を示すブロック回路図。
FIG. 1 is a block circuit diagram showing one embodiment of a charging circuit employing a charging control method of the present invention.

【図2】本発明の一実施例を示すフローチャート。FIG. 2 is a flowchart showing one embodiment of the present invention.

【図3】素電池数が異なる電池組の充電特性を示すグラ
フ。
FIG. 3 is a graph showing charging characteristics of battery groups having different numbers of unit cells.

【図4】従来の深い放電直後の電池組の充放電特性を示
すグラフ。
FIG. 4 is a graph showing charge / discharge characteristics of a conventional battery set immediately after deep discharge.

【図5】本発明による通常の放電が行われた電池組の充
放電特性を示すグラフ。
FIG. 5 is a graph showing charge / discharge characteristics of a battery set that has undergone normal discharge according to the present invention.

【図6】本発明による深い放電直後の電池組の充放電特
性を示すグラフ。
FIG. 6 is a graph showing charge / discharge characteristics of a battery set immediately after deep discharge according to the present invention.

【図7】本発明の他の実施例を示すフローチャート。FIG. 7 is a flowchart showing another embodiment of the present invention.

【図8】本発明の他の実施例を示すフローチャート。FIG. 8 is a flowchart showing another embodiment of the present invention.

【図9】残容量が少ない電池組の充電特性及びΔ2特性
を示すグラフ。
9 is a graph showing the charge characteristic and delta 2 Characteristics of the remaining capacity is small battery set.

【図10】残容量が多い電池組の充電特性及びΔ2特性
を示すグラフ。
Figure 10 is a graph showing charging characteristics and delta 2 Characteristics of the remaining capacity is larger battery set.

【図11】本発明による深い放電直後の電池組の充放電
特性を示すグラフ。
FIG. 11 is a graph showing charge / discharge characteristics of a battery set immediately after deep discharge according to the present invention.

【図12】従来の深い過放電直後の電池組の充放電特性
を示すグラフ。
FIG. 12 is a graph showing charge / discharge characteristics of a conventional battery set immediately after deep overdischarge.

【符号の説明】[Explanation of symbols]

2は電池組、20は充電制御手段、40は電池電圧検出
手段、50はマイコン、60は充電電流制御手段、81
はLEDである。
2 is a battery set, 20 is a charge control means, 40 is a battery voltage detection means, 50 is a microcomputer, 60 is a charge current control means, 81
Is an LED.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H02J 7/00 - 7/12 H02J 7/34 - 7/36 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int. Cl. 7 , DB name) H02J 7/ 00-7/12 H02J 7 /34-7/36

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 少なくとも2個の素電池を直列に接続し
た電池組の電圧を検出し、該検出電池電圧に基づいて満
充電を検出して充電を終了する電池充電装置であって、
充電初期に所定時間小電流で充電し、所定時間経過後の
電池電圧を検出して電池組の素電池数を判別する電池充
電装置において、 充電開始前に電池組が深い放電直後か否かを判別し、該
判別結果により深い放電直後の電池組の場合、前記所定
時間を長くして素電池数を判別するようにしたことを特
徴とする電池充電装置の充電制御法。
1. A battery charger for detecting a voltage of a battery set in which at least two unit cells are connected in series, detecting a full charge based on the detected battery voltage, and terminating the charging,
In a battery charger for charging at a low current for a predetermined time at an initial stage of charging, detecting a battery voltage after a predetermined time has elapsed, and judging the number of cells in the battery group, it is determined whether or not the battery group is immediately after deep discharge before starting charging. Determining the number of cells by lengthening the predetermined time in the case of a battery set immediately after deep discharge based on the result of the determination.
【請求項2】 前記電池組が深い放電直後か否かを、充
電開始前の電池電圧の上昇勾配を検出して検出するよう
にしたことを特徴とする請求項1記載の電池充電装置の
充電制御法。
2. The charging of the battery charger according to claim 1, wherein whether or not the battery set is immediately after deep discharge is detected by detecting a rising gradient of the battery voltage before the start of charging. Control method.
JP05093081A 1992-06-16 1993-04-20 Charge control method for battery charger Expired - Lifetime JP3089887B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP05093081A JP3089887B2 (en) 1993-04-20 1993-04-20 Charge control method for battery charger
DE4319861A DE4319861B4 (en) 1992-06-16 1993-06-16 Battery charger and method for charging a battery
US08/077,051 US5444353A (en) 1992-06-16 1993-06-16 Battery charger
TW082208668U TW364697U (en) 1992-06-16 1993-06-21 Battery charger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05093081A JP3089887B2 (en) 1993-04-20 1993-04-20 Charge control method for battery charger

Publications (2)

Publication Number Publication Date
JPH06311662A JPH06311662A (en) 1994-11-04
JP3089887B2 true JP3089887B2 (en) 2000-09-18

Family

ID=14072578

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05093081A Expired - Lifetime JP3089887B2 (en) 1992-06-16 1993-04-20 Charge control method for battery charger

Country Status (1)

Country Link
JP (1) JP3089887B2 (en)

Also Published As

Publication number Publication date
JPH06311662A (en) 1994-11-04

Similar Documents

Publication Publication Date Title
US5444353A (en) Battery charger
US5619116A (en) Universal battery charger chargeable with relevant current dependent on cell number
JP3637758B2 (en) Battery charging method
JP3518193B2 (en) Battery charger
JP3772665B2 (en) Battery charger
JP3089887B2 (en) Charge control method for battery charger
JP3539432B2 (en) Apparatus for determining remaining capacity of secondary battery and charging apparatus using the same
JP3157410B2 (en) Rechargeable battery charging method
JP3680502B2 (en) How to charge the battery
JPH11150879A (en) Charging device of battery
JPH05219655A (en) Battery charger
JP3173288B2 (en) Charging device
JP3336790B2 (en) Battery life judgment device for battery charger
JP3722091B2 (en) Battery assembly life discriminator for charger
JP3033591B2 (en) Charge controller
JP2003079066A (en) Battery charging method
JP3162540B2 (en) Charging device
JP3393656B2 (en) Battery charging device and battery charging method
JP2656060B2 (en) Storage battery charge control circuit
KR100478891B1 (en) How to determine the quality of the battery
JP3484867B2 (en) Battery charger
JP2546349Y2 (en) Charger
JP2874287B2 (en) Method for determining memory effect of storage battery and charger for memory effect
JP3042200B2 (en) Battery charger
JPH07147734A (en) Charger of series batteries

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000620

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080721

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090721

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090721

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100721

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110721

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110721

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120721

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120721

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130721

Year of fee payment: 13

EXPY Cancellation because of completion of term