JP3085797B2 - Pressure sensor - Google Patents

Pressure sensor

Info

Publication number
JP3085797B2
JP3085797B2 JP04243875A JP24387592A JP3085797B2 JP 3085797 B2 JP3085797 B2 JP 3085797B2 JP 04243875 A JP04243875 A JP 04243875A JP 24387592 A JP24387592 A JP 24387592A JP 3085797 B2 JP3085797 B2 JP 3085797B2
Authority
JP
Japan
Prior art keywords
pressure
fluid
gas
measured
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP04243875A
Other languages
Japanese (ja)
Other versions
JPH0694555A (en
Inventor
伸二 宮内
伸一 中根
徳良 大橋
利則 新井
幸作 久保
尚 宇野
佳幸 中溝
孝治 福久
清之 田中
博之 石割
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokuriku Electric Industry Co Ltd
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Hokuriku Electric Industry Co Ltd
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokuriku Electric Industry Co Ltd, Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Hokuriku Electric Industry Co Ltd
Priority to JP04243875A priority Critical patent/JP3085797B2/en
Publication of JPH0694555A publication Critical patent/JPH0694555A/en
Application granted granted Critical
Publication of JP3085797B2 publication Critical patent/JP3085797B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、ガスの流量を計測する
ガスメータに内蔵され、ガスの供給が正常かどうかを監
視するための圧力センサに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pressure sensor incorporated in a gas meter for measuring a gas flow rate and for monitoring whether or not gas supply is normal.

【0002】[0002]

【従来の技術】この種のガスメータに設けられる小型圧
力センサとして半導体式圧力センサを使うことが考えら
れている。従来の半導体式圧力センサについて図10に断
面を示し説明する。
2. Description of the Related Art It has been considered to use a semiconductor pressure sensor as a compact pressure sensor provided in a gas meter of this type. FIG. 10 is a cross-sectional view of a conventional semiconductor pressure sensor, which will be described.

【0003】図10において1は圧力センサの外枠であ
り、ガス導入部2を有している。前記外枠2内には、ガ
スの導入部2に対応させてセンサケース3を接着剤4で
接着させている。センサケース3は大気の導入部5を有
し、内部に圧力検出部を設けている。圧力検出部はシリ
コン基板上6と、このシリコン基板6上にエッチングに
より設けられた厚み数ミクロンのシリコン膜7と、この
シリコン膜7上に形成され機械的歪により抵抗値の変化
する半導体抵抗によって構成されている。前記シリコン
膜7上にはガスに含まれるごみや水分を直接接触しない
ようにゲル8がコーティングされている。また外枠1内
には増幅回路等の電気回路が形成されたプリント基板9
が設けられ、プラスチック樹脂10によりモールドされて
いる。なおプリント基板9は入出力端子11を有してい
る。図中の12はガスの導入部2の先端を示している。
In FIG. 10, reference numeral 1 denotes an outer frame of a pressure sensor, which has a gas introduction unit 2. In the outer frame 2, a sensor case 3 is adhered with an adhesive 4 so as to correspond to the gas introduction portion 2. The sensor case 3 has an air introduction section 5 and a pressure detection section inside. The pressure detecting unit comprises a silicon substrate 6, a silicon film 7 having a thickness of several microns provided on the silicon substrate 6 by etching, and a semiconductor resistor formed on the silicon film 7 and having a resistance value that changes due to mechanical strain. It is configured. A gel 8 is coated on the silicon film 7 so as not to come into direct contact with dust or moisture contained in the gas. A printed circuit board 9 on which an electric circuit such as an amplifier circuit is formed is provided in the outer frame 1.
Are provided, and are molded with the plastic resin 10. The printed circuit board 9 has input / output terminals 11. Numeral 12 in the figure indicates the tip of the gas introduction unit 2.

【0004】上記構成においてガスの導入部2から加わ
るガス圧と、大気の導入部5から加わる大気圧との差圧
によりシリコン膜7が機械的な歪を生じる。そしてその
歪みはガス圧と大気圧との差圧に比例する。シリコン膜
7が歪をおこすとシリコン膜7上に形成された半導体抵
抗の抵抗値が歪の大きさに比例して変化する。したがっ
てこの抵抗値の変化を検出し増幅して出力することによ
り、ガス圧と大気圧の差圧を測定することができる。ま
たプリント基板9上に形成された電気回路は前記抵抗値
の変化を増幅する機能を有している。入出力端子11はプ
リント基板9上の電気回路およびシリコン膜7上の抵抗
に電源を供給するための電源端子、抵抗値の変化を増幅
して出力するための出力端子、およびグランド端子であ
る。
In the above configuration, the silicon film 7 is mechanically distorted due to the difference between the gas pressure applied from the gas inlet 2 and the atmospheric pressure applied from the air inlet 5. The distortion is proportional to the pressure difference between the gas pressure and the atmospheric pressure. When the silicon film 7 is distorted, the resistance value of the semiconductor resistor formed on the silicon film 7 changes in proportion to the magnitude of the distortion. Therefore, by detecting, amplifying and outputting the change in the resistance value, the differential pressure between the gas pressure and the atmospheric pressure can be measured. Further, an electric circuit formed on the printed circuit board 9 has a function of amplifying the change in the resistance value. The input / output terminals 11 are a power supply terminal for supplying power to an electric circuit on the printed circuit board 9 and a resistor on the silicon film 7, an output terminal for amplifying and outputting a change in resistance value, and a ground terminal.

【0005】[0005]

【発明が解決しようとする課題】しかしながら上記従来
の構成では、シリコン膜7へは、ゲル8を介してガスの
圧力を受ける構成であるため、ガスに直接触れるのは、
ゲル8、接着剤4、センサケース3である。このうちゲ
ル8、接着剤4は、おもに高分子材料で構成されている
が、ガスに直接触れる部分にあるためガスに侵されやす
く、膨潤してガスを透過し、最悪の場合、モールド剤で
あるプラスチック樹脂10を介して大気側へガスが漏れて
しまうという課題があった。また、温度変動によって、
ガスが液化と気化を繰り返すうちに、前記ゲル8、接着
剤4、プラスチック樹脂10等が膨潤と収縮によって変
形、変質してしまったり、ガス中のごみを付着してしま
い、その結果ガス圧と大気圧との差圧を正確に計ること
ができなくなるという課題があった。
However, in the above-described conventional configuration, the silicon film 7 is configured to receive the pressure of the gas through the gel 8, so that the silicon film 7 does not directly touch the gas.
The gel 8, the adhesive 4, and the sensor case 3. Among them, the gel 8 and the adhesive 4 are mainly composed of a polymer material, but are easily eroded by the gas because they are in a portion directly in contact with the gas, swell and transmit the gas, and in the worst case, a molding agent is used. There is a problem that gas leaks to the atmosphere side through a certain plastic resin 10. Also, due to temperature fluctuation,
While the gas repeatedly liquefies and vaporizes, the gel 8, the adhesive 4, the plastic resin 10 and the like are deformed or deteriorated by swelling and shrinking, or adhere to dust in the gas. There has been a problem that the pressure difference from the atmospheric pressure cannot be accurately measured.

【0006】本発明は上記課題を解決するもので、被測
定ガスに直接触れる材料の膨潤と収縮等による変形、変
質を防止してセンサ外部へのガス漏れを防止し、また被
測定ガス中のごみの付着よるセンサ特性劣化をも防止
し、長期間、シリコン膜へ正確なガス圧力が印加される
信頼性の高い圧力センサを実現することを目的としてい
る。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems, and prevents deformation and alteration due to swelling and shrinkage of a material directly in contact with a gas to be measured to prevent gas leakage to the outside of the sensor. It is an object of the present invention to realize a highly reliable pressure sensor in which accurate gas pressure is applied to a silicon film for a long period of time by preventing deterioration of sensor characteristics due to adhesion of dust.

【0007】[0007]

【課題を解決するための手段】本発明の圧力センサは、
被測定流体の圧力と基準圧力との差圧を測定するために
設けられ前記被測定流体を導入する被測定流体導入部
と、前記基準圧力となる基準流体を導入する基準流体導
入部と、前記被測定流体導入部と前記基準流体導入部と
の間に設けられ前記差圧を検出する圧力検出部とを有
し、前記圧力検出部を、基板に形成された受圧面の上を
ゲル層でコーティングして構成するとともに、前記圧力
検出部の前記ゲル層と前記被測定流体導入部の前記圧力
検出部の側の一端との間の空間から前記被測定流体導入
部にかけて被測定流体のガスに対して耐ガス性の液体を
充填し、前記被測定流体導入部の他端に、前記被測定流
体導入部よりも小径で前記液体が表面張力によって零れ
出さない穴径に形成され前記液体が充填されていない所
定長さの先端区間が形成され、被測定流体のガス圧が、
先端区間の穴を介して前記被測定流体導入部の前記液体
に作用し、前記ゲル層を介して前記受圧面に作用するよ
うに構成したことを特徴とする。
The pressure sensor according to the present invention comprises:
To measure the pressure difference between the pressure of the fluid to be measured and the reference pressure
A fluid to be measured introduction unit provided for introducing the fluid to be measured
And a reference fluid guide for introducing a reference fluid having the reference pressure.
Inlet, the measured fluid introduction unit and the reference fluid introduction unit
And a pressure detector for detecting the differential pressure.
Then, the pressure detecting unit is moved over the pressure receiving surface formed on the substrate.
It is composed by coating with a gel layer.
The pressure of the gel layer of the detecting unit and the pressure of the measured fluid introducing unit
Introducing the fluid to be measured from a space between one end on the side of the detection unit
A gas-resistant liquid to the gas of the fluid to be measured
The measured flow is filled at the other end of the measured fluid introduction section.
The liquid spills due to surface tension with a smaller diameter than the body introduction part
A place where the liquid is not filled and is formed with a hole diameter that does not come out
A constant length tip section is formed, and the gas pressure of the fluid to be measured is
The liquid in the fluid introduction section through the hole in the tip section
And acts on the pressure-receiving surface via the gel layer.
It is characterized by having been constituted as follows.

【0008】[0008]

【0009】[0009]

【0010】[0010]

【0011】[0011]

【0012】[0012]

【作用】本発明の構成によると、被測定流体導入部の被
測定ガスと接する側の開口部分を、被測定流体導入部よ
りも小径で前記液体が表面張力によって零れ出さない穴
径にするとともに、液体が充填されていない所定長さの
先端区間としているため、長期間の使用によっても被測
定流体導入部の先端区間の導入口にゴミの付着が発生せ
ず、しかも十分な量の液体を安定に保持して被測定ガス
からゲル層を確実に保護することができ、長期間にわた
って安定した測定性能を維持できる。
According to the structure of the present invention, the fluid to be measured is introduced into the fluid introduction section.
The opening on the side in contact with the measurement gas should be
A hole with a smaller diameter that does not allow the liquid to spill out due to surface tension
And a predetermined length that is not filled with liquid.
Because it is the tip section, it can be measured even after long-term use.
Adhesion of dust at the inlet of the tip section of the constant fluid inlet
And maintain a sufficient amount of liquid in a stable
Gel layer can be reliably protected from
As a result, stable measurement performance can be maintained.

【0013】[0013]

【0014】[0014]

【0015】[0015]

【0016】[0016]

【0017】[0017]

【実施例】以下本発明の実施例を図1から図6を参照し
て説明する。なお上記従来例と同一相当部分には同一符
号を付与して説明する。 実施例1 図1は実施例1の半導体式圧力センサの断面図である。
この構成の特徴はセンサケース3内において、ガスの導
入部2と圧力検出部との間に隔壁部13を形成したことに
ある。隔壁部13は、耐ガス性、耐薬品性を有するため高
分子材料特有の膨潤現象を起こさず、よって体積変化、
変質等が発生しないため、ガスを透過させず、ガス漏れ
を起こすことはない。なお、圧力検出部はシリコン基板
6、シリコン膜7、ゲル8等よりなるものである。 実施例2 図2は実施例2の半導体式圧力センサの断面図である。
この構成の特徴は、ガスの導入部2部分、すなわちガス
の導入部の先端12と圧力検出部におけるゲル8との間に
フッ素系オイルよりなる液体隔壁部14を充填したことに
ある。ガスの導入部の先端12は、表面張力によって液体
隔壁部(フッソ系オイル)14がこぼれ出ないような穴径
に形成されている。フッソ系オイルは、耐ガス性、耐薬
品を有し、かつ体積圧縮率が少ないため、ガス圧力を正
確に圧力検出部に伝達できる。またゲル8、接着剤4の
高分子材料の特徴は膨潤現象を起こさず、よって体積変
化、変質等が発生しないため、ガスを透過させガス漏れ
を起こすこともない。 実施例3 図3は実施例3の半導体式圧力センサの断面図、図4は
図3のガス導入部部分の詳細断面図である。この構成の
特徴は、ガスの導入部2部分、すなわちガスの導入部の
先端12と圧力センサの感圧部であるシリコン膜7を有す
る空間との間に金属フィルム(ステンレス316 :厚さ20
〜30ミクロンのダイアフラム)よりなる仕切部15を設け
たことにある。この仕切部15の取付けはガスの導入部の
先端12部分と外枠1との接合部16において、金属フィル
ムよりなる仕切部15をゴムパッキン17を介在させて挾圧
固定する。前記金属フィルムの仕切部15によって、ガス
通路(ガスの導入部の先端12部分)と圧力センサの感圧
部であるシリコン膜7を有する空間とは遮断され、シリ
コン膜7へはガス圧力のみが正確に伝達される。ゲル
8、接着剤4は、ガスに直接触れないためガスに侵され
ず、したがって膨潤せず、またガス中のごみの付着によ
るセンサ特性劣化も発生しない。また仕切部15は被測定
流体導入部の開口率の規制がなく、設計、製造の自由度
が高い。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS. The same parts as those in the conventional example are denoted by the same reference numerals and described. First Embodiment FIG. 1 is a cross-sectional view of a semiconductor pressure sensor according to a first embodiment.
The feature of this configuration is that a partition 13 is formed between the gas inlet 2 and the pressure detector in the sensor case 3. The partition 13 has gas resistance and chemical resistance, so that it does not cause a swelling phenomenon peculiar to the polymer material.
Since no alteration or the like occurs, the gas does not permeate and does not cause gas leakage. Note that the pressure detecting section is made of a silicon substrate 6, a silicon film 7, a gel 8, and the like. Second Embodiment FIG. 2 is a sectional view of a semiconductor pressure sensor according to a second embodiment.
The feature of this configuration resides in that a liquid partition wall portion 14 made of a fluorine-based oil is filled between the gas introducing portion 2, that is, between the tip 12 of the gas introducing portion and the gel 8 in the pressure detecting portion. The distal end 12 of the gas introduction portion is formed with a hole diameter such that the liquid partition wall (fluorous oil) 14 does not spill out due to surface tension. Since the fluorine-based oil has gas resistance and chemical resistance and has a small volume compression ratio, the gas pressure can be accurately transmitted to the pressure detecting unit. In addition, the characteristics of the polymer material of the gel 8 and the adhesive 4 do not cause a swelling phenomenon, so that a change in volume, deterioration, and the like do not occur, so that gas does not permeate and gas does not leak. Third Embodiment FIG. 3 is a cross-sectional view of a semiconductor pressure sensor according to a third embodiment, and FIG. 4 is a detailed cross-sectional view of a gas introducing portion in FIG. The feature of this configuration is that a metal film (stainless steel 316 having a thickness of 20 mm) is provided between the gas introduction portion 2, that is, the space between the tip 12 of the gas introduction portion and the space having the silicon film 7 which is the pressure-sensitive portion of the pressure sensor.
That is, a partition 15 made of a diaphragm having a size of about 30 microns is provided. The partition 15 is fixed by pressing the partition 15 made of a metal film with a rubber packing 17 at a joint 16 between the front end 12 of the gas inlet and the outer frame 1. The gas passage (the end 12 of the gas introduction part) and the space having the silicon film 7 which is the pressure-sensitive part of the pressure sensor are cut off by the metal film partition part 15, and only the gas pressure is applied to the silicon film 7. Accurately transmitted. The gel 8 and the adhesive 4 do not directly touch the gas and are not attacked by the gas, so they do not swell and the sensor characteristics do not deteriorate due to the adhesion of dust in the gas. In addition, the partition 15 has no restriction on the aperture ratio of the fluid introduction portion to be measured, and has a high degree of freedom in design and manufacture.

【0018】なお本実施例では、ガスの導入部の先端12
と圧力センサの感圧部であるシリコン膜7を有する空間
とを遮断する仕切部15を金属フィルムで構成した場合に
ついて説明したが、ポリエステル系樹脂フィルム等の耐
ガス性を有する樹脂フィルム仕切部にしてもよい。 実施例4 図5は実施例4の半導体式圧力センサの断面図、図6は
図5のガス導入部部分の詳細断面図である。この構成の
特徴は液体隔壁部(フッソ系オイル)14と金属フィルム
よりなる仕切部15を併設した構成にある。なお液体隔壁
部14は実施例2と、また仕切部15の構成は実施例3と同
じであるので、その説明は省略する。ガスの導入部の先
端12部分は、万一、金属フィルムの仕切部15が破損、脱
落した場合に、表面張力によってフッソ系オイルよりな
る流体隔壁部14がこぼれ出ないような穴径に形成されて
いる。金属フィルムの仕切部15によって、ガス通路(ガ
スの導入部の先端12部分)とシリコン膜7およびゲル8
の前面のフッ素系オイルよりなる液体隔壁部14部分とは
遮断され、シリコン膜7へはガス圧力のみが正確に伝達
される。ゲル8、接着剤4は、ガスに直接触れないため
ガスに侵されず、したがって膨潤せず、またガス中のご
みの付着によるセンサ特性劣化も発生しない。
In this embodiment, the tip 12 of the gas introduction portion is used.
A case has been described in which the partition 15 that blocks the space between the pressure sensor and the space having the silicon film 7 that is a pressure-sensitive part is formed of a metal film. You may. Fourth Embodiment FIG. 5 is a cross-sectional view of a semiconductor pressure sensor according to a fourth embodiment, and FIG. 6 is a detailed cross-sectional view of a gas introduction part in FIG. This configuration is characterized in that a liquid partition (fluorine-based oil) 14 and a partition 15 made of a metal film are provided side by side. The liquid partition 14 is the same as that of the second embodiment, and the configuration of the partition 15 is the same as that of the third embodiment. The tip portion 12 of the gas introduction portion is formed to have a hole diameter such that in the event that the metal film partition portion 15 is damaged or falls off, the fluid partition wall portion 14 made of fluorine-based oil does not spill due to surface tension. ing. The gas passage (the end 12 of the gas introduction part), the silicon film 7 and the gel 8
The liquid barrier portion 14 made of fluorine-based oil on the front surface is shut off, and only the gas pressure is accurately transmitted to the silicon film 7. The gel 8 and the adhesive 4 do not come into direct contact with the gas, so they are not eroded by the gas, and therefore do not swell, and the sensor characteristics do not deteriorate due to the adhesion of dust in the gas.

【0019】また、金属フィルムよりなる仕切部15の破
壊時にも、充填されたフッ素系オイルよりなる液体隔壁
部14によって、ゲル8、接着剤4等の高分子材料は、ガ
スに直接触れないように構成しているためガスに侵され
ず、したがって上記同様の効果が得られる。
Further, even when the partition 15 made of a metal film is broken, the polymer material such as the gel 8 and the adhesive 4 does not come into direct contact with the gas by the liquid partition 14 made of the filled fluorine-based oil. , It is not affected by the gas, and the same effect as above can be obtained.

【0020】なお本実施例では、ガスの導入部の先端12
と圧力センサの感圧部であるシリコン膜7を有する空間
とを遮断する仕切部を金属フィルムで構成した場合につ
いて説明したが、実施例3と同様に、ポリエステル系樹
脂フィルム等の耐ガス性を有する樹脂フィルム仕切部に
してもよい。 実施例5 図7は実施例5の半導体式圧力センサの断面図である。
この構成の特徴は腐食性ガス等の危険なガスが直接セン
サ素子に触れないようにしたことにある。具体的には、
シリコン半導体のセンサ素子19がセンサケース18内に設
けられ、センサ素子19はガラス基台20に陽極接合部21に
より接着されている。ガラス基台20はシリコン系樹脂の
接着剤25によってセンサケース18内に固定されている。
センサケース18は、PPS樹脂等の耐熱性のある樹脂で
あり、リードフレーム30がインサート成形され、リード
フレーム30とセンサ素子19との間に金線28がボンディン
グされている。センサケース18には大気圧導入筒18aが
一体に形成され、この大気圧導入筒18aとは反対側のセ
ンサ素子19の表面側には、ポッティング剤24が充填さ
れ、センサ素子19が埋設されている。
In this embodiment, the tip 12 of the gas introduction portion is used.
A case has been described in which the metal film is used to form the partition that blocks the space having the silicon film 7 that is the pressure-sensitive part of the pressure sensor. It may be a resin film partition part having. Fifth Embodiment FIG. 7 is a sectional view of a semiconductor pressure sensor according to a fifth embodiment.
The feature of this configuration is that dangerous gas such as corrosive gas is prevented from directly touching the sensor element. In particular,
A sensor element 19 made of a silicon semiconductor is provided in a sensor case 18, and the sensor element 19 is bonded to a glass base 20 by an anodic bonding portion 21. The glass base 20 is fixed in the sensor case 18 by an adhesive 25 of a silicone resin.
The sensor case 18 is made of a heat-resistant resin such as PPS resin, in which a lead frame 30 is insert-molded, and a gold wire 28 is bonded between the lead frame 30 and the sensor element 19. An atmospheric pressure introducing cylinder 18a is formed integrally with the sensor case 18, and a potting agent 24 is filled on the surface side of the sensor element 19 opposite to the atmospheric pressure introducing cylinder 18a, and the sensor element 19 is embedded. I have.

【0021】センサケース18には、リードフレーム30を
介してプリント基板27が取り付けられ、プリント基板27
には端子31が固定されている。センサケース18は、収容
部材であるPBT樹脂等のハウジング29の中央部にエポ
キシ系接着剤26により固定され、ポッティング剤24で覆
われたセンサ素子19の表面側がハウジング29の圧力導入
筒29a側を向いて取り付けられている。ハウジング29内
では、センサケース18がシリコン系樹脂の充填剤23と、
さらにその上に充填された軟質エポキシ系樹脂の充填剤
22とが充填され、大気圧導入筒18aと端子31が突出した
状態に形成されている。
A printed board 27 is mounted on the sensor case 18 via a lead frame 30.
The terminal 31 is fixed to. The sensor case 18 is fixed to a central portion of a housing 29 made of a PBT resin or the like as an accommodating member with an epoxy adhesive 26, and the surface side of the sensor element 19 covered with the potting agent 24 faces the pressure introducing cylinder 29a of the housing 29. Mounted facing. In the housing 29, the sensor case 18 includes a silicone resin filler 23,
Soft epoxy resin filler further filled on it
22 are formed so that the atmospheric pressure introducing cylinder 18a and the terminal 31 protrude.

【0022】ハウジング29の圧力導入筒29aには、大気
圧導入筒18aの外部とハウジング29の内部とを隔離する
隔膜であるベローズ32が固定されている。ベローズ32
は、ゴムまたは合成樹脂からなる柔軟な薄膜であり、有
底筒状に形成されている。ベローズ32の側面は波うった
状態に形成され、柔軟に変形可能に形成されている。ベ
ローズ32の基端周縁部32aは圧力導入筒29aの内壁の取
り付け溝29bにはめ込まれ、全周にわたって気密状態に
取り付けられている。また、ベローズ32の材質は、腐食
性ガス等の有毒ガスに対して耐久性があり、安全性の高
いものを選択する。ベローズ32、センサ素子19とにより
挟まれた空間には、空気が気密状態に収容されている。
A bellows 32 is fixed to the pressure introducing cylinder 29a of the housing 29. The bellows 32 separates the outside of the atmospheric pressure introducing cylinder 18a from the inside of the housing 29. Bellows 32
Is a flexible thin film made of rubber or synthetic resin, and is formed in a bottomed cylindrical shape. The side surface of the bellows 32 is formed in a wavy state, and is formed so as to be flexible and deformable. The base end peripheral edge portion 32a of the bellows 32 is fitted into a mounting groove 29b in the inner wall of the pressure introducing cylinder 29a, and is mounted in an airtight state over the entire circumference. Further, as the material of the bellows 32, a material which is durable against toxic gas such as corrosive gas and has high safety is selected. In a space interposed between the bellows 32 and the sensor element 19, air is stored in an airtight state.

【0023】この実施例の圧力センサの動作は、圧力導
入筒29aに被測定ガス圧がかかるように接続し、大気圧
導入筒18aには大気圧がかかるようにゴム管なとを接続
する。そして、被測定ガス圧が圧力導入筒29aにかかる
と、ベローズ32はその圧力で伸び、センサ素子19とベロ
ーズ32との間の空間部の空気の圧力がガス圧と釣り合っ
て等しくなる状態までベローズ32は変形する。これによ
って、センサ素子19には、被測定ガス圧がベローズ32お
よびその内側の空気の圧力を介して伝わり、被測定ガス
の圧力が検出される。
In the operation of the pressure sensor of this embodiment, the pressure introducing cylinder 29a is connected so that the pressure of the gas to be measured is applied, and the atmospheric pressure introducing cylinder 18a is connected to a rubber tube such that the atmospheric pressure is applied. When the pressure of the gas to be measured is applied to the pressure introducing cylinder 29a, the bellows 32 expands at that pressure, and the bellows 32 is brought into a state in which the pressure of the air in the space between the sensor element 19 and the bellows 32 becomes equal to the gas pressure. 32 transforms. As a result, the pressure of the gas to be measured is transmitted to the sensor element 19 via the pressure of the bellows 32 and the air inside the bellows 32, and the pressure of the gas to be measured is detected.

【0024】この実施例の圧力センサによれば、腐食性
ガス等の危険なガスが直接センサ素子19に触れることが
なく、センサ内でのガス漏れが生じる可能性のある箇所
も少なくすることができ、安全性の高いものになる。 実施例6 第6の実施例を図8に基づいて説明する。本実施例の特
徴的構成は前述第5実施例の構成においてベローズ32の
周縁部を、二分割された圧力導入筒29aと29cとの間に
挟みこんで固定した構成にある。図中33は、前記二分割
された圧力導入筒29a,29cの接合部である。
According to the pressure sensor of this embodiment, a dangerous gas such as a corrosive gas does not directly touch the sensor element 19, and the number of locations where gas leakage may occur in the sensor can be reduced. It will be safe. Embodiment 6 A sixth embodiment will be described with reference to FIG. The characteristic configuration of the present embodiment is such that the peripheral portion of the bellows 32 in the configuration of the above-described fifth embodiment is fixed by being sandwiched between two divided pressure introducing cylinders 29a and 29c. In the drawing, reference numeral 33 denotes a junction between the two divided pressure introducing cylinders 29a and 29c.

【0025】これによって、ベローズ32の基端周縁部32
aがより確実に圧力導入筒29に気密状態で取り付けら
れ、ベローズ32とセンサ素子19との間の空間部の気密性
がより高くなり、安全性も高いものにすることができ
る。 実施例7 第7の実施例を図9に基づいて説明する。本実施例の特
徴的構成は、ベローズ32の基端周縁部32aを、センサケ
ース18とハウジング29との接続部で挟み込んで固定した
ことにある。
As a result, the base peripheral portion 32 of the bellows 32 is
a is more securely attached to the pressure introducing cylinder 29 in an airtight state, so that the airtightness of the space between the bellows 32 and the sensor element 19 is higher, and the safety can be higher. Embodiment 7 A seventh embodiment will be described with reference to FIG. The characteristic configuration of the present embodiment is that the base end peripheral portion 32a of the bellows 32 is fixed by being sandwiched between the connection portions between the sensor case 18 and the housing 29.

【0026】これによって、ベローズ32は、さらに確実
に固定され、しかも取り付け工数も削減されるものであ
る。
As a result, the bellows 32 is more securely fixed, and the number of mounting steps is reduced.

【0027】[0027]

【発明の効果】以上のように本発明の圧力センサによる
と、被測定流体の圧力と基準圧力との差圧を測定するた
めに設けられ前記被測定流体を導入する被測定流体導入
部と、前記基準圧力となる基準流体を導入する基準流体
導入部と、前記被測定流体導入部と前記基準流体導入部
との間に設けられ前記差圧を検出する圧力検出部とを有
し、前記圧力検出部を、基板に形成された受圧面の上を
ゲル層でコーティングして構成するとともに、前記圧力
検出部の前記ゲル層と前記被測定流体導入部の前記圧力
検出部の側の一端との間の空間から前記被測定流体導入
部にかけて被測定流体のガスに対して耐ガス性の液体を
充填し、前記被測定流体導入部の他端に、前記被測定流
体導入部よりも小径で前記液体が表面張力によって零れ
出さない穴径に形成され前記液体が充填されていない所
定長さの先端区間が形成され、被測定流体のガス圧が、
先端区間の穴を介して前記被測定流体導入部の前記液体
に作用し、前記ゲル層を介して前記受圧面に作用するよ
うに構成したため、被測定流体導入部の被測定ガスと接
する側の開口部分を、被測定流体導入部よりも小径で前
記液体が表面張力によって零れ出さない穴径にするとと
もに、液体が充填されていない所定長さの先端区間とし
ているため、長期間の使用によっても被測定流体導入部
の先端区間の導入口にゴミの付着が発生せず、しかも十
分な量の液体を安定に保持して被測定ガスからゲル層を
確実に保護することができ、長期間にわたって安定した
測定性能を維持でき、長期間にわたって安定した測定性
能を維持できる信頼性の高いものである。
As described above, according to the pressure sensor of the present invention.
And the differential pressure between the pressure of the fluid to be measured and the reference pressure is measured.
A fluid to be measured that is provided for introducing the fluid to be measured
Part and a reference fluid for introducing a reference fluid having the reference pressure
Introducing section, the measured fluid introducing section and the reference fluid introducing section
And a pressure detector for detecting the differential pressure.
Then, the pressure detecting unit is moved over the pressure receiving surface formed on the substrate.
It is composed by coating with a gel layer.
The pressure of the gel layer of the detecting unit and the pressure of the measured fluid introducing unit
Introducing the fluid to be measured from a space between one end on the side of the detection unit
A gas-resistant liquid to the gas of the fluid to be measured
The measured flow is filled at the other end of the measured fluid introduction section.
The liquid spills due to surface tension with a smaller diameter than the body introduction part
A place where the liquid is not filled and is formed with a hole diameter that does not come out
A constant length tip section is formed, and the gas pressure of the fluid to be measured is
The liquid in the fluid introduction section through the hole in the tip section
And acts on the pressure-receiving surface via the gel layer.
With this configuration, it comes in contact with the gas to be measured at the fluid introduction section.
The opening on the side to be measured is smaller in diameter than the
If the hole diameter does not allow the liquid to spill due to surface tension,
In addition, the end section of a predetermined length that is not filled with liquid
The fluid to be measured
No dust adheres to the inlet at the tip of
A gel layer is formed from the gas to be measured by holding a sufficient amount of liquid stably.
Can be reliably protected and stable for a long time
Measurement performance can be maintained and stable measurement performance over a long period of time
It is highly reliable that can maintain performance.

【0028】[0028]

【0029】[0029]

【0030】[0030]

【0031】[0031]

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例1における圧力センサの構造を
示す断面図
FIG. 1 is a cross-sectional view illustrating a structure of a pressure sensor according to a first embodiment of the present invention.

【図2】本発明の実施例2における圧力センサの構造を
示す断面図
FIG. 2 is a sectional view showing the structure of a pressure sensor according to a second embodiment of the present invention.

【図3】本発明の実施例3における圧力センサの構造を
示す断面図
FIG. 3 is a cross-sectional view illustrating a structure of a pressure sensor according to a third embodiment of the present invention.

【図4】同実施例3の圧力センサのガス導入部付近の詳
細を示す断面図
FIG. 4 is a sectional view showing details of the vicinity of a gas introduction portion of the pressure sensor according to the third embodiment.

【図5】本発明の実施例4における圧力センサの構造を
示す断面図
FIG. 5 is a sectional view showing a structure of a pressure sensor according to a fourth embodiment of the present invention.

【図6】同実施例4の圧力センサのガス導入部付近の詳
細を示す断面図
FIG. 6 is a sectional view showing details of the vicinity of a gas introduction portion of the pressure sensor according to the fourth embodiment.

【図7】本発明の実施例5における圧力センサの構造を
示す断面図
FIG. 7 is a sectional view showing the structure of a pressure sensor according to a fifth embodiment of the present invention.

【図8】本発明の実施例6における圧力センサの構造を
示す断面図
FIG. 8 is a sectional view showing a structure of a pressure sensor according to a sixth embodiment of the present invention.

【図9】本発明の実施例7における圧力センサの構造を
示す断面図
FIG. 9 is a sectional view showing the structure of a pressure sensor according to a seventh embodiment of the present invention.

【図10】従来の圧力センサの構造を示す断面図FIG. 10 is a cross-sectional view showing the structure of a conventional pressure sensor.

【符号の説明】[Explanation of symbols]

1 外枠 2 ガスの導入部(被測定流体導入部) 3 センサケース 4 接着剤 5 大気の導入部(基準流体導入部) 6 シリコン基板 7 シリコン膜(圧力検出部) 8 ゲル 13 隔壁部 DESCRIPTION OF SYMBOLS 1 Outer frame 2 Gas introduction part (measurement fluid introduction part) 3 Sensor case 4 Adhesive 5 Atmosphere introduction part (reference fluid introduction part) 6 Silicon substrate 7 Silicon film (pressure detection part) 8 Gel 13 Partition part

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大橋 徳良 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (72)発明者 新井 利則 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (72)発明者 久保 幸作 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (72)発明者 宇野 尚 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (72)発明者 中溝 佳幸 富山県上新川郡大沢野町下大久保3158番 地 北陸電気工業株式会社内 (72)発明者 福久 孝治 富山県上新川郡大沢野町下大久保3158番 地 北陸電気工業株式会社内 (72)発明者 田中 清之 富山県上新川郡大沢野町下大久保3158番 地 北陸電気工業株式会社内 (72)発明者 石割 博之 富山県上新川郡大沢野町下大久保3158番 地 北陸電気工業株式会社内 (56)参考文献 特開 平2−120634(JP,A) 特開 平2−170032(JP,A) 特開 平3−264830(JP,A) 特開 平4−125438(JP,A) 実開 昭62−131454(JP,U) 実開 昭63−199044(JP,U) 実開 昭60−48136(JP,U) 実開 昭62−201035(JP,U) (58)調査した分野(Int.Cl.7,DB名) G01L 9/04 101 ──────────────────────────────────────────────────の Continuing on the front page (72) Inventor Tokuyoshi Ohashi 1006 Kadoma Kadoma, Osaka Prefecture Inside Matsushita Electric Industrial Co., Ltd. (72) Inventor Kosaku Kubo 1006 Kazuma Kadoma, Osaka Pref.Matsushita Electric Industrial Co., Ltd. (72) Inventor Nao Uno 1006 Okadoma Kadoma, Kadoma, Osaka Pref. Yoshiyuki Nakamizo 3158 Shimo-Okubo, Osawano-cho, Kamishinkawa-gun, Toyama Prefecture Inside Hokuriku Electric Industry Co., Ltd. No. 3158 Shimo-Okubo, Osawano-cho, Kamishinkawa-gun, Toyama Prefecture Inside Hokuriku Electric Industry Co., Ltd. (72) Inventor Hiroyuki Ishiwari Toyama 3158 Shimo-Okubo, Osawano-machi, Shinkawa-gun Hokuriku Electric Industry Co., Ltd. (56) References JP-A-2-120634 (JP, A) JP-A-2-170032 (JP, A) JP-A-3-264830 (JP, A) Japanese Unexamined Patent Publication No. 4-125438 (JP, A) Japanese Utility Model Showa 62-131454 (JP, U) Japanese Utility Model Showa 63-199044 (JP, U) Japanese Utility Model Showa 60-48136 (JP, U) Japanese Utility Model Showa 62 -201035 (JP, U) (58) Fields investigated (Int. Cl. 7 , DB name) G01L 9/04 101

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】被測定流体の圧力と基準圧力との差圧を測
定するために設けられ前記被測定流体を導入する被測定
流体導入部(2)と、 前記基準圧力となる基準流体を導入する基準流体導入部
(5)と、 前記被測定流体導入部(2)と前記基準流体導入部
(5)との間に設けられ前記差圧を検出する圧力検出部
(7)とを有し、前記圧力検出部(7)を、基板に形成
された受圧面の上をゲル層(8)でコーティングして構
成するとともに、 前記圧力検出部(7)の前記ゲル層(8)と前記被測定
流体導入部(2)の前記圧力検出部(7)の側の一端と
の間の空間から前記被測定流体導入部(2)にかけて被
測定流体のガスに対して耐ガス性の液体(14)を充填
し、 前記被測定流体導入部(2)の他端に、前記被測定流体
導入部(2)よりも小径で前記液体(14)が表面張力
によって零れ出さない穴径に形成され前記液体(14)
が充填されていない所定長さの先端区間(12)が形成
され、 被測定流体のガス圧が、先端区間(12)の穴を介して
前記被測定流体導入部(2)の前記液体(14)に作用
し、前記ゲル層(8 )を介して前記受圧面に作用するよ
うに構成した圧力センサ。
1. A measuring fluid introducing section (2) provided for measuring a differential pressure between a pressure of a measuring fluid and a reference pressure, for introducing the measuring fluid, and introducing a reference fluid serving as the reference pressure. Reference fluid inlet
(5) , the measured fluid introduction unit (2) and the reference fluid introduction unit
(5) a pressure detecting unit for detecting the differential pressure
(7) , wherein the pressure detecting section (7) is formed by coating a pressure receiving surface formed on a substrate with a gel layer (8) , and the gel of the pressure detecting section (7) is formed. Layer (8) and said measured
One end of the fluid introduction section (2) on the pressure detection section (7) side;
From the space between the target fluid introduction part (2)
Filled with gas-resistant liquid (14) against gas of measurement fluid
And the other end of the fluid to be measured (2) is connected to the fluid to be measured.
The liquid (14) is smaller in diameter than the inlet (2) and has a surface tension.
The liquid (14) is formed to have a hole diameter that does not spill out by the liquid (14).
A tip section (12) of a predetermined length not filled with is formed
And the gas pressure of the fluid to be measured is increased through the hole in the tip section (12).
Acts on the liquid (14) of the fluid introduction part (2) to be measured
And a pressure sensor configured to act on the pressure receiving surface via the gel layer (8 ).
【請求項2】前記液体(14)として、フッソ系オイル
を使用した請求項1記載の圧力センサ。
2. A fluorinated oil as the liquid (14).
The pressure sensor according to claim 1, wherein:
JP04243875A 1992-09-14 1992-09-14 Pressure sensor Expired - Lifetime JP3085797B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04243875A JP3085797B2 (en) 1992-09-14 1992-09-14 Pressure sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04243875A JP3085797B2 (en) 1992-09-14 1992-09-14 Pressure sensor

Publications (2)

Publication Number Publication Date
JPH0694555A JPH0694555A (en) 1994-04-05
JP3085797B2 true JP3085797B2 (en) 2000-09-11

Family

ID=17110283

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04243875A Expired - Lifetime JP3085797B2 (en) 1992-09-14 1992-09-14 Pressure sensor

Country Status (1)

Country Link
JP (1) JP3085797B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6412292B2 (en) 2000-05-09 2002-07-02 Toc Technology, Llc Computer rack heat extraction device
US6494050B2 (en) 2000-02-18 2002-12-17 Toc Technology, Llc Computer rack heat extraction device
US6557357B2 (en) 2000-02-18 2003-05-06 Toc Technology, Llc Computer rack heat extraction device
US6574970B2 (en) 2000-02-18 2003-06-10 Toc Technology, Llc Computer room air flow method and apparatus
JP2016043062A (en) * 2014-08-22 2016-04-04 有限会社スギウラクラフト Seat cushion

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6373409B2 (en) * 2014-04-25 2018-08-15 ローズマウント インコーポレイテッド Corrosion resistant pressure module for process fluid pressure transmitter
JP7255943B1 (en) * 2022-12-02 2023-04-11 コフロック株式会社 Semiconductor pressure chip sensor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6494050B2 (en) 2000-02-18 2002-12-17 Toc Technology, Llc Computer rack heat extraction device
US6557357B2 (en) 2000-02-18 2003-05-06 Toc Technology, Llc Computer rack heat extraction device
US6574970B2 (en) 2000-02-18 2003-06-10 Toc Technology, Llc Computer room air flow method and apparatus
US6722151B2 (en) 2000-02-18 2004-04-20 Toc Technology, Llc Computer rack heat extraction device
US6745579B2 (en) 2000-02-18 2004-06-08 Toc Technology, Llc Computer room air flow method and apparatus
US6412292B2 (en) 2000-05-09 2002-07-02 Toc Technology, Llc Computer rack heat extraction device
JP2016043062A (en) * 2014-08-22 2016-04-04 有限会社スギウラクラフト Seat cushion

Also Published As

Publication number Publication date
JPH0694555A (en) 1994-04-05

Similar Documents

Publication Publication Date Title
US6076409A (en) Media compatible packages for pressure sensing devices
US5522267A (en) Modular diaphragm pressure sensor with peripherally mounted electrical terminals
US6311561B1 (en) Media compatible pressure sensor
AU758052B2 (en) Pressure sensor
US7373830B2 (en) Metal/thermo plastic port design for media isolated pressure transducers
JP2007132946A (en) Pressure sensor housing and configuration
JPS6222090B2 (en)
US8770032B2 (en) Relative pressure sensor
JP3085797B2 (en) Pressure sensor
JP3325879B2 (en) Relative pressure sensor
JP3892065B2 (en) Sensor device and sensor chip fixing method
US6955089B2 (en) Pressure sensor
JP2782572B2 (en) Pressure sensor and method of manufacturing the same
JP5699843B2 (en) Pressure sensor
JP3081179B2 (en) Pressure sensor and method of manufacturing the same
JP3189516B2 (en) Gas pressure detector
GB2148008A (en) Casing for pressure transducer
US7073400B2 (en) Sensor for measuring pressure in a sealed volume
CN112539877B (en) Distributed flexible pressure sensor calibration equipment and method
JP3149396B2 (en) Manufacturing method of pressure sensor
JPH0868709A (en) Gas pressure sensor
JP3349489B2 (en) Pressure sensor and method of manufacturing the same
JP2776168B2 (en) Pressure sensor application equipment
JPH095197A (en) Semiconductor pressure sensor
JPH07306103A (en) Semiconductor pressure gage

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090707

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090707

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100707

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110707

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110707

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120707

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130707

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130707

Year of fee payment: 13