JP3085393B2 - Culture method and culture apparatus for photosynthetic organisms - Google Patents

Culture method and culture apparatus for photosynthetic organisms

Info

Publication number
JP3085393B2
JP3085393B2 JP02205026A JP20502690A JP3085393B2 JP 3085393 B2 JP3085393 B2 JP 3085393B2 JP 02205026 A JP02205026 A JP 02205026A JP 20502690 A JP20502690 A JP 20502690A JP 3085393 B2 JP3085393 B2 JP 3085393B2
Authority
JP
Japan
Prior art keywords
light
photosynthetic
culture
culture solution
culturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP02205026A
Other languages
Japanese (ja)
Other versions
JPH0491781A (en
Inventor
勝 難波
晴美 松崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP02205026A priority Critical patent/JP3085393B2/en
Publication of JPH0491781A publication Critical patent/JPH0491781A/en
Application granted granted Critical
Publication of JP3085393B2 publication Critical patent/JP3085393B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/02Form or structure of the vessel
    • C12M23/06Tubular
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M21/00Bioreactors or fermenters specially adapted for specific uses
    • C12M21/02Photobioreactors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/06Means for regulation, monitoring, measurement or control, e.g. flow regulation of illumination

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Sustainable Development (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • Molecular Biology (AREA)
  • Clinical Laboratory Science (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Cultivation Of Plants (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、光合成生物の培養方法および培養装置に係
り、より詳細には、藻類,植物細胞,カルスなどの生体
を光合成反応により培養するための培養方法および培養
装置に関する。
Description: TECHNICAL FIELD The present invention relates to a method and an apparatus for culturing photosynthetic organisms, and more particularly, for culturing living organisms such as algae, plant cells, and callus by a photosynthetic reaction. And a culture apparatus.

〔従来の技術〕[Conventional technology]

光合成生物の培養には、適当な濃度の炭酸ガスと無機
栄養塩類の供給、及び光合成に有効な波長領域の可視光
を十分な強さで照射することが必要である。従来、光合
成生物とくにクロレラやスピルリナなどの藻体を食料や
飼料として、またそれらに含まれるある成分を利用する
などの目的で、大量培養法が検討されたきた。例えば、
覆いの無い浅い溝型の培養槽に培養液を満たし炭酸ガス
を含む空気によつて耐えず通気撹拌しながら培養する方
法(開放式通気法)、浅い円形の池の中でポンプと可動
性の水平管を用いて培地の一部を絶えず循環しながら撹
拌と炭酸ガスの供給を行い培養する方法(開放式循環
法)、透明なプラスチツク・チユーブまたはプラスチツ
ク・シートで覆つた培養槽の中を絶えず灌流しながら培
養する方法(閉鎖式灌流法)、培養タンクの片面を透明
なガラス壁にし培地を絶えず撹拌しながら培養する方法
(深槽培養法)、などがある。これらの方法は、自然の
太陽光を利用するという点で有効であるが、光の利用効
率の面では必ずしも十分とは言えなかつた。特に太陽光
を直接培養槽に照射する方式であるため、光合成生物に
有害な紫外線の影響や赤外線による培養槽の温度上昇な
どの問題があつた。また、光合成生物の濃度を高くする
と光が深部にまで到達しなくなるため、培養槽の深さが
浅くならざるを得ず、大量培養を行うには広い敷地面積
を必要とした。
To culture photosynthetic organisms, it is necessary to supply carbon dioxide and inorganic nutrients at appropriate concentrations and to irradiate visible light in a wavelength range effective for photosynthesis with sufficient intensity. Conventionally, a large-scale culture method has been studied for the purpose of using algal bodies such as photosynthetic organisms, especially chlorella and spirulina as food and feed, and utilizing certain components contained therein. For example,
A method in which a culture medium is filled in a shallow groove-shaped culture tank with no cover, and cultured with aeration and agitation without enduring with air containing carbon dioxide gas (open aeration method). A method of culturing by stirring and supplying carbon dioxide gas while circulating a part of the medium continuously using a horizontal tube (open circulation method), constantly in a culture tank covered with a transparent plastic tube or plastic sheet. There is a method of culturing while perfusing (closed type perfusion method), a method of making one side of the culture tank a transparent glass wall and culturing while constantly stirring the medium (deep tank culture method). These methods are effective in utilizing natural sunlight, but are not always sufficient in terms of light use efficiency. In particular, since the method directly irradiates the culture tank with sunlight, there were problems such as the influence of ultraviolet rays harmful to photosynthetic organisms and the temperature rise of the culture tank due to infrared rays. In addition, when the concentration of photosynthetic organisms is increased, the light does not reach the deep part, so that the depth of the culture tank has to be reduced, and a large site area is required for mass culture.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

本発明は、上述の如き実情をふまえてなされたもの
で、太陽光や人工光源より発する光を利用して、光合成
生物に、その光合成反応に有効な可視光を効率的に照射
することによつて、該光合成生物を大量に培養する培養
方法および培養装置を提供することを目的とする。
The present invention has been made in view of the above-described circumstances, and efficiently irradiates photosynthetic organisms with visible light effective for the photosynthetic reaction by using sunlight or light emitted from artificial light sources. It is another object of the present invention to provide a culture method and a culture apparatus for culturing the photosynthetic organism in a large amount.

〔課題を解決するための手段〕[Means for solving the problem]

本発明者らは、光合成生物の光合成反応に有効な光
は、特定波長領域の可視光であり光合成生物が含有する
光合成色素の組成によつて異なるという知見に基づき、
目的とする光合成生物の光合成反応に有効な波長分布を
有する可視光を選択的に照射することによつて、光の利
用効率を向上でき、光合成生物を大量に培養できる培養
装置を構成できることを見出し、本発明に至つた。すな
わち、本発明は、培養液に懸濁した光合成生物を収容し
た培養容器と、上記培養液に炭酸ガスを溶解させる手段
を有する炭酸ガス供給手段と、太陽光または、人工光源
より発する光を上記培養液に照射する手段と、光合成反
応に有効な波長領域の光を発生する発光担体とを備え、
上記培養容器内の光合成生物の光合成反応に有効な波長
分布を有する可視光に変換して光照射することを特徴と
する光合成生物の培養装置及び培養方法である。光合成
反応に有効な波長領域の可視光に変換する方法として
は、無機又は有機蛍光発光体を、光透過性のプラスチツ
クやガラス担体の表面に塗布する方法が挙げられる。蛍
光体材料としては、燐酸塩蛍光体たとえば(Sr,Mg)
(PO42:Sn2+、けい酸塩蛍光体たとえばCaSiO3:Pb2+,M
2+などの他に、Y2O3:Eu3+,Y(P,V)O4:Eu3+,Cd2B2O5:Mn
2+,6MgO・As2O5:Mn4+或は有機蛍光顔料などを用いるこ
とができる。また、MgS,CaS,SrS,BaSなどのII a−VI b
族化合物は、母体結晶中に、Eu2+,Ce3+,Mn2+などの付活
剤を0.01〜0.5モル%添加することにより、光合成生物
の光合成反応に有効な波長を選択的に発光させることが
できるので好ましい。しかしながら、本発明は、これら
に限定されるものではない。
The present inventors have found that light effective for the photosynthetic reaction of photosynthetic organisms is visible light in a specific wavelength range and differs depending on the composition of the photosynthetic pigment contained in the photosynthetic organism.
By selectively irradiating visible light having a wavelength distribution effective for the photosynthetic reaction of the desired photosynthetic organism, it has been found that the efficiency of light utilization can be improved and a culture apparatus capable of culturing a large amount of photosynthetic organisms can be constructed. This has led to the present invention. That is, the present invention provides a culture vessel containing a photosynthetic organism suspended in a culture solution, a carbon dioxide supply means having a means for dissolving carbon dioxide in the culture solution, and sunlight or light emitted from an artificial light source. Means for irradiating the culture solution, comprising a luminescent carrier that generates light in a wavelength range effective for photosynthetic reaction,
An apparatus and method for culturing a photosynthetic organism, comprising converting the light into visible light having a wavelength distribution effective for the photosynthetic reaction of the photosynthetic organism in the culture vessel and irradiating the visible light. Examples of a method for converting visible light in a wavelength range effective for a photosynthetic reaction include a method of applying an inorganic or organic fluorescent luminescent material to the surface of a light-transmitting plastic or glass carrier. Phosphor materials include phosphate phosphors such as (Sr, Mg) 3
(PO 4 ) 2 : Sn 2+ , silicate phosphor such as CaSiO 3 : Pb 2+ , M
In addition to 2+ , Y 2 O 3 : Eu 3+ , Y (P, V) O 4 : Eu 3+ , Cd 2 B 2 O 5 : Mn
2+ , 6MgO.As 2 O 5 : Mn 4+ or an organic fluorescent pigment can be used. Also, IIa-VIb such as MgS, CaS, SrS, BaS, etc.
The group III compound emits a wavelength effective for the photosynthetic reaction of the photosynthetic organism by adding an activator such as Eu 2+ , Ce 3+ , Mn 2+ to the host crystal in an amount of 0.01 to 0.5 mol%. It is preferable because it can be performed. However, the present invention is not limited to these.

また、他の手段として、太陽光または人工光源より発
する光の内、目的とする光合成生物の光合成反応に有効
な波長分布を有する波長領域の可視光のみを選択的に集
光して該光合成生物に照射することによつても、光の利
用効率を向上でき、該光合成生物を大量に培養できる培
養装置を構成できる。すなわち、本発明は、培養液に懸
濁した光合成生物を収容した培養容器と、上記培養液に
炭酸ガスを溶解させる手段を有する炭酸ガス供給手段
と、太陽光または人工光源より発する光のなかから光合
成反応に有効な波長領域の光を集光する集光手段と、該
集光手段により集光された光を培養容器に導入する光導
波系と、該光導波系により供給された光を培養容器内の
光合成生物に照射する発光担体とを具備し、上記培養容
器内の光合成生物の光合成反応に有効な波長分布を有す
る光を選別して集光し、該光合成生物に照射することを
特徴とする光合成生物の培養装置及び光照射方法であ
る。目的とする光合成生物の光合成反応に有効な可視光
を選択的に集光する方法としては、太陽光または人工光
源より発する光を集光した後、回折格子,プリズム,ダ
イクロイツクミラー,ダイクロイツクフイルターなどを
用いて分光する方法が好適であるが、本発明は、これら
に限定されるものではない。
Further, as another means, of the light emitted from the sunlight or the artificial light source, only visible light in a wavelength region having a wavelength distribution effective for the photosynthetic reaction of the intended photosynthetic organism is selectively collected to produce the photosynthetic organism. By irradiating the photosynthetic organism, it is also possible to improve the light use efficiency and to constitute a culture apparatus capable of culturing the photosynthetic organism in a large amount. That is, the present invention provides a culture vessel containing a photosynthetic organism suspended in a culture solution, a carbon dioxide gas supply means having a means for dissolving carbon dioxide gas in the culture solution, and light emitted from sunlight or an artificial light source. A light condensing means for condensing light in a wavelength region effective for the photosynthetic reaction, an optical waveguide system for introducing the light condensed by the light condensing means into a culture vessel, and culturing the light supplied by the optical waveguide system. A light-emitting carrier for irradiating the photosynthetic organism in the container, wherein the light having a wavelength distribution effective for the photosynthetic reaction of the photosynthetic organism in the culture container is selected and collected, and the photosynthetic organism is irradiated. And a light irradiation method. As a method for selectively condensing visible light effective for a photosynthetic reaction of a desired photosynthetic organism, after condensing sunlight or light emitted from an artificial light source, a diffraction grating, a prism, a dichroic mirror, a dichroic filter is used. Although a method of performing spectroscopy using such as is suitable, the present invention is not limited to these.

この場合、先の波長変換手段を有する発光担体と組み
合わせて、光導波系により供給された光の特定波長領域
の一部を、より長波長の可視光に変換する波長変換手段
を有する発光担体を備え、太陽光または人工光源より発
する光を培養容器内の光合成生物の光合成反応に有効な
波長分布を有する可視光に変換して光照射することも可
能であり、好ましい方法である。
In this case, in combination with the luminescent carrier having the wavelength converting means, a part of the specific wavelength region of the light supplied by the optical waveguide system, a luminescent carrier having a wavelength converting means for converting to longer wavelength visible light. It is also preferable to convert the light emitted from sunlight or an artificial light source into visible light having a wavelength distribution effective for the photosynthetic reaction of the photosynthetic organism in the culture vessel and irradiate the visible light, which is a preferable method.

培養が進行して培養容器内の光合成生物の細胞密度が
大きくなると、光が十分に透過しなくなり、光合成反応
が光強度によつて律速されるため、一つまたはそれ以上
の発光担体から構成された発光担体群を培養容器内の光
合成生物に光が均等に照射されるように配設することが
望ましい。
As the culture proceeds and the cell density of the photosynthetic organism in the culture vessel increases, light does not sufficiently pass through, and the photosynthetic reaction is rate-limited by the light intensity, and thus is composed of one or more luminescent carriers. It is desirable to arrange the luminescent carrier group so that the photosynthetic organisms in the culture vessel are evenly irradiated with light.

光合成生物の光合成反応は、いわゆる明反応と暗反応
との二つの部分に大別される。この場合、光照射を必要
とする明反応の方が、酸素による炭酸ガスの固定化を行
う暗反応に比較して早く進行するため、光合成の反応量
を低下させることなく、適当な明期と暗期を設けること
ができる。すなわち、一つの集光手段と、二つまたはそ
れ以上の培養容器内に配設された発光担体群とを順次接
続する光切換器を有する光導入系を具備し、太陽光また
は人工光源から得た光を培養容器内の光合成生物に照射
することによつて、光を有効に活用することができる。
Photosynthetic reactions of photosynthetic organisms are roughly divided into two parts, so-called light reactions and dark reactions. In this case, the light reaction requiring light irradiation proceeds faster than the dark reaction in which carbon dioxide is immobilized by oxygen, so that the appropriate light period can be obtained without reducing the reaction amount of photosynthesis. A dark period can be provided. That is, a light introducing system having an optical switch for sequentially connecting one light-collecting means and a group of luminescent carriers provided in two or more culture vessels is provided, and is obtained from sunlight or an artificial light source. By irradiating the photosynthetic organisms in the culture vessel with the light, the light can be effectively used.

光合成生物としては、緑藻やらん藻が用いられる。緑
藻としては、例えば、クロレラ(Chlorella),クラミ
ドモナス(Chlamydomonas),セネデスムス(Scenedesm
us),ボトリオコツカス(Botryococcus),オオシステ
イス(Oacystis)、などが挙げられる。らん藻として
は、例えば、シネココツカス(Synechococcus),シネ
コシステイス(Synechocystis),スピルリナ(Spiruli
na),オシラトリア(Oscillatoria),アナベナ(Anab
aena),フオルミデイウム(Phormidium),ノストツク
(Nostoc)、などが挙げられる。特に、海洋性の緑藻や
らん藻を選択した場合には、培養に必要な大量の培地と
して海水をそのまま使用できる点で好適である。また、
好温性のらん藻を用いた場合には、増殖速度が常温性の
物に比較して早く、他のバクテリアなどの繁殖を抑制で
きる点で好適である。
Green algae and cyanobacteria are used as photosynthetic organisms. Examples of green algae include Chlorella, Chlamydomonas, and Scenedesmus.
us), Botryococcus, Oacystis, and the like. Examples of cyanobacteria include Synechococcus, Synechocystis, and Spiruli
na), Oscillatoria, Anabena
aena), Phormidium, Nostoc, and the like. In particular, when a marine green algae or a cyanobacterium is selected, it is preferable in that seawater can be used as it is as a large amount of medium required for culture. Also,
The use of a thermophilic cyanobacterium is preferred in that the growth rate is faster than that of a normal-temperature one, and the propagation of other bacteria can be suppressed.

〔作用〕[Action]

本発明によると、太陽光または人工光源より発する広
範囲の波長分布を有する光の内、目的とする光合成生物
の光合成反応に利用されていなかつた波長領域の光を、
波長変換手段を有する発光担体によつて、該光合成生物
の光合成反応に有効な波長分布を有する可視光に変換す
ることができるため、光の利用効率の向上が図られ、光
合成生物を大量に培養することが可能となる。また、適
当な発光担体を選択することにより、光合成生物にとつ
て有害な紫外光を吸収・除去できると同時に、光合成反
応に効果的な波長領域の可視光に変換して有効に利用す
ることができる。
According to the present invention, of light having a wide wavelength distribution emitted from sunlight or an artificial light source, light in a wavelength region that has not been used for a photosynthetic reaction of a desired photosynthetic organism,
The luminescent carrier having the wavelength conversion means can convert the photosynthetic organism into visible light having a wavelength distribution effective for the photosynthetic reaction of the photosynthetic organism, thereby improving the light use efficiency and cultivating the photosynthetic organism in large quantities. It is possible to do. In addition, by selecting an appropriate luminescent carrier, it is possible to absorb and remove ultraviolet light that is harmful to photosynthetic organisms, and at the same time, convert it to visible light in a wavelength region effective for photosynthetic reactions and use it effectively. it can.

本発明になる他の手段によれば、太陽光または人工光
源より発する光の内、光合成生物の光合成反応に有効な
波長領域の可視光のみを選別・集光して該光合成生物の
培養に用いることができ、それ以外の波長領域の可視光
は、色素組成の異なる他の光合成生物の培養に用いるこ
とによつて、上記と同様に全体の光を効率的に利用でき
る。
According to another aspect of the present invention, of the light emitted from sunlight or artificial light sources, only visible light in a wavelength range effective for the photosynthetic reaction of the photosynthetic organism is selected and collected and used for culturing the photosynthetic organism. By using visible light in other wavelength regions for culturing other photosynthetic organisms having different pigment compositions, the entire light can be efficiently used as described above.

〔実施例〕〔Example〕

以下、本発明を、実施例により具体的に説明するが、
本発明はこれらの実施例に制限されるものではない。
Hereinafter, the present invention will be described specifically with reference to Examples.
The present invention is not limited to these embodiments.

実施例1 第1図において、1は培養容器で、透明なプラスチツ
ク・チユーブから成り野外に設置され、2は培養容器に
収容された培養液、3は培養液に懸濁した光合成生物、
この場合は緑藻のクロレラであり、培養容器の表面に
は、蛍光発光体4、この場合、りん酸塩蛍光発光体Sr2P
2O7:Sn2+がコーテイングされている。さらに、火力発電
所の排ガスを利用した炭酸ガス供給装置5,冷却器6,培養
液の温度を測定する温度センサー7,温度センサーの指示
値により冷却器を動作して光合成に最適な温度に制御す
る温度制御系8、培養液を循環させるポンプ9によつて
構成される。
Example 1 In FIG. 1, reference numeral 1 denotes a culture vessel, which is composed of a transparent plastic tube and is installed outdoors, 2 is a culture solution contained in the culture vessel, 3 is a photosynthetic organism suspended in the culture solution,
In this case, it is Chlorella of green algae. On the surface of the culture vessel, a fluorescent luminescent material 4, in this case, a phosphate fluorescent luminescent material Sr 2 P
2 O 7 : Sn 2+ is coated. Furthermore, a carbon dioxide gas supply device 5 using the exhaust gas from a thermal power plant, a cooler 6, a temperature sensor 7 that measures the temperature of the culture solution, and a cooler operated by the indicated value of the temperature sensor to control the temperature to the optimal temperature for photosynthesis And a pump 9 for circulating the culture solution.

次にこれらの動作について説明する。太陽光のうち、
350nm以下の波長の紫外光は、培養容器の表面にコーテ
イングしたりん酸塩蛍光体により吸収されて、460nmの
波長の青色光として発光して、培養容器内の光合成生物
に照射される。この波長の光は、蛍光発光体を透過して
直接光合成生物に照射される波長350nm以上の可視光と
共に、緑藻の光合成色素によつて吸収されて光合成反応
を進行させる。これによつて、光合成生物に有害な紫外
光を除けると共に、光合成反応に有効な可視光に変換で
きるため、光の有効活用ができ、効率的に緑藻を培養で
きる。また、赤外線は培養液の温度を上昇させるため、
温度センサーにより検出し、温度制御系によつて冷却器
を動作させて、緑藻の光合成反応に最適な温度に制御さ
れる。
Next, these operations will be described. Out of sunlight
Ultraviolet light having a wavelength of 350 nm or less is absorbed by the phosphate phosphor coated on the surface of the culture vessel, emits blue light having a wavelength of 460 nm, and is irradiated to the photosynthetic organism in the culture vessel. The light of this wavelength is absorbed by the photosynthetic pigment of the green algae together with the visible light having a wavelength of 350 nm or more, which is directly transmitted to the photosynthetic organism through the fluorescent luminous body, and causes the photosynthetic reaction to proceed. As a result, ultraviolet light harmful to photosynthetic organisms can be removed, and visible light effective for photosynthetic reactions can be converted, so that light can be used effectively and green algae can be cultured efficiently. In addition, infrared rays raise the temperature of the culture solution,
The temperature is detected by a temperature sensor, and a cooler is operated by a temperature control system to control the temperature to an optimum temperature for the photosynthetic reaction of green algae.

実施例2 第3図において、1は培養容器、2は培養容器に収容
された培養液、3は培養液に懸濁した光合成生物、この
場合は好温性らん藻であり、太陽光を集光する集光器1
0、集光した光を培養容器中に導き、培養液中の光合成
生物に供給する光導波系11、この場合は光フアイバー、
光フアイバーによつて導入された光を光合成生物に均一
に照射する光散乱体12、光散乱体の表面に塗布したCaS:
Eu2+から成る蛍光発光体4、回転することにより培養液
中の光合成生物を均一に懸濁する撹拌プロペラ13、プロ
ペラを回転させるモーター14、培養溶液に炭酸ガスを溶
解させる多孔質パイプ15,炭酸ガス源16、この場合は炭
酸ガスボンベ、炭酸ガスの通気量をコントロールするバ
ルブ17,溶存炭酸ガス濃度センサー18,センサーの値によ
りバルブを動作して炭酸ガス通気量を制御する培養液中
溶存炭酸ガス濃度制御系19,培養液中の溶存酸素ガス濃
度を測定して光合成生物の光合成活性を測定する溶存酸
素ガス濃度測定系20,ヒーター21,培養液の温度を測定す
る温度センサー22,温度センサーの値によりヒータをコ
ントロールして光合成を促進する温度制御系23,光合成
生物をろ別して培養液を排出する手段24、この場合、多
孔質セラミツク、廃液タンク25、補充用の培養液を収容
する培地タンク26、から構成される。また符号27,28は
ポンプである。
Example 2 In FIG. 3, 1 is a culture vessel, 2 is a culture solution accommodated in the culture vessel, 3 is a photosynthetic organism suspended in the culture solution, in this case, a thermophilic cyanobacterium, which collects sunlight. Light collector 1
0, an optical waveguide system 11, which guides the collected light into the culture vessel and supplies the photosynthetic organisms in the culture solution, an optical fiber in this case,
A light scatterer 12 for uniformly irradiating photosynthetic organisms with light introduced by an optical fiber, CaS applied to the surface of the light scatterer:
A fluorescent luminous body 4 composed of Eu 2+, a stirring propeller 13 for uniformly suspending photosynthetic organisms in the culture by rotation, a motor 14 for rotating the propeller, a porous pipe 15 for dissolving carbon dioxide gas in the culture solution, A carbon dioxide gas source 16, a carbon dioxide gas cylinder in this case, a valve 17 for controlling the gas flow rate of the carbon dioxide gas, a dissolved carbon dioxide gas concentration sensor 18, and a valve operated by the sensor value to control the gas flow rate of the dissolved carbon dioxide in the culture medium. Gas concentration control system 19, dissolved oxygen gas concentration measurement system 20, which measures the photosynthetic activity of photosynthetic organisms by measuring the dissolved oxygen gas concentration in the culture solution, heater 21, temperature sensor 22, which measures the temperature of the culture solution, temperature sensor Temperature control system 23 which controls the heater according to the value of the temperature to promote photosynthesis, means 24 for filtering out photosynthetic organisms and discharging the culture solution, in this case, porous ceramic, waste liquid tank 25, Medium tank 26 for containing the culture medium of use, and a. Reference numerals 27 and 28 are pumps.

次にこれらの動作について説明する。撹拌プロペラは
培養液中の光合成生物の沈降を防ぎ、分散させることに
より均一に光照射を行わせる。温度制御系は、光合成生
物、この場合は好温性らん藻の成育及び光合成に適した
温度、この場合は55℃に培養液温度をコントロールす
る。培養液中溶存炭酸ガス濃度制御系は、溶存炭酸ガス
濃度センサーの指示値によりバルブを動作して、光合成
生物の光合成反応に最適な炭酸ガス濃度を制御する。溶
存酸素ガス濃度測定系は、培養液中の溶存酸素ガス濃度
により光合成生物の光合成活性を測定する。培養液交換
器は、光合成生物をろ別して培養液を廃液タンクに回収
すると共に、培地タンクから新鮮な培養液を補充する。
屋外に設置された集光器によつて、太陽光のうち、400
〜700nmの可視光のみが集光され、光フアイバーにより
培養容器中に導かれて、光散乱体によつて培養器内に放
射される。この時400〜550nmの波長の光は、光散乱体上
に塗布された蛍光発光体によつて、培養液中の好温性ら
ん藻の光合成に有効な、650nmの波長の赤色光に変換さ
れる。一方、550nm〜700nmの波長の光は、同一波長の光
のままで透過する。これによつて、光合成生物の成育に
有害な紫外光を除き、光の利用効率を向上できる。
Next, these operations will be described. The stirring propeller prevents the sedimentation of photosynthetic organisms in the culture solution and makes the light irradiation uniform by dispersing. The temperature control system controls the temperature of the culture solution to a temperature suitable for the growth and photosynthesis of the photosynthetic organism, in this case, thermophilic cyanobacteria, in this case, 55 ° C. The system for controlling the concentration of dissolved carbon dioxide in the culture solution operates a valve in accordance with the value indicated by the dissolved carbon dioxide concentration sensor to control the optimal concentration of carbon dioxide for the photosynthetic reaction of the photosynthetic organism. The dissolved oxygen gas concentration measuring system measures the photosynthetic activity of the photosynthetic organism based on the dissolved oxygen gas concentration in the culture solution. The culture medium exchanger filters out photosynthetic organisms, collects the culture medium in a waste liquid tank, and replenishes a fresh culture medium from the medium tank.
An outdoor concentrator provides 400% of the sunlight
Only visible light of ~ 700 nm is collected, guided into the culture vessel by an optical fiber, and emitted into the incubator by a light scatterer. At this time, the light having a wavelength of 400 to 550 nm is converted into red light having a wavelength of 650 nm, which is effective for photosynthesis of thermophilic cyanobacteria in the culture solution, by a fluorescent luminescent material coated on the light scatterer. You. On the other hand, light having a wavelength of 550 nm to 700 nm is transmitted as light having the same wavelength. As a result, the efficiency of light utilization can be improved except for ultraviolet light that is harmful to the growth of photosynthetic organisms.

実施例3 実施例2と同一の構成の培養容器を第4図に示すよう
に2つ配置し、光導入系に設けた光切替器29によつて集
光器と連結する。1つの集光器により集光された太陽光
は、光切替器によつて、一定の時間、この場合2分毎
に、交互に2つの培養容器に配光される。各々の培養容
器内では、実施例2と同様に、波長650nmに光強度のピ
ークを有する赤色光に変換されて、好温性らん藻に照射
される。この場合の明暗周期では、各々の培養容器内に
おける光合成の反応量は、連続的に光照射した場合とほ
ぼ同一であつた。従つて、同一の集光条件下で、約2倍
量の光合成生物を培養できた。
Example 3 Two culture vessels having the same configuration as in Example 2 are arranged as shown in FIG. 4, and are connected to a light collector by a light switch 29 provided in a light introduction system. The sunlight condensed by one concentrator is alternately distributed to two culture vessels by a light switch for a fixed time, in this case, every two minutes. In each culture container, as in Example 2, the light is converted into red light having a light intensity peak at a wavelength of 650 nm, and irradiated to a thermophilic cyanobacterium. In the light-dark cycle in this case, the reaction amount of photosynthesis in each culture vessel was almost the same as that in the case of continuous light irradiation. Therefore, about twice the amount of photosynthetic organism could be cultured under the same light-collecting conditions.

〔発明の効果〕〔The invention's effect〕

以上説明したように、本発明によると、目的とする光
合成生物の光合成反応に有効な波長分布を有する可視光
に変換して照射することができるため、光の利用効率の
向上が図られ、光合成生物を大量に培養することができ
る。
As described above, according to the present invention, visible light having a wavelength distribution effective for a photosynthetic reaction of a desired photosynthetic organism can be converted and irradiated, so that the light use efficiency can be improved and photosynthesis can be improved. Organisms can be cultured in large quantities.

【図面の簡単な説明】[Brief description of the drawings]

第1図は、本発明による光合成生物の培養装置の一実施
例を示す構成図、第2図は、第1図に示した培養容器の
断面図、第3図は、本発明の第2の実施例の詳細図、第
4図は、本発明の第3の実施例を示す構成図である。 1……培養容器、2……培養液、3……光合成生物、4
……蛍光発光体、5……炭酸ガス供給装置、6……冷却
器、7……温度センサ、8……温度制御系、9……ポン
プ、10……集光器、11……光導波系、12……光散乱体、
13……撹拌プロペラ、14……モータ、15……多孔質パイ
プ、16……炭酸ガス源、17……バルブ、18……溶存炭酸
ガス濃度センサ、19……溶存炭酸ガス濃度制御系、20…
…溶存酸素ガス濃度測定系、21……ヒータ、22……温度
センサ、23……温度制御系、24……培養液排出手段、25
……廃液タンク、26……培地タンク、27,28……ポン
プ、29……光切替器。
FIG. 1 is a block diagram showing an embodiment of a photosynthetic organism culturing apparatus according to the present invention, FIG. 2 is a cross-sectional view of the culture vessel shown in FIG. 1, and FIG. FIG. 4 is a block diagram showing a third embodiment of the present invention. 1 ... culture vessel, 2 ... culture solution, 3 ... photosynthetic organism, 4
... Fluorescent luminous body, 5... Carbon dioxide supply device, 6... Cooler, 7... Temperature sensor, 8... Temperature control system, 9. System, 12 ... light scatterer,
13 ... stirring propeller, 14 ... motor, 15 ... porous pipe, 16 ... carbon dioxide source, 17 ... valve, 18 ... dissolved carbon dioxide concentration sensor, 19 ... dissolved carbon dioxide concentration control system, 20 …
… Dissolved oxygen gas concentration measurement system, 21… heater, 22… temperature sensor, 23… temperature control system, 24… culture medium discharge means, 25
... waste liquid tank, 26 ... medium tank, 27, 28 ... pump, 29 ... optical switch.

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】光合成生物が懸濁した培養液に対して、太
陽光または人工光源より発する光を照射し、更に炭酸ガ
スを溶解させることによって光合成反応を生じさせて光
合成生物を培養する方法において、 前記光を光透過性の担体の表面に蛍光体材料を塗布した
蛍光発光体に通して光合成反応に有効な波長領域の可視
光に変換したのち前記培養液に照射するようにしたこと
を特徴とする光合成生物の培養方法。
1. A method for culturing a photosynthetic organism by irradiating a culture solution in which the photosynthetic organism is suspended with sunlight or light emitted from an artificial light source and further dissolving carbon dioxide gas to cause a photosynthetic reaction. The light is passed through a fluorescent luminous body coated with a fluorescent material on the surface of a light-transmissive carrier, converted into visible light in a wavelength region effective for a photosynthetic reaction, and then irradiated to the culture solution. Culture method of photosynthetic organism.
【請求項2】光合成生物が懸濁した培養液に対して、太
陽光または人工光源より発する光を照射し、更に炭酸ガ
スを溶解させることによって光合成反応を生じさせて光
合成生物を培養する方法において、 前記光のなかから可視光を集光し、更に光透過性の担体
の表面に蛍光体材料を塗布した蛍光発光体に通して光合
成反応に有効な波長領域の可視光に変換したのち前記培
養液に照射するようにしたことを特徴とする光合成生物
の培養方法。
2. A method for culturing a photosynthetic organism by irradiating a culture solution in which the photosynthetic organism is suspended with sunlight or light emitted from an artificial light source and further dissolving carbon dioxide gas to cause a photosynthetic reaction. From the light, the visible light is condensed, and further passed through a fluorescent luminous body coated with a fluorescent material on the surface of a light-transmissive carrier to be converted into visible light in a wavelength range effective for a photosynthetic reaction, followed by the culture. A method for culturing a photosynthetic organism, which comprises irradiating a liquid.
【請求項3】光合成生物が懸濁した培養液を収容する培
養容器と、該培養容器内の培養液に炭酸ガスを溶解させ
るための炭酸ガス供給手段および前記培養容器内の培養
液に太陽光または人工光源より発する光を照射する光照
射手段を備えた光合成生物の培養装置において、 前記太陽光または人工光源より発する光を吸収して光合
成反応に有効な波長領域の光に変換する蛍光発光体を備
え、該蛍光発光体を光透過性の担体の表面に蛍光体材料
を塗布したもので構成し、前記光照射手段によって発せ
られた光が該蛍光発光体を通して前記培養容器内の培養
液に照射されるようにしたことを特徴とする光合成生物
の培養装置。
3. A culture vessel containing a culture solution in which photosynthetic organisms are suspended, a carbon dioxide gas supply means for dissolving carbon dioxide in the culture solution in the culture vessel, and a solar light in the culture solution in the culture vessel. Alternatively, in a photosynthetic organism culturing apparatus provided with light irradiating means for irradiating light emitted from an artificial light source, a fluorescent luminous body that absorbs the sunlight or light emitted from the artificial light source and converts the light into a wavelength region effective for a photosynthetic reaction. The fluorescent luminous body is constituted by applying a fluorescent material to the surface of a light-transmitting carrier, and the light emitted by the light irradiating means is applied to the culture solution in the culture vessel through the fluorescent luminous body. An apparatus for culturing a photosynthetic organism, wherein the apparatus is adapted to be irradiated.
【請求項4】光合成生物が懸濁した培養液を収容する培
養容器と、該培養容器内の培養液に炭酸ガスを溶解させ
るための炭酸ガス供給手段および前記培養容器内の培養
液に太陽光または人工光源より発する光を照射する光照
射手段を備えた光合成生物の培養装置において、 前記光照射手段によって発せられた光のなかから可視光
を集光する集光手段と、該集光手段によって集光された
可視光を吸収して光合成反応に有効な波長領域の可視光
に変換する蛍光発光体と、該蛍光発光体を表面に有する
光散乱体とを備え、前記蛍光発光体を光透過性の担体の
表面に蛍光体材料を塗布したもので構成したことを特徴
とする光合成生物の培養装置。
4. A culture vessel containing a culture solution in which photosynthetic organisms are suspended, a carbon dioxide gas supply means for dissolving carbon dioxide gas in the culture solution in the culture vessel, and a solar light in the culture solution in the culture vessel. Or in a culture apparatus for photosynthetic organisms provided with light irradiating means for irradiating light emitted from an artificial light source, a light condensing means for condensing visible light from light emitted by the light irradiating means, A fluorescent light-emitting body that absorbs the collected visible light and converts it into visible light in a wavelength range effective for photosynthesis, and a light-scattering body having the fluorescent light-emitting body on the surface; An apparatus for culturing a photosynthetic organism, comprising a material having a surface coated with a phosphor material coated with a phosphor material.
【請求項5】請求項4において、前記蛍光発光体と前記
光散乱体を有する前記培養容器を二つまたはそれ以上備
え、前記集光手段によって集光された可視光を複数の前
記培養容器に順次に配光する光切換器を備えたことを特
徴とする光合成生物の培養装置。
5. The culture vessel according to claim 4, further comprising two or more culture vessels each having the fluorescent luminous body and the light scatterer, and transmitting the visible light collected by the light condensing means to the plurality of culture vessels. An apparatus for culturing photosynthetic organisms, comprising an optical switch for sequentially distributing light.
JP02205026A 1990-08-03 1990-08-03 Culture method and culture apparatus for photosynthetic organisms Expired - Fee Related JP3085393B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02205026A JP3085393B2 (en) 1990-08-03 1990-08-03 Culture method and culture apparatus for photosynthetic organisms

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02205026A JP3085393B2 (en) 1990-08-03 1990-08-03 Culture method and culture apparatus for photosynthetic organisms

Publications (2)

Publication Number Publication Date
JPH0491781A JPH0491781A (en) 1992-03-25
JP3085393B2 true JP3085393B2 (en) 2000-09-04

Family

ID=16500216

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02205026A Expired - Fee Related JP3085393B2 (en) 1990-08-03 1990-08-03 Culture method and culture apparatus for photosynthetic organisms

Country Status (1)

Country Link
JP (1) JP3085393B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05105391A (en) * 1991-10-16 1993-04-27 Murata Mach Ltd Overhead travelling vehicle
EP3517601A1 (en) * 2018-01-29 2019-07-31 Bioprodukte Prof. Steinberg GmbH Method and assembly for producing microalgae

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19916597A1 (en) * 1999-04-13 2000-10-19 Fraunhofer Ges Forschung Photobioreactor with improved light input through surface enlargement, wavelength shifter or light transport
WO2010086310A2 (en) * 2009-01-27 2010-08-05 Photofuel Sas Method and device for culturing algae
NZ594885A (en) * 2009-01-30 2013-03-28 Zero Discharge Pty Ltd Growing algae and cyanobacteria in an apparatus with a first light guide for concentrating light wherein the apparatus is capable as acting as a second light guide
US8551769B2 (en) 2009-01-30 2013-10-08 Zero Discharge Pty Ltd. Method and apparatus for cultivation of algae and cyanobacteria
JP2012023978A (en) * 2010-07-20 2012-02-09 Hitachi Plant Technologies Ltd Apparatus and method for culturing photosynthetic microorganism
JP2012034609A (en) * 2010-08-05 2012-02-23 Shimizu Corp Tube-type algae-culturing device
JP2013004757A (en) * 2011-06-17 2013-01-07 Toshiba Corp Transformation system and substation or switchyard with transformation system installed therein
JP2015198649A (en) * 2014-03-31 2015-11-12 住友共同電力株式会社 Culture system for algae and method for culturing algae
WO2017087790A1 (en) * 2015-11-20 2017-05-26 Corning Incorporated Illuminated container for growth of biological entities
JP7286538B2 (en) * 2017-06-07 2023-06-05 株式会社 資生堂 CELL CULTURE METHOD, CELL EVALUATION METHOD, AND CELL CULTURE DEVICE
JP7102597B1 (en) * 2021-11-04 2022-07-19 三菱化工機株式会社 Microalgae culture equipment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05105391A (en) * 1991-10-16 1993-04-27 Murata Mach Ltd Overhead travelling vehicle
EP3517601A1 (en) * 2018-01-29 2019-07-31 Bioprodukte Prof. Steinberg GmbH Method and assembly for producing microalgae

Also Published As

Publication number Publication date
JPH0491781A (en) 1992-03-25

Similar Documents

Publication Publication Date Title
Assunção et al. Enclosed “non-conventional” photobioreactors for microalga production: A review
CN102203233B (en) Algae growth system
JP3085393B2 (en) Culture method and culture apparatus for photosynthetic organisms
EP0772676B1 (en) Method of control of microorganism growth process
Suh et al. Photobioreactor engineering: design and performance
US5846816A (en) Apparatus for biomass production
JP4165715B2 (en) Multiple photobioreactor and photosynthetic microorganism culture method using the same
US20110070632A1 (en) Photo bioreactor and cultivation system for improved productivity of photoautotrophic cell cultures
US20090291485A1 (en) Apparatus and method for optimizing photosynthetic growth in a photo bioreactor
CN201245657Y (en) Photobioreactor for microalgae cultivation
WO2007129327A1 (en) A photo bio-reactor for cultivating and harvesting a bio-mass and a method thereof
CN114606103B (en) Hybrid type photobioreactor
KR101856678B1 (en) Photobioreactor
JP3283982B2 (en) Culture device for photosynthetic organisms
CN102199533A (en) Outdoor temperature control microalgae photo-bioreaction system
Tsygankov Laboratory scale photobioreactors
CN101712929B (en) Method for carrying out microalgae photobiological culture by utilizing luminous particle
RU2762294C2 (en) System and method for growing seaweed
AU736564B2 (en) Culture of micro-organisms
JP2753568B2 (en) Culture device for photosynthetic organisms
JPH10150974A (en) Apparatus for culturing photosynthetic microorganism and culturing method
Griffiths 5 Microalgal Cultivation
KR101415553B1 (en) Device for culturing micro algae
CN214654967U (en) Microalgae semi-closed type temperature control runway pool reactor for coupling biogas combustion heat supply
CN218262495U (en) Microalgae photobioreactor capable of realizing switching between natural light source and built-in light source

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees