JP3082059B2 - Steel reinforced concrete continuous basement wall with built-in columns and beams - Google Patents

Steel reinforced concrete continuous basement wall with built-in columns and beams

Info

Publication number
JP3082059B2
JP3082059B2 JP04348186A JP34818692A JP3082059B2 JP 3082059 B2 JP3082059 B2 JP 3082059B2 JP 04348186 A JP04348186 A JP 04348186A JP 34818692 A JP34818692 A JP 34818692A JP 3082059 B2 JP3082059 B2 JP 3082059B2
Authority
JP
Japan
Prior art keywords
steel
wall
built
reinforced concrete
horizontal connecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04348186A
Other languages
Japanese (ja)
Other versions
JPH06193051A (en
Inventor
雅路 青木
善雄 鈴木
正昭 加倉井
克己 岡村
宏司 松尾
泰夫 東端
崇博 毛井
邦宏 野上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Corp
Original Assignee
Takenaka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takenaka Corp filed Critical Takenaka Corp
Priority to JP04348186A priority Critical patent/JP3082059B2/en
Publication of JPH06193051A publication Critical patent/JPH06193051A/en
Application granted granted Critical
Publication of JP3082059B2 publication Critical patent/JP3082059B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Bulkheads Adapted To Foundation Construction (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、主に大規模、大深度
の地下構造物の建築に実施される鉄骨鉄筋コンクリート
造(以下、SRC造と略す。)連続地下壁に係り、更に
云えば柱、梁内蔵型のSRC連続地下壁に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a continuous underground wall of a steel reinforced concrete (hereinafter abbreviated as SRC) mainly used for construction of a large-scale and deep underground structure. , An SRC continuous underground wall with a built-in beam.

【0002】[0002]

【従来の技術】従来一般の連続地下壁は、鉄筋を補強体
とする鉄筋コンクリート造(以下、RCと略す。)であ
った。最近、仮設用としてではあるが、鋼材を補強芯材
に使用した鋼製連続地下壁及びその構築工法が開発され
ている(例えば新日本製鐵株式会社の「NS−BOX矢
板」=雑誌「基礎工」昭和62年11月号のP99〜P
103。川崎製鉄株式会社の「Kドメール」=1990
年8月印刷の同社カタログ「Kドメール川崎の高剛性壁
体」など参照)。
2. Description of the Related Art Conventionally, a general continuous underground wall has been made of a reinforced concrete structure (hereinafter abbreviated as RC) using a reinforcing bar as a reinforcing bar. Recently, a steel continuous basement wall using a steel material as a reinforcing core and a construction method therefor have been developed for temporary use (for example, "NS-BOX Yaita" of Nippon Steel Corporation = magazine "Basic" Engineering ”November 99, 1987 P99-P
103. Kawasaki Steel Corporation's "K-Mail" = 1990
(See “K-Domer Kawasaki's Highly Rigid Walls” printed in August 2008).

【0003】次に、近年の大深度地下空間利用の気運の
高まりに対応して鉄骨部材を補強体とする本設用の鉄骨
コンクリート造(以下、SCと略す。)の連続地下壁も
開発されている(例えば、特願平3−252016
号)。ところで、従来のRC連続地下壁の場合、図12
に示したように、本設の柱a及び梁bは外壁たるRC連
続地下壁cの構築後に後打ち施工するのが一般的であ
る。場合によっては柱、梁の一部を内蔵し、後打ち部分
と合わせて柱、梁を構築することもあるが、柱、梁全体
を内蔵する構成は見当らない。RC連続地下壁の場合、
後打ち施工の壁や梁を地下壁と一体化する面外コネクタ
ーは、図13A、Bに示したように、鉄板に鉄筋を溶接
した構造の面外コネクターdを鉄筋籠に取付けて用意し
ている。鉄筋籠は、仕切板eと縦横筋fとから成る。
[0003] Next, in response to the growing trend of using deep underground space in recent years, a continuous underground wall of steel frame concrete (hereinafter abbreviated as SC) for permanent construction using a steel frame member as a reinforcement has been developed. (For example, Japanese Patent Application No. 3-252016)
issue). By the way, in the case of the conventional RC continuous underground wall, FIG.
As shown in (1), it is general that the pillar a and the beam b are post-installed after the construction of the RC continuous underground wall c as the outer wall. In some cases, columns and beams are partially built in, and columns and beams may be constructed in combination with the post-cast portion. However, there is no configuration in which the entire columns and beams are built. In case of RC basement wall,
As shown in FIGS. 13A and 13B, an out-of-plane connector for integrating a post-installed wall or beam with an underground wall is prepared by attaching an out-of-plane connector d having a structure in which a reinforcing bar is welded to an iron plate to a reinforcing bar cage, as shown in FIGS. I have. The reinforcing bar basket is composed of a partition plate e and vertical and horizontal streaks f.

【0004】[0004]

【本発明が解決しようとする課題】 最近、大深度地下空間利用の気運の高まりと共に地
下階の深い建物が計画されている。例えば地下10階の
建物の建設を考えると、深さにして地下50mにも達す
る大深度連続地下壁の構築が必要となる。仮設山留め壁
として利用されるもの、又は本設の地下外壁や耐震壁あ
るいは支持壁として利用可能な連続地下壁、それも地下
50mの大深度に達する連続地下壁を従来のRC造とし
て構築する場合は、その壁厚は面外力(常時土圧及び水
圧)で決定され、およそ3.5mもの巨大なものにな
る。従って、このような連続地下壁の構築には長大な工
期と莫大なコストを要して建築費を圧迫する問題があ
る。一方、最近はウオーターフロント等の特殊地盤(埋
立軟弱地盤)での施工が増加している。あるいは都市部
では狭隘な土地の有効利用のため隣接構造物と近接した
施工も増加しているが、このようなケースでは壁厚が制
限されるほか、地盤安定液による掘削では溝壁の安定化
が難しいという問題もあって、施工管理の複雑さが増加
し、難工事が増加している。
[Problems to be Solved by the Invention] Recently, a building with a deep underground floor has been planned as the use of deep underground space has increased. For example, in consideration of the construction of a building with 10 floors underground, it is necessary to construct a large continuous underground wall that reaches a depth of 50 m below the ground. When building a continuous RC wall that can be used as a temporary retaining wall, or a continuous underground wall that can be used as a main underground outer wall, earthquake-resistant wall, or support wall, and also a deep underground wall that reaches a depth of 50 m underground The wall thickness is determined by the out-of-plane force (constant earth pressure and water pressure), and is as large as about 3.5 m. Therefore, there is a problem that construction of such a continuous underground wall requires a long construction period and enormous cost, and the construction cost is reduced. On the other hand, construction on special grounds such as water fronts (soft landfills) has recently been increasing. Or, in urban areas, construction near adjacent structures is increasing for effective use of narrow land, but in such cases, wall thickness is limited and excavation with ground stabilization liquid stabilizes trench walls. There is also the problem that construction is difficult, and the complexity of construction management is increasing, and difficult construction is increasing.

【0005】 次に、既存の仮設用鋼製連続地下壁
は、鋼矢板を使用した鋼製化により、工期の短縮、壁厚
の縮小化、施工管理の容易化に優れた利点をもつことが
理解されている。しかし、鋼矢板相互間の連結部は面内
せん断力(地震時水平力)によって自由にすべる構造で
あり、せん断力を伝達する構造になっておらず、面内力
に抵抗できない。このため既存の鋼製連続地下壁の用途
は、護岸、擁壁、土留壁のような仮設物に限られ、既往
のRC連続地下壁と同様に本設の地下外壁、耐震壁や支
持壁としての利用はできない。
[0005] Next, the existing temporary steel continuous basement wall has excellent advantages in shortening the construction period, reducing the wall thickness, and facilitating construction management by using steel sheet piles for steel. Is understood. However, the connection between the steel sheet piles slides freely by in-plane shear force (horizontal force at the time of an earthquake), does not have a structure to transmit shear force, and cannot resist in-plane force. For this reason, the use of existing steel continuous basement walls is limited to temporary structures such as seawalls, retaining walls, and retaining walls, and as with the existing RC continuous basement walls, they are used as permanent basement outer walls, earthquake-resistant walls, and support walls. Can not be used.

【0006】 従来のRC連続地下壁は、これを深度
方向の梁又は柱と考え、支点間距離を一定とした場合、
曲げ耐力を上げるためには、引張り鉄筋量を増やすか、
壁厚を大きくするかの2通りの方法が考えられる。しか
し、片側2段以上の配筋は施工上困難である。また、通
常使用する鉄筋径の大きさに限界があるため、一般にR
C連続地下壁の曲げ耐力を一定以上増大するためには、
壁厚を大きくせざるを得ない。ところが、壁厚を大きく
すると、掘削土量が増加するため、工期が長くなり、産
業廃棄物も増え、地下階の有効面積が減少するなどの欠
点がある。
A conventional RC continuous underground wall is considered as a beam or a column in the depth direction, and when the distance between fulcrums is fixed,
To increase the bending strength, increase the amount of tensile rebar or
There are two ways to increase the wall thickness. However, the arrangement of two or more bars on one side is difficult in construction. In addition, since there is a limit to the diameter of a reinforcing bar which is usually used, generally, R
In order to increase the bending strength of C continuous basement wall beyond a certain level,
The wall thickness must be increased. However, when the wall thickness is increased, the amount of excavated soil increases, so that the construction period becomes longer, industrial waste increases, and the effective area of the basement floor decreases.

【0007】 従来の図12に示したRC連続地下壁
のように、本設の柱a、梁bを後施工としたり、一部内
蔵とする構成では、後打ちコンクリート工事が必要とな
り、工期が長くなるほか、後打ち部分が有効スペースを
縮小化させる。また後打ち部分の柱aによる凹凸が例え
ば駐車場としての利用に平面的な有効活用を妨げる。ま
た、前記後打ち施工に不可欠の面外コネクターとして
は、図13A、Bに示した構造の面外コネクターdが一
般的であるが、その鉄筋(アンカー筋)は鉄板に対し4
5°方向に形成されているため、鉄筋籠の組立て途中で
面外コネクターdを取付けねばならず、鉄筋籠の製作に
手間がかかる。また、鉄筋籠の建込みやコンクリート打
設時に面外コネクターdの位置がずれたりする欠点があ
る。
[0007] As in the conventional RC continuous underground wall shown in Fig. 12, the post-construction work is required for the post-construction of the pillars a and b of the main construction or in a partly built-in construction, and the construction period is shortened. In addition to being longer, the trailing part reduces the available space. In addition, the unevenness due to the pillar a in the post-implanted portion hinders a two-dimensionally effective use for a parking lot, for example. As an out-of-plane connector indispensable for the post-installation, an out-of-plane connector d having a structure shown in FIGS. 13A and 13B is generally used.
Since it is formed in the direction of 5 °, the out-of-plane connector d must be attached in the middle of assembling the reinforced cage, and it takes time to manufacture the reinforced cage. In addition, there is a drawback that the position of the out-of-plane connector d shifts when a reinforcing bar is built or concrete is poured.

【0008】したがって、本発明の目的は、鉄骨部材と
壁用横筋を補強体として併用し、これをコンクリートと
一体化した複合化構造のSRC連続地下壁を提供するこ
とであり、更には前記鉄骨部材を利用して本設柱を内蔵
させ、また、横つなぎ鋼材を利用して本設梁を内蔵させ
た柱、梁内蔵型のSRC連続地下壁を提供することであ
る。
Accordingly, an object of the present invention is to provide an SRC continuous underground wall having a composite structure in which a steel frame member and a transverse bar for a wall are used in combination as a reinforcing body and integrated with concrete. An object of the present invention is to provide an SRC continuous basement wall in which a permanent pillar is built in using a member, and a permanent beam is built in using a horizontal connecting steel material, and a built-in beam is built in.

【0009】[0009]

【課題を解決するための手段】上記従来技術の課題を解
決するための手段として、本発明に係る柱、梁内蔵型の
SRC連続地下壁は、地下壁1の長手方向に間隔をあけ
て配置した複数の鉄骨部材2が壁内の鉛直方向に長く設
けられ、前記の各鉄骨部材2の両外側に鉛直方向に間隔
をあけて地下壁1の長手方向(水平方向)に複数の横つ
なぎ鋼材3が配置され、横つなぎ鋼材3と各鉄骨部材2
とは各々の当接部を接合されている。前記横つなぎ鋼材
3の外側に壁用縦横筋5が設置されており、前記鉄骨鉄
筋ユニットを地中に掘削された壁用溝内に挿入しコンク
リート6を打設して構築されるSRC連続地下壁におい
て、前記複数の鉄骨部材2の中から選択した内蔵本設柱
位置の鉄骨部材2’の外周にせん断補強筋7が配筋さ
れ、前記横つなぎ鋼材3は内蔵本設梁11の位置に配置
され、前記横つなぎ鋼材3同士を面外方向につなぐ面外
方向つなぎ鋼材8が配置されていることを特徴とする
(図1〜図3)。
Means for Solving the Problems As means for solving the above-mentioned problems of the prior art, the SRC continuous basement wall with built-in columns and beams according to the present invention is arranged at intervals in the longitudinal direction of the basement wall 1. A plurality of steel members 2 are provided vertically long in the wall, and a plurality of laterally connected steel members are provided on both outer sides of each of the steel members 2 in the longitudinal direction (horizontal direction) of the underground wall 1 at intervals in the vertical direction. 3 are arranged, and the horizontal connecting steel material 3 and each steel frame member 2
And the respective contact portions are joined. An SRC continuous basement constructed by inserting a steel frame unit into a groove for a wall excavated in the ground and placing concrete 6 therein, wherein a vertical and horizontal bar 5 for a wall is installed outside the horizontal connecting steel member 3. On the wall, a shear reinforcing bar 7 is arranged on the outer periphery of the steel member 2 ′ at the position of the built-in main column selected from the plurality of steel members 2, and the lateral connecting steel member 3 is located at the position of the built-in main beam 11. An out-of-plane direction connecting steel material 8 that is arranged and connects the horizontal connecting steel materials 3 to each other in an out-of-plane direction is provided (FIGS. 1 to 3).

【0010】本発明はまた、内蔵本設柱10として選択
した鉄骨部材2’における面外方向の梁12の取付け位
置にスタイロフォーム等の埋込み材14が付設されてい
ること(図5)、及び、梁成が大きい内蔵本設梁11の
該当する横つなぎ鋼材3´は、梁成の上下に分離して複
数配置されていること(図8)、及び面外コネクター2
1は鉄骨部材2の外面部に溶接で固定して設けられてい
ること(図9、図10)、もそれぞれ特徴とする。
According to the present invention, an embedding member 14 such as a styrofoam is attached to an out-of-plane mounting position of the beam 12 on the steel member 2 'selected as the built-in main pillar 10 (FIG. 5). A plurality of transverse connecting steel members 3 ′ corresponding to the built-in main beam 11 having a large beam structure are separately arranged above and below the beam structure (FIG. 8), and the out-of-plane connector 2
1 is characterized in that it is fixed to the outer surface of the steel member 2 by welding (FIGS. 9 and 10).

【0011】[0011]

【作用】SRC連続地下壁1は、面外の曲げ荷重に対し
ては主として鉄骨部材2、2’と壁用縦筋5が強く抵抗
する。また、面外のせん断荷重に対しては主として鉄骨
部材2、2’とコンクリート6が強く抵抗する。鉛直荷
重に対しては鉄骨部材2、2’とコンクリート6が強く
抵抗する。前記の複合作用を基に、SRC連続地下壁の
RC連続地下壁に対する基礎底深度と壁厚の関係を試算
したところ、基礎底深度が38mの場合、従来のRC連
続地下壁の壁厚は最終的に(つまり、後打ち壁を含める
と)3m以上になるのに対し、本発明のSRC連続地下
壁は約1mで済む。
In the SRC continuous underground wall 1, mainly the steel members 2, 2 'and the vertical wall 5 for the wall strongly resist the out-of-plane bending load. Further, the steel members 2, 2 'and the concrete 6 mainly strongly resist the out-of-plane shear load. The steel members 2, 2 'and the concrete 6 strongly resist vertical loads. Based on the above-mentioned combined action, the relationship between the foundation bottom depth and the wall thickness of the SRC continuous underground wall with respect to the RC continuous underground wall was estimated, and when the foundation bottom depth was 38 m, the wall thickness of the conventional RC continuous underground wall was final. In contrast, the length of the continuous underground wall of the SRC of the present invention is about 1 m, whereas the length of the underground wall is 3 m or more.

【0012】内蔵本設柱部分10は、鉄骨部材2’をせ
ん断補強筋7で巻いているので、SRC本設柱として機
能する。内蔵本設梁部分11は、横つなぎ鋼材3が各鉄
骨部材2、2’と接合され、更に面外方向つなぎ鋼材8
で面外方向に接合されているので、SRC梁として機能
する。
The built-in main column portion 10 functions as an SRC main column since the steel frame member 2 'is wound by the shear reinforcing bars 7. In the built-in main beam portion 11, the horizontal connecting steel member 3 is joined to each of the steel frame members 2, 2 ', and further the out-of-plane connecting steel member 8 is provided.
, So that it functions as an SRC beam.

【0013】壁全体は鉄骨部材2と横つなぎ鋼材3及び
壁用横筋4と縦筋5で補強されているのでSRC壁とし
て機能する。前記のように本設柱10が壁中に内蔵され
ているので、面外方向の梁12は、地中壁の構築後に根
切り工事の進捗に従がい、それがS造かSRC造か又は
RC造かの構造に応じて、本設柱の鉄骨部材2’にガセ
ットプレート15を取付ける等の方法で設置できる。本
設の柱、梁の後打ち施工は一切必要ない。もっとも、壁
や梁、柱などの後打ち施工の必要がある場合、面外コネ
クター21は鉄骨部材2の外面に溶接で固定して強固に
用意できる。
The whole wall functions as an SRC wall because it is reinforced by the steel member 2, the horizontal connecting steel member 3, and the horizontal bars 4 and the vertical bars 5. Since the main pillar 10 is built in the wall as described above, the out-of-plane beam 12 follows the progress of the excavation work after the construction of the underground wall, and whether it is S or SRC or Depending on the structure of the RC structure, the gusset plate 15 can be installed on the steel member 2 ′ of the main pillar, for example. There is no need for post-installation of the main pillars and beams. However, when post-installation work of a wall, a beam, a column, or the like is required, the out-of-plane connector 21 can be firmly prepared by being fixed to the outer surface of the steel member 2 by welding.

【0014】[0014]

【実施例】次に、図示した本発明の実施例を説明する。
図1〜図3に示したSRC連続地下壁1は、鉄骨及び鉄
筋の補強体をコンクリートと一体化した複合化構造とさ
れている。複数のH形鋼による鉄骨部材2及び2’が地
下壁1の長手方向に間隔をあけて鉛直方向に長く設けら
れている。これら複数のH形鋼2、2’は、そのフラン
ジの両外側に鉛直方向に間隔をあけて地下壁1の長手方
向(水平方向)に配置された複数の横つなぎ鋼材3との
当接部を接合されている。更に前記横つなぎ鋼材3の外
側に壁用横筋4及び縦筋5が設置されている(図4参
照)。鉄骨部材2と横つなぎ鋼材3及び壁用横筋4及び
縦筋5は、一施工単位分ずつ地上で1個の鉄骨鉄筋ユニ
ットに組立てられ、並行して地中に掘削された壁用溝5
内へ吊り込まれ、コンクリート6を打設してSRC連続
地下壁1が構築されている。前記鉄骨部材2、2’とし
ては、前記H形鋼のほか、I形鋼、クロスH形材、組立
て材などが使用される。また、前記横つなぎ鋼材3に
は、H形鋼,溝形鋼,山形溝その他が使用される。
BRIEF DESCRIPTION OF THE DRAWINGS FIG.
The SRC continuous underground wall 1 shown in FIGS. 1 to 3 has a composite structure in which a reinforcing member of a steel frame and a reinforcing bar is integrated with concrete. A plurality of H-shaped steel members 2 and 2 ′ are vertically long at intervals in the longitudinal direction of the underground wall 1. The plurality of H-section steels 2 and 2 ′ are in contact with a plurality of horizontal connecting steel members 3 arranged in the longitudinal direction (horizontal direction) of the underground wall 1 at both sides of the flange at intervals in the vertical direction. Has been joined. Further, a horizontal streak 4 and a vertical streak 5 for the wall are installed outside the horizontal connecting steel member 3 (see FIG. 4). The steel frame member 2, the horizontal connecting steel member 3, and the horizontal bars 4 and the vertical bars 5 for the wall are assembled into one steel frame unit on the ground for one construction unit, and the wall groove 5 excavated in the ground in parallel.
The SRC continuous underground wall 1 is suspended inside and casts concrete 6. As the steel members 2, 2 ', in addition to the H-shaped steel, an I-shaped steel, a cross H-shaped material, an assembled material, and the like are used. Further, an H-section steel, a channel steel, a chevron groove or the like is used as the horizontal connecting steel material 3.

【0015】前記複数の鉄骨部材2の中から選択した内
蔵本設柱位置の鉄骨部材2’の外周にはせん断補強筋7
が全長にわたって配筋され、もって内蔵SRC本設柱1
0として機能するように構成されている。前記の横つな
ぎ鋼材3は内蔵本設梁10の位置に配置されており、両
外側の横つなぎ鋼材3、3は面外方向つなぎ鋼材8でつ
ながれている(図4)。図1及び図3において、前記面
外方向つなぎ鋼材8を鉄骨部材2の両側の位置に設けて
いるのは、コンクリート打設のトレミー管の挿入に支障
なきようにする配慮に基づく、かくして、横つなぎ鋼材
3を配置した部分は、組立てSRC梁又は組立てSC梁
として機能する構成となっている。
A shear reinforcing bar 7 is provided on the outer periphery of the steel frame member 2 'at the position of the built-in main pillar selected from the plurality of steel frame members 2.
Are arranged along the entire length, and thus the built-in SRC main pillar 1
It is configured to function as 0. The horizontal connecting steel members 3 are arranged at the positions of the built-in main beams 10, and the outer horizontal connecting steel members 3, 3 are connected by out-of-plane connecting steel members 8 (FIG. 4). 1 and 3, the out-of-plane connecting steel members 8 are provided at the positions on both sides of the steel frame member 2 based on consideration to prevent the insertion of the tremee pipe for concrete casting. The portion where the connecting steel material 3 is arranged is configured to function as an assembled SRC beam or an assembled SC beam.

【0016】従って、本実施例のSRC連続地下壁の場
合は、図6に平面的な概念図を示したように、内蔵本設
柱部分10及び内蔵本設梁部分11(図4参照)は壁体
と完全に融合して一体化し外観上には一切表われない。
よって図12の従来例と対比して明らかなように柱部分
の凹凸は一切生じないし、また、有効スペース部分が広
い。もっとも、本発明のSRC連続地下壁1の場合も、
壁や梁、柱の後打ち施工を行なうことができる。その場
合に使用する面外コネクター21は、図9及び図10の
ように用意することができる。図示の面外コネクター2
1は鉄骨部材2の所望位置に設けられている。具体的に
は図10AのようにT形鋼の脚部21aを鉄骨部材2の
フランジの外面に溶接で固定したり、又は図10Bのよ
うに面外コネクター21の十字鉄骨21bがフランジの
外面に溶接で固定される。
Therefore, in the case of the SRC continuous underground wall of the present embodiment, as shown in a plan conceptual diagram in FIG. 6, the built-in main pillar portion 10 and the built-in main beam portion 11 (see FIG. 4). It is completely fused with the wall and integrated, and does not appear on the exterior at all.
Therefore, as is apparent from comparison with the conventional example shown in FIG. 12, no irregularities are generated in the pillar portion, and the effective space portion is wide. However, in the case of the SRC continuous underground wall 1 of the present invention,
Post-installation of walls, beams and columns can be performed. The out-of-plane connector 21 used in that case can be prepared as shown in FIGS. Out-of-plane connector 2 shown
1 is provided at a desired position of the steel frame member 2. Specifically, as shown in FIG. 10A, the T-shaped steel leg portion 21a is fixed to the outer surface of the flange of the steel member 2 by welding, or as shown in FIG. 10B, the cross steel frame 21b of the out-of-plane connector 21 is attached to the outer surface of the flange. Fixed by welding.

【0017】次に、上記実施例のSRC連続地中壁に関
し、面外方向の梁12(S梁、SC梁、SRC梁のいず
れでも可)の取付け手段としては、図5A,B,Cに示
している通り、まず内蔵本設柱位置の鉄骨部材2’にお
ける梁取付け位置にスチフナー13を取付けて強化す
る。また、梁接合用のガセットプレート取付け位置に
は、スタイロフォーム等の埋込み材14を取付けておい
てこれを埋込みコンクリート打設を行なう(図5A)。
そして、SRC連続地下壁1の構築後、内側の根切り工
事の段階で前記の埋込み材14を除去し、鉄骨面のケレ
ン処理を行なう(図5B)。その後にガセットプレート
15を現場溶接で取付け、同ガセットプレート15に面
外方向の鉄骨梁12をハイテンションボルト接合と現場
溶接によって取付けること等々が行なわれている。
Next, regarding the SRC continuous underground wall of the above embodiment, as means for attaching the beam 12 in the out-of-plane direction (any of S beam, SC beam, and SRC beam is acceptable), FIGS. As shown in the figure, first, the stiffener 13 is attached to the beam attachment position of the steel frame member 2 'at the position of the built-in main pillar to strengthen it. Also, an embedding material 14 such as a styrofoam is attached to the gusset plate attachment position for beam joining, and this is buried in concrete and cast (FIG. 5A).
Then, after the construction of the SRC continuous underground wall 1, the embedding material 14 is removed at the stage of the inside root cutting work, and the steel frame surface is subjected to the kernel treatment (FIG. 5B). Thereafter, the gusset plate 15 is attached by field welding, and the out-of-plane steel beam 12 is attached to the gusset plate 15 by high tension bolt joining and field welding.

【0018】なお、施工単位毎に先後して施工する地下
壁ユニットのジョイント部20に関しては、先行壁ユニ
ットの鉄骨部材2(仕切板)から面内コネクター17が
突設されている。同様にT形材19も突設されている。
更に、後施工の鉄骨鉄筋ユニットの挿入を案内するガイ
ド18も設けられている。前記面外コネクター17の位
置は、図11のように鉄骨部材2のフランジの外側に配
置して実施することもある。
The joint 20 of the underground wall unit which is to be constructed in advance for each construction unit has an in-plane connector 17 protruding from the steel frame member 2 (partition plate) of the preceding wall unit. Similarly, a T-shaped member 19 is also protruded.
Further, a guide 18 for guiding the insertion of the post-installed steel rebar unit is also provided. The position of the out-of-plane connector 17 may be arranged outside the flange of the steel frame member 2 as shown in FIG.

【0019】[0019]

【第2の実施例】図7と図8に示したSRC連続地下壁
は、内蔵本設梁11の梁成が大きい場合に、比較的小寸
法の横つなぎ鋼材(溝形材)3’を梁成の上下に複数配
置して構成したことを特徴とする。その余の構成は上記
第1実施例と共通する。
SECOND EMBODIMENT The SRC continuous basement wall shown in FIGS. 7 and 8 uses a relatively small-sized horizontal connecting steel member (channel member) 3 'when the built-in main beam 11 is large. It is characterized in that a plurality of beams are arranged above and below the beam. Other configurations are common to the first embodiment.

【0020】[0020]

【本発明が奏する効果】本発明の柱、梁内蔵型のSRC
連続地下壁は、次のような効果を奏する。 本設の柱10、梁11が内蔵されているため、地下
壁1の外周平面に凹凸が一切なくなり、特に地下階を駐
車場などとして利用する場合には全体の平面を有効に活
用できる。
[Effects of the present invention] SRC with built-in pillar and beam of the present invention
The continuous underground wall has the following effects. Since the pillar 10 and the beam 11 are built in, the outer peripheral surface of the underground wall 1 has no irregularities at all, and the entire plane can be effectively utilized especially when the underground floor is used as a parking lot or the like.

【0021】 本設の柱、梁が内蔵されているので、
後打ち部分が一切不要となり、後打ち部分の厚さ相当だ
け有効スペースが拡大する。 後打ち部分が不要となるので、地下工事の工期短縮
がはかれる。 SRC連続地下壁の鉄骨部材2の横つなぎ鋼材3を
本設の梁の鋼材として使用するため、経済的である。
Since the pillars and beams of the main building are built in,
The trailing part is not required at all, and the effective space is increased by the thickness of the trailing part. Since the post-installation part is unnecessary, the construction period of underground construction can be shortened. It is economical because the horizontal connecting steel member 3 of the steel member 2 of the SRC continuous basement wall is used as the steel member of the main beam.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図3のA−A線矢視の断面図である。FIG. 1 is a cross-sectional view taken along line AA of FIG.

【図2】図3のB−B線矢視の断面図である。FIG. 2 is a sectional view taken along line BB of FIG. 3;

【図3】SRC連続地下壁の補強体の構成を示した立面
図である。
FIG. 3 is an elevation view showing a configuration of a reinforcement body of the SRC continuous basement wall.

【図4】図3のC−C線矢視の断面図である。FIG. 4 is a sectional view taken along line CC of FIG. 3;

【図5】A,B,Cは面外方向の梁の取付け手順の工程
を示した断面図である。
FIGS. 5A, 5B, and 5C are cross-sectional views showing steps of an out-of-plane beam mounting procedure.

【図6】SRC連続地下壁と面外方向の梁の取合いを示
した平面的概念図である。
FIG. 6 is a conceptual plan view showing the connection between the SRC continuous basement wall and the beam in the out-of-plane direction.

【図7】第2実施例のSRC連続地下壁の補強体を示し
た立面図である。
FIG. 7 is an elevation view showing a reinforcing member of the SRC continuous basement wall of the second embodiment.

【図8】図7のD−D線矢視の断面図である。FIG. 8 is a sectional view taken along line DD in FIG. 7;

【図9】A,Bは面外コネクターの配置を示した正面図
とEーE矢視断面図である。
FIGS. 9A and 9B are a front view and an EE cross-sectional view showing the arrangement of the out-of-plane connector.

【図10】A,CとB,Dは各々面外コネクターの異な
る実施例を示した側面図と一部断面図である。
FIGS. 10A and 10B are a side view and a partial sectional view showing different embodiments of the out-of-plane connector.

【図11】SRC連続地下壁のジョイント部の平面図で
ある。
FIG. 11 is a plan view of a joint portion of the SRC continuous basement wall.

【図12】従来のSRC連続地下壁と面外方向の梁の取
合いを示した平面方向の概念図である。
FIG. 12 is a conceptual plan view showing an arrangement of a conventional SRC continuous basement wall and an out-of-plane beam.

【図13】A,Bは従来のRC連続地下壁と面外コネク
ターを示した正面図とFーF矢視断面図である。
FIGS. 13A and 13B are a front view and a cross-sectional view taken along the line FF showing a conventional RC continuous underground wall and an out-of-plane connector.

【符号の説明】[Explanation of symbols]

1 SRC連続地下壁 2 鉄骨部材 3 横つなぎ鋼材 4 壁用横筋 5 壁用縦筋 6 コンクリート 7 せん断補強筋 8 面外方向つなぎ鋼材 14 埋込み材 DESCRIPTION OF SYMBOLS 1 SRC continuous basement wall 2 Steel member 3 Horizontal connecting steel material 4 Horizontal bar for wall 5 Vertical reinforcing bar for wall 6 Concrete 7 Shear reinforcing bar 8 Outer direction connecting steel material 14 Embedded material

───────────────────────────────────────────────────── フロントページの続き (72)発明者 岡村 克己 東京都江東区南砂二丁目5番14号 株式 会社竹中工務店技術研究所内 (72)発明者 松尾 宏司 東京都江東区南砂二丁目5番14号 株式 会社竹中工務店技術研究所内 (72)発明者 東端 泰夫 東京都江東区南砂二丁目5番14号 株式 会社竹中工務店技術研究所内 (72)発明者 毛井 崇博 東京都江東区南砂二丁目5番14号 株式 会社竹中工務店技術研究所内 (72)発明者 野上 邦宏 東京都中央区銀座八丁目21番1号 株式 会社竹中工務店東京本店内 (56)参考文献 特開 平4−161612(JP,A) 特開 昭64−90314(JP,A) 実開 平1−156234(JP,U) (58)調査した分野(Int.Cl.7,DB名) E02D 5/20 ──────────────────────────────────────────────────続 き Continuing from the front page (72) Katsumi Okamura 2-5-1-14 Minamisuna, Koto-ku, Tokyo Inside the Technical Research Institute, Takenaka Corporation (72) Koji Matsuo 2-5-1-14 Minamisuna, Koto-ku, Tokyo No. Takenaka Corporation Technical Research Institute Co., Ltd. (72) Inventor Yasuo Higashibata 2-5-1 Minamisuna, Koto-ku, Tokyo Incorporated Company Takenaka Corporation Technical Research Institute (72) Inventor Takahiro Moi 2-5-Minamisuna, Koto-ku, Tokyo No. 14 Takenaka Corporation Technical Research Institute (72) Inventor Kunihiro Nogami 8-21-1, Ginza, Chuo-ku, Tokyo Inside Takenaka Corporation Tokyo Main Store (56) References JP 4-161612 (JP , A) JP-A-64-90314 (JP, A) JP-A-1-156234 (JP, U) (58) Fields investigated (Int. Cl. 7 , DB name) E02D 5/20

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】地下壁の長手方向に間隔をあけて配置した
複数の鉄骨部材が壁内の鉛直方向に長く設けられ、前記
の各鉄骨部材の両外側に鉛直方向に間隔をあけて地下壁
の長手方向に複数の横つなぎ鋼材が配置され、横つなぎ
鋼材と各鉄骨部材とは各々の当接部を接合されており、
前記横つなぎ鋼材の外側に壁用縦横筋が設置されてお
り、前記鉄骨鉄筋ユニットを地中に掘削された壁用溝内
に挿入しコンクリートを打設して構築される鉄骨鉄筋コ
ンクリート造連続地下壁において、 前記複数の鉄骨部材の中から選択した内蔵本設柱位置の
鉄骨部材の外周にせん断補強筋が配筋され、前記横つな
ぎ鋼材は内蔵本設梁の位置に配置され、前記横つなぎ鋼
材同士を面外方向につなぐ面外方向つなぎ鋼材が配置さ
れていることを特徴とする、柱、梁内蔵型の鉄骨鉄筋コ
ンクリート造連続地下壁。
A plurality of steel members arranged at intervals in the longitudinal direction of the underground wall are provided vertically long in the wall, and the underground wall is provided on both outer sides of each of the steel members at an interval in the vertical direction. A plurality of horizontal connecting steel materials are arranged in the longitudinal direction of the horizontal connecting steel material and each steel frame member are joined at their respective contact portions,
A vertical and horizontal reinforcing bar for a wall is installed outside the horizontal connecting steel material, and the steel reinforcing bar unit is inserted into a groove for a wall excavated in the ground, and concrete is cast to build a continuous underground wall of a steel reinforced concrete structure. The shear reinforcing bar is arranged around the steel member at the position of the built-in permanent column selected from the plurality of steel members, and the horizontal connecting steel material is disposed at the position of the built-in permanent beam, and the horizontal connecting steel material is provided. A steel-framed reinforced concrete continuous basement wall with built-in columns and beams, wherein an out-of-plane connecting steel material connecting the members in an out-of-plane direction is arranged.
【請求項2】内蔵本設柱として選択した鉄骨部材におけ
る面外方向の梁の取付け位置にスタイロフォーム等の埋
込み材が付設されていることを特徴とする、請求項1に
記載した柱、梁内蔵型の鉄骨鉄筋コンクリート造連続地
下壁。
2. An embedded column or beam according to claim 1, wherein an embedding material such as a styrofoam is attached to a mounting position of the beam in the out-of-plane direction in the steel frame member selected as the internal built-in column. Type steel frame reinforced concrete continuous basement wall.
【請求項3】梁成が大きい内蔵本設梁の該当する横つな
ぎ材は、梁成の上下に分離して複数配置されていること
を特徴とする、請求項1又は2に記載した柱、梁内蔵型
の鉄骨鉄筋コンクリート造連続地下壁。
3. The column according to claim 1, wherein a plurality of the horizontal connecting members of the built-in main beam having a large beam structure are separately arranged above and below the beam structure. Steel-framed reinforced concrete continuous basement wall with built-in beams.
【請求項4】面外コネクターは、鉄骨部材の外面部に溶
接で固定して設けられていることを特徴とする、請求項
1に記載した柱、梁内蔵型の鉄骨鉄筋コンクリート造連
続地下壁。
4. The continuous underground wall of a steel frame reinforced concrete structure with a built-in column and beam according to claim 1, wherein the out-of-plane connector is fixed to the outer surface of the steel member by welding.
JP04348186A 1992-12-28 1992-12-28 Steel reinforced concrete continuous basement wall with built-in columns and beams Expired - Fee Related JP3082059B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04348186A JP3082059B2 (en) 1992-12-28 1992-12-28 Steel reinforced concrete continuous basement wall with built-in columns and beams

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04348186A JP3082059B2 (en) 1992-12-28 1992-12-28 Steel reinforced concrete continuous basement wall with built-in columns and beams

Publications (2)

Publication Number Publication Date
JPH06193051A JPH06193051A (en) 1994-07-12
JP3082059B2 true JP3082059B2 (en) 2000-08-28

Family

ID=18395325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04348186A Expired - Fee Related JP3082059B2 (en) 1992-12-28 1992-12-28 Steel reinforced concrete continuous basement wall with built-in columns and beams

Country Status (1)

Country Link
JP (1) JP3082059B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5151078B2 (en) * 2006-06-26 2013-02-27 株式会社大林組 Core material, underground continuous wall, soil cement wall, underground wall pile, soil cement wall pile, cast-in-place concrete pile

Also Published As

Publication number Publication date
JPH06193051A (en) 1994-07-12

Similar Documents

Publication Publication Date Title
JP2000352296A (en) Method o constructing passage just under underground structure
JP2009030319A (en) Long-span structure building
JP3082059B2 (en) Steel reinforced concrete continuous basement wall with built-in columns and beams
JP3172819B2 (en) Steel reinforced concrete continuous basement wall
JP2012031678A (en) Foundation for structure and method for constructing the same
JPS5829922A (en) Constructing method for underground outer wall
JP2004027727A (en) Foundation pile and construction method for foundation pile
JP2006219947A (en) Ground excavation method
JPH1077644A (en) Earthquake resisting pile foundation construction method
KR101219451B1 (en) Concrete structure and construction method for the same, constructing method of underground wall as a retaining structural wall used in the same
JP5679849B2 (en) Underground structure
JP3109038B2 (en) Underground skeleton structure and construction method
JPH11152762A (en) Structure and its construction method
JP4236361B2 (en) Wall head reinforcement underground continuous wall, seismic building, and wall head reinforcement method for underground continuous wall
CN113718796B (en) Underground structure system with foundation pit supporting function and construction method
JPH09111754A (en) Soldier pile cut-of wall construction method
JP7525789B2 (en) Connection structure and method for steel pipe and precast member
JP2571426B2 (en) Construction method of retaining wall
JP2001164583A (en) Seismic isolation method for underground structure
JP2842149B2 (en) Underground structure
JP2006257744A (en) Soil cement column wall, and foundation structure
KR20230168322A (en) Pre-assembly And Construction Method To Prevent Earth Leakage During Excavation
JPH07150552A (en) Underground continuous wall and steel material
CN116084452A (en) Outer wall structure of sinking courtyard and construction method thereof
JP4236360B2 (en) Reinforced underground continuous wall, seismic building and method for reinforcing underground continuous wall

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080630

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080630

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090630

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100630

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100630

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110630

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110630

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120630

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees