JP3080430B2 - Permselective hollow fiber bundle and fluid separation device incorporating the same - Google Patents

Permselective hollow fiber bundle and fluid separation device incorporating the same

Info

Publication number
JP3080430B2
JP3080430B2 JP03123168A JP12316891A JP3080430B2 JP 3080430 B2 JP3080430 B2 JP 3080430B2 JP 03123168 A JP03123168 A JP 03123168A JP 12316891 A JP12316891 A JP 12316891A JP 3080430 B2 JP3080430 B2 JP 3080430B2
Authority
JP
Japan
Prior art keywords
hollow fiber
fiber bundle
hollow fibers
hollow
filaments
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03123168A
Other languages
Japanese (ja)
Other versions
JPH04227030A (en
Inventor
智司 花井
嘉昭 似鳥
哲夫 渡邉
條二 錦戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Medical Co Ltd
Original Assignee
Asahi Medical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Medical Co Ltd filed Critical Asahi Medical Co Ltd
Priority to JP03123168A priority Critical patent/JP3080430B2/en
Publication of JPH04227030A publication Critical patent/JPH04227030A/en
Application granted granted Critical
Publication of JP3080430B2 publication Critical patent/JP3080430B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、限外濾過法、透析法、
浸透法、逆浸透法等による液体の分離や混合気体の分離
などに利用することができる選択透過性中空繊維束及び
それを内蔵した流体分離装置に関するものである。
The present invention relates to an ultrafiltration method, a dialysis method,
The present invention relates to a selectively permeable hollow fiber bundle which can be used for separation of a liquid or a mixed gas by an osmosis method, a reverse osmosis method, and the like, and a fluid separation device incorporating the same.

【0002】[0002]

【従来の技術】中空繊維型の流体分離装置に対する小
型、高性能化の要求は非常に高い。この要求に応えるた
めに従来から装置の分離効率の低下の原因となる流体の
装置内部での偏流を防止すべく、1本又は2本の中空繊
維毎にスペーサーヤーンをラセン状に巻きつけて、中空
繊維と中空繊維との距離を実質的にほぼ一定となるよう
に規制する方法(特公昭59−18084号公報)や、
中空繊維束の中に特殊な形状をもった複数の糸状体を分
散させ、中空繊維同士の密着を防止する方法(特開平2
−60658号公報)、また、撚糸を中空繊維と平行に
且つ個々の中空繊維に結合させずに中空繊維束内に均一
に付与して流体分離装置の筒状容器内の不要空間を充填
し、局所的な流れの抵抗を選択的に増大させる方法(特
開平2−140172号公報)等が提案されている。
2. Description of the Related Art There is an extremely high demand for a small-sized and high-performance hollow fiber type fluid separation apparatus. In order to respond to this demand, a spacer yarn is spirally wound for each one or two hollow fibers in order to prevent a drift in the inside of the device, which conventionally causes a decrease in the separation efficiency of the device, A method of regulating the distance between the hollow fibers so as to be substantially constant (Japanese Patent Publication No. 59-18084),
A method of dispersing a plurality of filaments having a special shape in a hollow fiber bundle to prevent the hollow fibers from adhering to each other (Japanese Patent Laid-Open No.
No. -60658), the twisted yarn is uniformly applied to the hollow fiber bundle in parallel with the hollow fiber and not bonded to the individual hollow fiber to fill the unnecessary space in the cylindrical container of the fluid separation device, A method of selectively increasing the resistance of a local flow (JP-A-2-140172) has been proposed.

【0003】[0003]

【発明が解決しようとする課題】しかし、特公昭59−
18084号に提案されている方法では、1本又は2本
の中空繊維毎に巻きつけられたスペーサーヤーンにより
分離効率の向上は図れるものの、中空繊維束全体がかな
り嵩高になるため、分離装置筒体内への中空繊維の充填
率を60%以上の高いものにしようとすると中空繊維束
を流体分離装置の筒状容器にセットする際無理に絞って
細くする必要があり、中空繊維に損傷を与えやすく成型
収率が大幅に低下してしまう。また、スペーサーヤーン
に細いものを使用することは充填率の向上を一応可能に
するが、巻きつけ作業は困難を極め、中空繊維束の量産
が行えない。また、ラセン巻の場合は中空繊維の長さ方
向に、隣接する中空繊維との間にスペーサーヤーンの存
在しない区間が多いため、細いスペーサーヤーンでは、
スペーサーとしての役目がほとんど発揮されず分離効率
が向上しない。中空繊維の充填率を上げて選択透過性中
空繊維の有効膜面積を増加させると同時にその膜面をで
きるだけ分離に寄与させることは、流体分離装置の小
型、高性能化にとって極めて重要であるため、これらの
点が本従来法の問題であった。
However, Japanese Patent Publication No. 59-
In the method proposed in No. 18084, although the separation efficiency can be improved by the spacer yarn wound around one or two hollow fibers, the whole hollow fiber bundle becomes considerably bulky. If the filling rate of the hollow fibers into the hollow fiber bundle is to be as high as 60% or more, it is necessary to forcibly squeeze and narrow the hollow fiber bundle when setting it in the cylindrical container of the fluid separation device, and the hollow fibers are easily damaged. The molding yield is greatly reduced. Although the use of a thin spacer yarn makes it possible to improve the filling rate, the winding operation is extremely difficult, and mass production of the hollow fiber bundle cannot be performed. Further, in the case of spiral winding, in the length direction of the hollow fiber, since there are many sections where there is no spacer yarn between adjacent hollow fibers, in a thin spacer yarn,
The role as a spacer is hardly exhibited, and the separation efficiency is not improved. Increasing the filling rate of the hollow fibers to increase the effective membrane area of the permselective hollow fibers and simultaneously contributing to the separation of the membrane surface as much as possible is extremely important for miniaturization and high performance of the fluid separation device. These points were problems of the conventional method.

【0004】また、特開平2−60658号に提案され
ている方法では、中空繊維の一部を性能に寄与しない糸
状体で置き換えているために、性能発現にとって重要な
選択透過性中空繊維の有効膜面積を充分に確保すること
ができず小型、高性能化に不向きである。さらに、糸状
体には軸方向に波形状、径変化、ラセン状または表面に
凹凸が付与されており、このような形状の糸状体の製造
には手間がかかり、高価になるといった問題もある。
In the method proposed in Japanese Patent Application Laid-Open No. 2-60658, since a part of the hollow fiber is replaced with a filament which does not contribute to the performance, the effective use of the selectively permeable hollow fiber which is important for expressing the performance is effective. The film area cannot be sufficiently ensured, and it is not suitable for miniaturization and high performance. Furthermore, the thread has a corrugated shape, a change in diameter, a spiral shape, or irregularities on the surface in the axial direction, and the production of the thread having such a shape is troublesome and expensive.

【0005】また、特開平2−140172号公報に提
案されている方法は同一の筒状容器内に異なる本数の中
空繊維を充填することにより、一種類の容器で種々の膜
面積の透析器を製造することを目的としたものであり、
撚糸は使用する中空繊維の本数の差によって生じる筒状
容器内の不要空間の充填のために、中空繊維と同等の径
のものを中空繊維10〜25本あたりに1本入れること
を提案しているにすぎず、高い分離効率と有効膜面積の
増加を同時に満たそうとする流体分離装置の小型、高性
能化には不向きである。
In the method proposed in Japanese Patent Application Laid-Open No. 2-140172, a single cylindrical container is filled with different numbers of hollow fibers so that a dialyzer having various membrane areas can be formed in a single container. It is intended to be manufactured,
Twisted yarn is proposed to fill one unnecessary space per 10 to 25 hollow fibers with the same diameter as the hollow fibers in order to fill unnecessary space in the cylindrical container caused by the difference in the number of hollow fibers used. However, it is not suitable for miniaturization and high performance of a fluid separation device that simultaneously satisfies high separation efficiency and increase in effective membrane area.

【0006】これらの従来技術に鑑み、本発明者らは分
離効率に優れ、同時に選択透過性中空繊維の充填率を向
上させることにより有効膜面積を増加させた小型且つ高
性能な流体分離装置の実現を課題とした。
In view of these prior arts, the present inventors have developed a compact and high-performance fluid separation apparatus which has an excellent separation efficiency and, at the same time, increases the effective membrane area by improving the packing ratio of permselective hollow fibers. Realization was the task.

【0007】[0007]

【課題を解決するための手段】本発明者らは上記課題
を、中空繊維束を内蔵してなる流体分離装置用の選択透
過性中空繊維束の間隙に、該中空繊維1本に対し2〜
3,000本の割合で繊度が0.05〜20デニールの
フィラメントを該中空繊維の長さ方向と実質的に同一方
向に配列し、且つ少なくとも一部の該フィラメントを該
中空繊維に絡みつけることによって解決した。
Means for Solving the Problems The inventors of the present invention have set the above-mentioned object in the gap between the permselective hollow fiber bundles for a fluid separation device having a built-in hollow fiber bundle.
3,000 filaments having a denier of 0.05 to 20 denier are arranged substantially in the same direction as the length direction of the hollow fiber, and at least a part of the filament is entangled with the hollow fiber. Solved by.

【0008】[0008]

【発明の構成】本発明の選択透過性中空繊維束と流体分
離装置に内蔵される中空繊維は、選択的な透過能を有す
る中空繊維である限りにおいては素材及び形状などによ
って限定されることはないが、例えばポリアクリロニト
リル、ポリプロピレン、ポリスチレン、ポリメチルメタ
クリレートなどのポリオレフィン系重合体、ポリアミド
系重合体、ポリエステル系重合体、銅アンモニア再生セ
ルロース、酢酸セルロースなどのセルロース系重合体か
ら形成される。
DETAILED DESCRIPTION OF THE INVENTION The selectively permeable hollow fiber bundle of the present invention and the hollow fibers incorporated in the fluid separation device are not limited by materials and shapes as long as they are hollow fibers having selective permeability. However, for example, it is formed from a polyolefin-based polymer such as polyacrylonitrile, polypropylene, polystyrene, or polymethyl methacrylate; a polyamide-based polymer; a polyester-based polymer; a cellulose-based polymer such as cuprammonium-regenerated cellulose or cellulose acetate;

【0009】中空繊維の外径、内径及び長さなども特に
限定されるものではないが、フィラメントの効果がよく
現われるのは外径が約100〜1,000μmの中空繊
維を内蔵する流体分離装置、特に血液透析装置の場合で
ある。
The outer diameter, inner diameter, length, etc. of the hollow fiber are not particularly limited, but the effect of the filament is well exhibited only in a fluid separation device containing a hollow fiber having an outer diameter of about 100 to 1,000 μm. Especially in the case of hemodialysis machines.

【0010】本発明に用いられるフィラメントは、中空
繊維束内に分散させて中空繊維と中空繊維の間に極めて
微小でばらつきの少ない間隙を形成させると同時に中空
繊維束を集束し互いに結束させる役割を有するものであ
り、その繊度及び中空繊維1本に対して分散させる混入
比は、本発明の目的を達成させるために欠くべからざる
要件である。即ち、フィラメントの繊度は0.05〜2
0デニールであることが必須であり、好ましくは0.5
〜10デニール、更に好ましくは1〜5デニールであ
る。細いフィラメントは他のフィラメントや中空繊維と
の絡みが良いので中空繊維の結束性を高める点で好まし
いが、繊度が0.05デニール未満では作業性が極端に
悪くなり中空繊維束へのばらつきのない分散が困難であ
る上、中空繊維間に十分な隙間をあけることができな
い。また20デニールを越えると嵩高性が増し、選択透
過性中空繊維の有効膜面積を上げることができず小型、
高性能化にとって不適当である上に、フィラメントのコ
シが強くなりすぎて他のフィラメントや中空繊維と絡む
能力が劣ってしまう。
[0010] The filaments used in the present invention are dispersed in the hollow fiber bundle to form a gap between the hollow fibers that is extremely small and has little variation, and at the same time, converge the hollow fiber bundles and bind them together. The fineness and the mixing ratio to be dispersed with respect to one hollow fiber are indispensable requirements for achieving the object of the present invention. That is, the fineness of the filament is 0.05 to 2
0 denier is essential, and preferably 0.5 denier.
It is 10 to 10 denier, more preferably 1 to 5 denier. Thin filaments are preferred in terms of enhancing the cohesion of hollow fibers because they are good at entanglement with other filaments and hollow fibers, but workability is extremely poor when the fineness is less than 0.05 denier, and there is no variation in hollow fiber bundles. Dispersion is difficult, and a sufficient gap cannot be provided between the hollow fibers. Further, when the denier exceeds 20 denier, the bulkiness increases, and the effective membrane area of the selectively permeable hollow fiber cannot be increased, and the size is small.
In addition to being unsuitable for high performance, the stiffness of the filament is so strong that the ability to entangle with other filaments or hollow fibers is inferior.

【0011】また、フィラメントの混入比は中空繊維1
本に対し2〜3,000本が必須であり、好ましくは2
〜500本、更に好ましくは3〜100本である。混入
比が1本以下では、選択透過性中空繊維間に充分な流路
が形成できず、偏流により分離効率が低下してしまう上
にフィラメントによる中空繊維の結束効果が乏しく、本
発明の効果が十分に発揮されない。
Further, the mixing ratio of the filament is 1 hollow fiber.
Two to 3,000 are indispensable for the book, preferably 2
500500, more preferably 3-100. When the mixing ratio is 1 or less, a sufficient flow path cannot be formed between the permselective hollow fibers, the separation efficiency is reduced due to the drift, and the effect of binding the hollow fibers by the filaments is poor. Not fully demonstrated.

【0012】フィラメントの繊度と混入比は互いの兼ね
合いで適宜決定される。即ち繊度が低いほどフィラメン
トの混入比を多くとる必要があるが、それでも混入比が
3,000本を越えると中空繊維束の嵩高性が増し、選
択透過性中空繊維の有効膜面積を上げることができず小
型、高性能化にとって不適当である。以上の条件を満た
すフィラメントは、中空繊維束内に分離されると少なく
とも一部が中空繊維に絡みつき、また、多く場合フィラ
メント同志も絡みあって、それにより束全体が密に集束
される。
[0012] The fineness of the filament and the mixing ratio are appropriately determined in consideration of each other. That is, it is necessary to increase the mixing ratio of the filament as the fineness is lower, but if the mixing ratio exceeds 3,000, the bulkiness of the hollow fiber bundle increases and the effective membrane area of the selectively permeable hollow fiber may be increased. It is not suitable for miniaturization and high performance. When the filaments satisfying the above conditions are separated into the hollow fiber bundle, at least a part thereof is entangled with the hollow fiber, and in many cases, the filaments are also entangled, whereby the whole bundle is densely bundled.

【0013】フィラメントの素材は特に限定されるもの
ではなく、例えばポリエステル、ポリアミド、ポリアク
リロニトリル、ポリプロピレン、ポリ塩化ビニル、ポリ
フッ化ビニリデン、セルロース、セルロースエステル系
の繊維などが目的、用途に応じて適宜用いられる。具体
的には例えば腐食性の強い流体の分離には、ポリフッ化
ビニリデン系繊維が好ましく、また血液透析の場合には
溶出物の少ないポリエステル、セルロースエステルなど
の繊維が好ましく用いられる。
The material of the filament is not particularly limited. For example, polyester, polyamide, polyacrylonitrile, polypropylene, polyvinyl chloride, polyvinylidene fluoride, cellulose, cellulose ester fibers and the like are appropriately used according to the purpose and application. Can be Specifically, for example, for separation of highly corrosive fluids, polyvinylidene fluoride fibers are preferable, and in the case of hemodialysis, fibers such as polyester and cellulose ester with a small amount of eluate are preferably used.

【0014】本発明に用いられるフィラメントは、前述
の繊度を満たすものであれば、その形状は限定されない
が、特に中空繊維を嵩高にしないように結束するために
は、長さ方向に実質的に連続した一定の断面形状を有す
る単繊維が、中空繊維束の製造の容易性やコスト面から
も好ましい。フィラメントの混入比を小さくとる場合に
は断面形状か非円形の任意の形状のフィラメントを用い
ると、フィラメントの中空繊維への絡みが良く結束性が
向上する。
The shape of the filament used in the present invention is not limited as long as it satisfies the above-mentioned fineness. In particular, in order to bind the hollow fibers so as not to be bulky, the filaments may be substantially in the length direction. A single fiber having a continuous and constant cross-sectional shape is preferable from the viewpoint of easiness of production of the hollow fiber bundle and cost. In the case where the mixing ratio of the filaments is reduced, if the filaments have an arbitrary cross-sectional shape or a non-circular shape, the entanglement of the filaments with the hollow fibers is improved and the binding property is improved.

【0015】本発明において中空繊維とフィラメントと
は中空繊維束全長にわたって実質的に同一方向に配列さ
れているが、個々のフィラメントは必ずしも長手方向全
域にわたって中空繊維とほぼ平行に直線状に並んでいる
のではなく、一部は微小区間で波をうっていたり、数本
の中空繊維にゆるやかにまたがるように斜めに走ってい
るものもある。したがってフィラメントの一部は隣接す
るフィラメントと交絡し、また別のフィラメントの一部
は1本〜数本の中空繊維の外壁面に這うように接してお
り、各部位でのこれらフィラメントの交絡や接触が、全
体として中空繊維束の全長にわたる束割れのない密な集
束をもたらしている。
In the present invention, the hollow fibers and the filaments are arranged in substantially the same direction over the entire length of the hollow fiber bundle, but the individual filaments are necessarily arranged in a straight line substantially parallel to the hollow fibers throughout the entire longitudinal direction. Instead, some waves wave in small sections, and others run diagonally to gently straddle several hollow fibers. Therefore, a part of the filament is entangled with the adjacent filament, and another part of the filament is in contact with the outer wall surface of one or several hollow fibers so as to crawl. However, as a whole, a tight bundle without bundle cracking over the entire length of the hollow fiber bundle is provided.

【0016】第1図は本発明の選択透過性中空繊維束の
任意の横断面の模式図を示している。フィラメント2の
直径は中空繊維1のそれの約10-1〜10-2と極めて細
いので、フィラメント2の存在はそれが全く無い場合と
比べて中空繊維束全体の嵩をほとんど増加させず中空繊
維の充填率の高い束を実現させる。また、中空繊維のみ
から構成される束の場合は外周を帯などで拘束しない限
り各中空繊維はばらばらになってしまい、密に集束され
た状態の束としては存在し得ないが、本発明の中空繊維
束ではフィラメントが各中空繊維を不要な大きい隙間を
つくらずに結束する役割を果たし、中空繊維間の距離を
どの部位でも微小且つほぼ一定の状態に維持させてい
る。したがって本発明の中空繊維束は、特別な外力を与
えない限り束の状態をほぼ維持しており、非常に取り扱
い易い。すなわち、従来の中空繊維では束全体を包囲す
る「巻き紙」の使用が必要不可欠であったが、本発明の
中空繊維束では中空繊維束の、特に束の最外周部からの
個々の中空繊維の離脱や、中空繊維の潰れ、折れといっ
た損傷が束の取り扱い中にほとんど発生しないので、束
を巻く帯は必ずしも必要でない。それゆえ流体分離装置
用の円筒状容器への挿入に先立つ中空繊維束の紙巻き作
業、及び挿入後の紙の取り外し作業が省略可能であり、
成型が極めて容易に行える。
FIG. 1 shows a schematic view of an arbitrary cross section of the selectively permeable hollow fiber bundle of the present invention. Since the diameter of the filament 2 is extremely thin, about 10 -1 to 10 -2 of that of the hollow fiber 1, the presence of the filament 2 hardly increases the bulk of the whole hollow fiber bundle as compared with the case where it is not present at all, and the hollow fiber To realize a bundle with a high filling rate. Also, in the case of a bundle composed only of hollow fibers, each hollow fiber will be separated unless the outer periphery is restricted by a band or the like, and cannot exist as a bundle in a densely bundled state, but the present invention In the hollow fiber bundle, the filaments play a role in binding the hollow fibers without creating unnecessary large gaps, and the distance between the hollow fibers is maintained at a minute and almost constant state at any position. Therefore, the hollow fiber bundle of the present invention almost maintains the state of the bundle unless a special external force is applied, and is very easy to handle. That is, in the conventional hollow fiber, the use of "wrapping paper" surrounding the entire bundle was indispensable, but in the hollow fiber bundle of the present invention, the individual hollow fibers of the hollow fiber bundle, particularly from the outermost periphery of the bundle, were used. Since the damage such as detachment, crushing and breaking of the hollow fiber hardly occurs during the handling of the bundle, the band for winding the bundle is not always necessary. Therefore, the paper winding operation of the hollow fiber bundle prior to insertion into the cylindrical container for the fluid separation device, and the operation of removing the paper after insertion can be omitted,
Molding can be performed very easily.

【0017】第2図は本発明の流体分離装置の1例を示
すもので、円筒状容器3内に、フィラメント2によって
結束された中空繊維束6が内蔵されている。
FIG. 2 shows an example of a fluid separation device according to the present invention, in which a hollow fiber bundle 6 bound by filaments 2 is built in a cylindrical container 3.

【0018】フィランメント2は流体分離装置内で中空
繊維1とほぼ同じ程度の長さを有しており、中空繊維と
一緒に集束されて両端をポッティング剤7によって流体
分離装置の容器3に固着される。中空繊維のみから構成
される束の場合は、中空繊維の充填率を68%程度にま
で高めると、円筒状容器3にセットされた中空繊維束両
端の一部に中空繊維の密集部分ができる。この密集部分
の中空繊維間のわずかな隙間には粘性の高いポッティン
グ剤が浸入することができず、いわゆるポッティング部
不良の状態となる。このような中空繊維の密集部分を失
くすため、通常は円筒状容器にセットする前の中空繊維
束の端部のもみほぐしを行うが、その際中空繊維同士が
絡み合って嵩高性が増し、円筒状容器3に再びセットす
ることが出来なくなるか、無理に絞って細くしようとす
ると中空繊維に損傷を与え成型収率が低下してしまう。
しかしながら本発明の中空繊維束では中空繊維は最密充
填に近い状態で配列しているにも拘わらず各中空繊維の
間にフィラメントの存在によって微小ながらも確実に隙
間が形成されているので、中空繊維の充填率を68%程
度にまで高めても中空繊維の密集部分ができず、もみほ
ぐしを行わなくても中空繊維束両端におけるポッティン
グ剤の中空繊維間への廻り込みが良く、それゆえポッテ
ィングが確実である。
The filament 2 has approximately the same length as the hollow fiber 1 in the fluid separation device, is bundled together with the hollow fiber, and is fixed at both ends to the container 3 of the fluid separation device by the potting agent 7. Is done. In the case of a bundle composed only of hollow fibers, when the filling rate of the hollow fibers is increased to about 68%, dense portions of hollow fibers are formed at both ends of the hollow fiber bundle set in the cylindrical container 3. A highly viscous potting agent cannot penetrate into the small gaps between the hollow fibers in the dense portion, resulting in a so-called poor potting portion. In order to lose such a dense portion of hollow fibers, usually, the ends of the hollow fiber bundles are unraveled before being set in a cylindrical container. The hollow fiber cannot be set in the container 3 again, or if it is forcibly squeezed and thinned, the hollow fiber will be damaged and the molding yield will be reduced.
However, in the hollow fiber bundle of the present invention, despite the fact that the hollow fibers are arranged in a state close to the closest packing, the gaps are surely formed even though they are minute due to the presence of the filaments between the hollow fibers. Even if the filling rate of the fiber is increased to about 68%, a dense portion of the hollow fiber cannot be formed, and the potting agent at both ends of the hollow fiber bundle can be well spilled into the space between the hollow fibers without performing the fibrillation. Is certain.

【0019】第1の流体は入口4から容器内に入り出口
5から流出する。第2の流体は入口9から入り、出口1
0から流出する。その間中空繊維束の外側を流れる第1
の流体は偏流することなく装置内を広く流れるので、中
空繊維内を流れる第2の流体との間に、高い分離効率を
示す。
The first fluid enters the container through the inlet 4 and flows out through the outlet 5. The second fluid enters at inlet 9 and exits 1
Flows out of zero. In the meantime, the first flowing outside the hollow fiber bundle
Since the fluid flows widely in the apparatus without drifting, the fluid exhibits high separation efficiency with the second fluid flowing in the hollow fiber.

【0020】なお、若干量のフィラメントが流体分離装
置内で切れていても本発明の効果に影響はない。
The effect of the present invention is not affected even if a small amount of filament is cut off in the fluid separation device.

【0021】本発明の選択透過性中空繊維とフィラメン
トからなる選択透過性中空繊維束の製造法に限定はな
く、所定本数のフィラメントを1本1本の状態で中空繊
維とひき揃え、それを束ねて中空繊維束とする方法や、
1本または数本の中空繊維と数十本束ねたフィラメント
とをひき揃え、それを束ねて中空繊維束とする方法があ
る。この場合は、1本1本のフィラメントを中空繊維の
まわりに分散させ、その一部を中空繊維に絡みつかせる
ために、ひき揃え中に注水を行うかまたはエアーを送る
方法、または長い束の状態で一端を固定し、他端をフリ
ーな状態で流水中に浸漬する方法や流水下で一端を固定
した短い束を振動させる方法などが採用される。
The method for producing a permselective hollow fiber bundle comprising a permselective hollow fiber and a filament according to the present invention is not limited, and a predetermined number of filaments are aligned one by one with the hollow fiber and bundled. To make a hollow fiber bundle,
There is a method in which one or several hollow fibers are bundled with several tens of bundled filaments, and the bundles are bundled to form a hollow fiber bundle. In this case, in order to disperse the filaments one by one around the hollow fiber and to entangle the hollow fiber with a part of the filament, water is injected or air is supplied during the alignment, or a long bundle is used. A method in which one end is fixed in this state and the other end is free and dipped in running water, or a method in which a short bundle having one end fixed in running water is vibrated is adopted.

【0022】[0022]

【実施例】次に実施例により本発明をより具体的に説明
する。なお、以下の実施例においては流体分離装置の1
例として血液透析装置を作製し、その分離効率を尿素の
透析効率で評価した。
Next, the present invention will be described more specifically with reference to examples. In the following embodiment, the fluid separation device 1
As an example, a hemodialysis device was prepared, and its separation efficiency was evaluated based on the dialysis efficiency of urea.

【0023】(実施例1)内径250μm、外径320
μmのポリアクリロニトリル系中空繊維2本に対して、
2.1デニールの単糸が24本集まったポリエステルマ
ルチフィラメントをひき揃え、注水を行いながら巻取り
集束した。さらにこれを長い束の状態で一端を固定し、
他端をフリーな状態にして流水中で1本1本のフィラメ
ントが中空繊維の長さ方向と実質的に同一方向に配列さ
れ、かつフィラメントの一部が他のフィラメント及び中
空繊維に絡みつき中空繊維が互いにフィラメントにより
結束された状態の選択透過性中空繊維束を作成した。そ
の際の中空繊維本数は6,900本で、フィラメントの
混入比は12であった。
(Example 1) Inner diameter 250 μm, outer diameter 320
For 2 μm polyacrylonitrile hollow fibers,
Twenty-one polyester multifilaments, each consisting of 24 single-denier single yarns, were gathered and wound and bundled while being injected with water. Furthermore, this is fixed in one end in a long bundle,
The filaments are arranged one by one in running water with the other end free, substantially in the same direction as the length direction of the hollow fibers, and some of the filaments are entangled with other filaments and hollow fibers. Were bound to each other by filaments to form a permselective hollow fiber bundle. At that time, the number of hollow fibers was 6,900, and the mixing ratio of the filaments was 12.

【0024】(実施例2)実施例1で作成した選択透過
性中空繊維束を内径31.6mm、長さ210mmの容
器に収納して成型し、組立てて透析装置を製造した。そ
の際の充填率は68.5%、有効膜面積は1.0m2
あった。
Example 2 The permselective hollow fiber bundle prepared in Example 1 was housed in a container having an inner diameter of 31.6 mm and a length of 210 mm, molded and assembled to manufacture a dialysis apparatus. At that time, the filling factor was 68.5%, and the effective film area was 1.0 m 2 .

【0025】上記仕様の透析装置を100本製造したと
きの成型、組立て収率は98%であった。また、透析実
験を、尿素1g/リットルの濃度の溶液を中空繊維の内
側に200ml/分で流し、中空繊維の外側に水を50
0ml/分で流すことにより行い、尿素の入口及び出口
濃度を測定することによりクリアランスを実測したとこ
ろ、191ml/分であった。さらに、用いた中空繊維
の尿素の透過係数は15.2×10-4cm/秒で、理論
クリアランスを計算すると192ml/分であった。以
上より透析効率は99%であった。
The molding and assembly yield when 98 dialysis machines of the above specifications were manufactured was 98%. In the dialysis experiment, a solution having a concentration of urea of 1 g / liter was flowed at 200 ml / min inside the hollow fiber, and 50 ml of water was flown outside the hollow fiber.
It was carried out by flowing at 0 ml / min, and the clearance was actually measured by measuring the inlet and outlet concentrations of urea, which was 191 ml / min. Further, the urea permeability coefficient of the used hollow fiber was 15.2 × 10 −4 cm / sec, and the calculated theoretical clearance was 192 ml / min. From the above, the dialysis efficiency was 99%.

【0026】(実施例3)内径250μm、外径320
μmのポリアクリロニトリル系中空繊維2本に対して、
0.1デニールの単糸が1,120本集まったポリエス
テルマルチフィラメントをひき揃え、注水を行いながら
巻取り集束した。次にこれを長い束の状態で一端を固定
し、他端をフリーな状態にして流水中に流し、さらに長
さ310mmの束の状態で流水下に垂直に立て置き、固
定した束上端を左右に振り動かした。さらに上下を逆に
して同様な操作を繰り返すことによりマルチフィラメン
トを1本1本のフィラメントに分散させた。このように
して1本1本のフィラメントが中空繊維の長さ方向と実
質的に同一方向に配列され、且つフィラメントの一部が
他のフィラメント及び中空繊維に絡みつき中空繊維が互
いにフィラメントにより結束された状態の選択透過性中
空繊維束を作成した。その際の中空繊維本数は8,30
0本で、フィラメントの混入比は560であった。
(Example 3) Inner diameter 250 μm, outer diameter 320
For 2 μm polyacrylonitrile hollow fibers,
Polyester multifilaments in which 1,120 single-denier single yarns were collected were gathered, wound up and bundled while being injected with water. Next, this is fixed in a long bundle at one end, and the other end is free, and is poured under running water. The bundle is 310 mm in length and placed vertically under running water. Swung. Further, the same operation was repeated upside down to disperse the multifilaments one by one. In this way, each filament was arranged in substantially the same direction as the length direction of the hollow fiber, and a part of the filament was entangled with another filament and the hollow fiber, and the hollow fibers were bound together by the filament. A permselective hollow fiber bundle in a state was prepared. The number of hollow fibers at that time was 8,30.
With 0 filaments, the mixing ratio of the filament was 560.

【0027】(実施例4〜12)実施例1で使用したも
のと同じポリアクリロニトリル系中空繊維に対して表1
に示したような素材、繊度、混入比の条件で、実施例1
で述べた方法で選択透過性中空繊維束を作成し、内径3
4.7mm、長さ251mmの容器に収納して成型し組
立てて透析装置を製造した。その際の中空繊維本数は
8,300本、充填率は68%、有効膜面積は1.5m
2 であった。得られた透析装置を用いて、実施例2と同
様な透析実験を行って求めたクリアランス及び透析効率
の結果を表1に示す。
(Examples 4 to 12) The same polyacrylonitrile-based hollow fibers as used in Example 1 were used in Table 1.
Example 1 under the conditions of the material, fineness and mixing ratio as shown in
A permselective hollow fiber bundle is prepared by the method described in
It was housed in a container having a size of 4.7 mm and a length of 251 mm, molded and assembled to produce a dialysis device. At that time, the number of hollow fibers was 8,300, the filling rate was 68%, and the effective membrane area was 1.5 m.
Was 2 . Table 1 shows the results of the clearance and dialysis efficiency obtained by performing a dialysis experiment in the same manner as in Example 2 using the obtained dialysis device.

【0028】[0028]

【表1】 [Table 1]

【0029】(比較例1)実施例1で使用したものと同
じポリアクリロニトリル系中空繊維のみからなる中空繊
維束を作製した。さらに、中空繊維本数、充填率、容器
及び有効膜面積は実施例2と同一条件にて成型し、組立
てた。その結果、10本製造したときの成型、組立て収
率は0%で、全てが中空繊維束両端の隔壁を鋳造するポ
ッティングの際の硬化性液剤(ポッティング剤)が浸入
せずに起こった小孔による隔壁の漏洩による不良品であ
った。
Comparative Example 1 A hollow fiber bundle consisting of only the same polyacrylonitrile-based hollow fibers as used in Example 1 was produced. Further, the number of hollow fibers, the filling rate, the container and the effective membrane area were molded and assembled under the same conditions as in Example 2. As a result, the molding and assembling yield was 0% when 10 pieces were manufactured, and all the pores were formed without the penetration of the curable liquid agent (potting agent) during potting for casting the partition walls at both ends of the hollow fiber bundle. Was defective due to leakage of the partition walls.

【0030】(比較例2)実施例1で使用したものと同
じポリアクリロニトリル系中空繊維9,400本のみか
らなる中空繊維束を内径40mm、長さ240mmの容
器に収納して成型し組立てて透析装置を製造した。その
際の充填率は60%、有効膜面積は1.6m2 であっ
た。得られた透析装置で、実施例1で述べた透析実験を
行って求めたクリアランス及び透析効率の結果を表1に
示す。
Comparative Example 2 A hollow fiber bundle consisting of only 9,400 polyacrylonitrile hollow fibers same as that used in Example 1 was housed in a container having an inner diameter of 40 mm and a length of 240 mm, molded, assembled and dialyzed. The device was manufactured. At that time, the filling factor was 60%, and the effective film area was 1.6 m 2 . Table 1 shows the results of the clearance and the dialysis efficiency obtained by performing the dialysis experiment described in Example 1 with the obtained dialysis device.

【0031】(比較例3)実施例1で使用したものと同
じポリアクリロニトリル系中空繊維に、特公昭59−1
8084号公報の実施例1と同様に75デニールのポリ
エステル加工糸を中空繊維10mmに対し1回の巻き数
でSおよびZの2層にラセン状に巻きつけて集束した中
空繊維束を作製した。ただし、中空繊維本数、充填率、
容器及び有効膜面積は本実施例2と同一条件にて成型
し、組立てた。その結果、10本製造したときの成型、
組立て収率は0%で、全てが中空繊維束の嵩高性のため
に容器に挿入する際に受けた中空繊維の損傷が原因する
不良品であった。
Comparative Example 3 The same polyacrylonitrile-based hollow fiber as used in Example 1 was added to JP-B-59-1.
In the same manner as in Example 1 of JP-A No. 8084, a 75 denier polyester processed yarn was wound spirally around two layers of S and Z with a single winding number per 10 mm of hollow fiber to produce a hollow fiber bundle. However, the number of hollow fibers, filling rate,
The container and the effective membrane area were molded and assembled under the same conditions as in Example 2. As a result, molding when 10 were manufactured,
The assembling yield was 0%, and all were defective products caused by damage to the hollow fibers when inserted into the container due to the bulkiness of the hollow fiber bundle.

【0032】(比較例4)比較例3と同じ要領で中空繊
維に75デニールのポリエステル加工糸を巻きつけた中
空繊維束を作製し、有効膜面積を実施例4〜12の1.
5m2 と同一となるように、内径41.3mm、長さ2
66mmの容器に中空繊維本数7,800本、充填率4
5%で収納して成型し、組立てて透析装置を製造した。
得られた透析装置で、実施例1で述べた透析実験を行っ
て求めたクリアランス及び透析効率の結果を表1に示
す。
(Comparative Example 4) A hollow fiber bundle in which 75 denier polyester processing yarn was wound around a hollow fiber in the same manner as in Comparative Example 3 was prepared.
As the same as the 5 m 2, an inner diameter of 41.3 mm, length 2
7,800 hollow fibers in a 66 mm container, filling rate 4
It was stored at 5%, molded, and assembled to produce a dialysis device.
Table 1 shows the results of the clearance and the dialysis efficiency obtained by performing the dialysis experiment described in Example 1 with the obtained dialysis device.

【0033】(実施例13)実施例1で使用したのと同
じポリアクリロニトリル系中空繊維1本に対して、2.
1デニールの単糸が96本集まったポリエステルマルチ
フィラメントをひき揃え、実施例1で述べたと同じ方法
で選択透過性中空繊維束を作成し、内径36.9mm、
長さ276mmの容器に収納して成型し組立てて透析装
置を製造した。その際の混入比は96、中空繊維本数は
6,200本、充填率は45%、有効膜面積は1.3m
2 であった。得られた透析装置で、実施例2と同様に透
析実験を行って求めたクリアランス及び透析効率の結果
を表1に示す。
Example 13 The same polyacrylonitrile-based hollow fiber as used in Example 1 was used.
Polyester multifilaments each consisting of 96 1-denier single yarns were aligned to form a permselective hollow fiber bundle in the same manner as described in Example 1, and the inner diameter was 36.9 mm.
It was housed in a container having a length of 276 mm, molded and assembled to produce a dialysis device. At that time, the mixing ratio was 96, the number of hollow fibers was 6,200, the filling rate was 45%, and the effective membrane area was 1.3 m.
Was 2 . Table 1 shows the results of the clearance and the dialysis efficiency obtained by conducting a dialysis experiment in the same manner as in Example 2 using the obtained dialysis device.

【0034】(比較例5)実施例1で使用したものと同
じポリアクリロニトリル系中空繊維2糸条一対として1
5デニールのポリエステル加工糸(単糸デニール2.5
dのモノフィラメント6本よりなるマルチフィラメント
の加工糸)を、特公昭59−18084号公報の実施例
3と同様に0.5回/10mmの巻き数で一層に巻きつ
けた集束した中空繊維束を作製した。ただし、中空繊維
本数、充填率、容器及び有効膜面積は本実施例4〜12
と同一条件にて成型し、組立てて透析装置を製造した。
得られた透析装置で、実施例2で述べた透析実験を行っ
て求めたクリアランス及び透析効率の結果を表1に示
す。
Comparative Example 5 The same polyacrylonitrile-based hollow fibers as those used in Example 1
5 denier polyester processing yarn (single yarn denier 2.5
A multifilament processed yarn comprising 6 monofilaments (d) is wound in a single layer with a winding number of 0.5 times / 10 mm in the same manner as in Example 3 of JP-B-59-18084. Produced. However, the number of hollow fibers, the filling rate, the container and the effective membrane area are shown in Examples 4 to 12 in Examples.
The dialysis machine was manufactured by assembling under the same conditions as described above.
Table 1 shows the results of the clearance and dialysis efficiency obtained by performing the dialysis experiment described in Example 2 with the obtained dialysis device.

【0035】(実施例14)実施例1で使用したのと同
じポリアクリロニトリル系中空繊維4本に対して、15
デニールの単糸が12本集まったポリエステルマルチフ
ィラメントをひき揃え、実施例1で述べたと同じ方法で
選択透過性中空繊維束を作成し、内径34.7mm、長
さ251mmの容器に収納して成型し組立てて分離装置
を製造した。その際の混入比は3、中空繊維本数は7,
300本、充填率は60%、有効膜面積は1.3m2
あった。得られた透析装置で実施例2と同様に透析実験
を行って求めたクリアランス及び透析効率の結果を表1
に示す。
Example 14 The same polyacrylonitrile-based hollow fibers as used in Example 1
Polyester multifilaments composed of 12 denier single yarns are aligned, and a permselective hollow fiber bundle is prepared in the same manner as described in Example 1, and housed in a container having an inner diameter of 34.7 mm and a length of 251 mm to be molded. Then, an assembly and separation device was manufactured. At that time, the mixing ratio was 3, the number of hollow fibers was 7,
300 pieces, the filling rate was 60%, and the effective film area was 1.3 m 2 . Table 1 shows the results of the clearance and the dialysis efficiency obtained by performing a dialysis experiment using the obtained dialysis device in the same manner as in Example 2.
Shown in

【0036】(比較例6)中空繊維24本に対して、1
5デニールの単糸が12本集まったポリエステルマルチ
フィラメントをひき揃え、混入比が0.5となるように
した以外は実施例14と同一の条件で透析装置を製造し
た。得られた透析装置で実施例2と同様の透析実験を行
った。得られたクリアランス及び透析効率の結果を表1
に示す。
Comparative Example 6 For 24 hollow fibers, 1
A dialysis apparatus was manufactured under the same conditions as in Example 14 except that polyester multifilaments each consisting of 12 single yarns of 5 denier were gathered and the mixing ratio was 0.5. The same dialysis experiment as in Example 2 was performed using the obtained dialysis device. Table 1 shows the results of the obtained clearance and dialysis efficiency.
Shown in

【0037】(比較例7)実施例1で使用したのと同じ
ポリアクリロニトリル系中空繊維を用いて特開平2−1
40172号公報の実施例と同様の中空繊維束を作成し
た。すなわち、中空繊維25本に対して、15デニール
の単糸が36本集まったポリエステル撚糸1本をひき揃
えて作成した。この中空繊維束を内径40mm、長さ2
40mmの容器に収納して成型し組立てて透析装置を製
造した。その際の中空繊維1本に対する撚糸の混入比は
0.04、中空糸本数は8,800本、充填率は56
%、有効膜面積は1.5m2 であった。得られた透析装
置の性能を表1に示す。
Comparative Example 7 Using the same polyacrylonitrile-based hollow fiber as used in Example 1,
A hollow fiber bundle similar to that of the example of Japanese Patent No. 40172 was produced. That is, one polyester twisted yarn in which 36 15-denier single yarns were gathered was aligned with 25 hollow fibers. This hollow fiber bundle has an inner diameter of 40 mm and a length of 2
It was housed in a 40 mm container, molded and assembled to produce a dialysis device. At that time, the mixing ratio of twisted yarn to one hollow fiber was 0.04, the number of hollow fibers was 8,800, and the filling rate was 56.
%, And the effective film area was 1.5 m 2 . Table 1 shows the performance of the obtained dialysis device.

【0038】(実施例15)内径185μm,外径22
0μmの銅アンモニア再生セルロース系中空繊維4本に
対して、1.6デニールの単糸が32本集まったポリエ
ステルマルチフィラメントをひき揃え、エアーを吹きつ
けながら巻取り集束して、フィラメントが、中空繊維の
長さ方向と実質的に同一方向に配列され、かつフィラメ
ントの一部が中空繊維に絡みついた選択透過性中空繊維
束を作成した。その際の中空繊維本数は12,000本
でフィラメントの混入比を8であった。
(Embodiment 15) Inner diameter 185 μm, outer diameter 22
Polyester multifilaments consisting of 32 1.6 denier single yarns are aligned with four 0 μm cuprammonium regenerated cellulose-based hollow fibers and wound and bundled while blowing air to form filaments. A permselective hollow fiber bundle was prepared in which the filaments were arranged in substantially the same direction as the length direction and a part of the filament was entangled with the hollow fiber. At that time, the number of hollow fibers was 12,000 and the mixing ratio of the filaments was 8.

【0039】以上により作成した選択透過性中空繊維を
内径36.5mm、長さ276mmの容器に収納して成
型し、組立てて透析装置を製造した。その際の湿潤時の
充填率は67%、有効膜面積は1.80m2 であった。
得られた透析装置を用いて実施例2と同様な透析実験を
行った。その結果クリアランスの実測値は194ml/
分であり、用いた中空繊維の尿素の透過係数は12×1
-4cm/秒で理論クリアランスを計算すると198m
l/分であった。以上により透析効率は98%であっ
た。
The permselective hollow fiber prepared as described above was housed in a container having an inner diameter of 36.5 mm and a length of 276 mm, molded and assembled to produce a dialysis apparatus. At that time, the filling factor when wet was 67%, and the effective film area was 1.80 m 2 .
A dialysis experiment similar to that of Example 2 was performed using the obtained dialysis device. As a result, the measured value of the clearance was 194 ml /
And the permeation coefficient of urea of the hollow fiber used is 12 × 1
When the theoretical clearance is calculated at 0 -4 cm / sec, it is 198m
1 / min. Thus, the dialysis efficiency was 98%.

【0040】(実施例16〜20)実施例15で使用し
たものと同じ銅アンモニア再生セルロース系中空繊維に
対して表2に示したような素材,繊度,混入比の条件
で、実施例15と同様な方法で選択透過性中空繊維束を
作成し、表1に示したような容器に収納して成型し、組
立てて透析装置を製造した。その際の中空繊維本数,湿
潤時充填率,有効膜面積は表2に示す通りであった。得
られた透析装置を用いて、実施例15と同様な透析実験
を行って求めたクリアランス及び透析効率の結果を表2
に示す。
(Examples 16 to 20) With respect to the same copper ammonia regenerated cellulose-based hollow fiber as used in Example 15, the materials, fineness, and mixing ratio as shown in Table 2 were used. A permselective hollow fiber bundle was prepared in the same manner, housed in a container as shown in Table 1, molded, and assembled to produce a dialysis apparatus. At that time, the number of hollow fibers, the filling factor in wet state, and the effective membrane area were as shown in Table 2. Table 2 shows the results of the clearance and the dialysis efficiency obtained by performing a dialysis experiment similar to that of Example 15 using the obtained dialysis device.
Shown in

【0041】[0041]

【表2】 [Table 2]

【0042】(比較例8)実施例15で使用したものと
同じ銅アンモニア再生セルロース系中空繊維のみからな
る中空繊維束を作成した。さらに、中空繊維本数,湿潤
時充填率,容器及び有効膜面積は実施例15と同一条件
にて成型し、組立てた。得られた透析装置で実施例15
で述べた透析実験を行って求めたクリアランス及び透析
効率の結果を表2に示す。
(Comparative Example 8) A hollow fiber bundle consisting solely of the cuprammonium-regenerated cellulose-based hollow fiber used in Example 15 was produced. Further, the number of hollow fibers, the filling factor when wet, the container and the effective membrane area were molded and assembled under the same conditions as in Example 15. Example 15 using the obtained dialysis device
Table 2 shows the results of the clearance and the dialysis efficiency obtained by performing the dialysis experiment described above.

【0043】(比較例9)実施例15で使用したものと
同じ銅アンモニア再生セルロース系中空繊維4本に対し
て、1.7デニールの単糸が44本集まったベンベルグ
(登録商標)マルチフィラメントをひき揃え、エアーを
吹きつけることなく巻取り集束した。その際の中空繊維
本数は10,300本でフィラメントの混入比は1:1
であった。以上により作成した選択透過性中空繊維束を
内径36.5mm、長さ276mmの容器に収納して成
型し組み立てて透析装置を製造した。得られた透析装置
で実施例15で述べた透析実験を行って求めたクリアラ
ンス及び透析効率の結果を表2に示す。なお、中空繊維
束端面を観察すると中空繊維とフィラメントが分離した
ような状態になっていた。
(Comparative Example 9) A Bemberg (registered trademark) multifilament in which 44 1.7 denier single yarns were collected with respect to the same four copper-ammonia regenerated cellulose-based hollow fibers used in Example 15 was used. They were aligned and wound up without blowing air. At that time, the number of hollow fibers was 10,300 and the mixing ratio of filaments was 1: 1.
Met. The selectively permeable hollow fiber bundle prepared as described above was housed in a container having an inner diameter of 36.5 mm and a length of 276 mm, molded and assembled to manufacture a dialysis apparatus. Table 2 shows the results of the clearance and the dialysis efficiency obtained by performing the dialysis experiment described in Example 15 with the obtained dialysis device. When the end face of the hollow fiber bundle was observed, the state was such that the hollow fiber and the filament were separated.

【0044】[0044]

【発明の効果】本発明にしたがえば、フィラメントの繊
度が細いために中空繊維束の嵩高性がほとんど増加せ
ず、しかも束が密に結束しているので、中空繊維の充填
率の高い流体分離装置を収率良く製造することができ、
小型・高性能化が可能となる。例えば、中空繊維の充填
率ρを容器内壁の断面M、中空繊維の外周のなす円形断
面の面積m、中空繊維の本数をNとしたときρ=N・m
/Mで定義すれば、従来法では充填率が60%を越える
と成型収率が低下するのに対し、本発明に従えば、68
%の充填率でも95%以上の成型収率を達成することが
可能である。それ故本発明の流体分離装置では、充填率
が高められる分だけ小型の容器で設計しても従来法と同
等な有効膜面積を得ることが可能である。
According to the present invention, since the bulkiness of the hollow fiber bundle hardly increases due to the fineness of the filament, and the bundle is tightly bound, the fluid having a high filling rate of the hollow fiber can be obtained. The separation device can be manufactured with high yield,
Small size and high performance can be achieved. For example, when the filling rate ρ of the hollow fibers is a cross section M of the inner wall of the container, the area m of a circular cross section formed by the outer circumference of the hollow fibers, and the number of the hollow fibers is N, ρ = N · m
According to the present invention, when the filling rate exceeds 60%, the molding yield is reduced.
It is possible to achieve a molding yield of 95% or more even with a filling rate of%. Therefore, in the fluid separation device of the present invention, it is possible to obtain an effective membrane area equivalent to that of the conventional method even if the fluid separation device is designed in a small container as much as the filling rate is increased.

【0045】また、本発明の流体分離装置では細い繊度
のフィラメントが多数中空繊維束内に分散されているた
めに、中空繊維間に極めて微小でばらつきの少ない隙間
が形成されており、それゆえ中空繊維の外側を流れる流
体がこの隙間を流路として隈なく分配され、偏流するこ
とがなく顕著な分離効率の改善が実現できる。
Further, in the fluid separation device of the present invention, since a large number of fine filaments are dispersed in the hollow fiber bundle, extremely minute gaps with little variation are formed between the hollow fibers. Fluid flowing outside the fiber is distributed all over the gap as a flow path, and remarkable improvement in separation efficiency can be realized without drifting.

【0046】本発明の流体分離装置を血液透析装置とし
て使用する場合、実測されるクリアランス(単位時間当
たり実際にその装置により透析除去される尿素などの溶
質の量)の、下記の数式1で示される理論クリアランス
に対する百分率で定義される透析効率は、本発明にした
がう血液透析装置ではほぼ100%が実現できる。
When the fluid separation apparatus of the present invention is used as a hemodialysis apparatus, the actually measured clearance (the amount of urea and other solutes actually dialyzed and removed by the apparatus per unit time) is expressed by the following equation (1). The dialysis efficiency, defined as a percentage of the theoretical clearance to be achieved, can be achieved by the hemodialysis apparatus according to the invention of almost 100%.

【0047】[0047]

【数1】 (Equation 1)

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のフィラメントを分散させた選択透過性
中空繊維束の横断面の模式図である。
FIG. 1 is a schematic cross-sectional view of a permselective hollow fiber bundle in which a filament of the present invention is dispersed.

【図2】本発明の流体分離装置の1例を示す縦断面図で
ある。
FIG. 2 is a longitudinal sectional view showing one example of a fluid separation device of the present invention.

【符号の説明】[Explanation of symbols]

1 中空繊維 2 フィラメント 3 容器 4 第1の流体の入口 5 第1の流体の出口 6 中空繊維束 7 隔壁(ポッティング部) 8 ヘッダー 9 第2の流体の入口 10 第2の流体の出口 DESCRIPTION OF SYMBOLS 1 Hollow fiber 2 Filament 3 Container 4 Inlet of 1st fluid 5 Outlet of 1st fluid 6 Hollow fiber bundle 7 Partition wall (potting part) 8 Header 9 Inlet of 2nd fluid 10 Outlet of 2nd fluid

フロントページの続き (72)発明者 錦戸 條二 宮崎県延岡市旭町6丁目4100番地 旭化 成工業株式会社内 (56)参考文献 特開 平3−278821(JP,A) 特開 昭53−35683(JP,A) (58)調査した分野(Int.Cl.7,DB名) B01D 63/02 B01D 63/00 510 B01D 69/08 WPI(DIALOG)Continuation of the front page (72) Inventor Jouji Nishikido 6-4100 Asahicho, Nobeoka-shi, Miyazaki Asahi Kasei Kogyo Co., Ltd. (56) References JP-A-3-278821 (JP, A) JP-A-53- 35683 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) B01D 63/02 B01D 63/00 510 B01D 69/08 WPI (DIALOG)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 中空繊維1本に対し2〜3,000本の
割合で繊度0.05〜20デニールのフィラメントが該
中空繊維の長さ方向と実質的に同一方向に配列され、か
つ少なくとも一部の該フィラメントが該中空繊維に絡み
つくことにより該中空繊維が該フィラメントにより互い
に結束された状態にある選択透過性中空繊維束。
1. Filaments having a fineness of 0.05 to 20 denier in a ratio of 2 to 3,000 per hollow fiber are arranged in substantially the same direction as the length direction of the hollow fiber, and A permselective hollow fiber bundle in which the filaments of the portion are entangled with the hollow fiber so that the hollow fibers are bound together by the filament.
【請求項2】 中空繊維1本に対し2〜3,000本の
割合で繊度0.05〜20デニールのフィラメントが該
中空繊維の長さ方向と実質的に同一方向に配列され、か
つ少なくとも一部の該フィラメントが該中空繊維に絡み
つくことにより該中空繊維が該フィラメントにより互い
に結束された状態にある選択透過性中空繊維束を内蔵す
る流体分離装置。
2. Filaments having a fineness of 0.05 to 20 denier at a ratio of 2 to 3,000 filaments per hollow fiber are arranged in substantially the same direction as the length direction of the hollow fiber, and A fluid separation device incorporating a permselective hollow fiber bundle in which a portion of the filaments are entangled with the hollow fibers so that the hollow fibers are bound together by the filaments.
JP03123168A 1990-07-02 1991-04-26 Permselective hollow fiber bundle and fluid separation device incorporating the same Expired - Fee Related JP3080430B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03123168A JP3080430B2 (en) 1990-07-02 1991-04-26 Permselective hollow fiber bundle and fluid separation device incorporating the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2-172692 1990-07-02
JP17269290 1990-07-02
JP03123168A JP3080430B2 (en) 1990-07-02 1991-04-26 Permselective hollow fiber bundle and fluid separation device incorporating the same

Publications (2)

Publication Number Publication Date
JPH04227030A JPH04227030A (en) 1992-08-17
JP3080430B2 true JP3080430B2 (en) 2000-08-28

Family

ID=26460165

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03123168A Expired - Fee Related JP3080430B2 (en) 1990-07-02 1991-04-26 Permselective hollow fiber bundle and fluid separation device incorporating the same

Country Status (1)

Country Link
JP (1) JP3080430B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8496826B2 (en) 2003-04-23 2013-07-30 Asahi Kasei Medical Co., Ltd. Body fluid treating device of hollow fiber membrane type
KR20140132376A (en) * 2012-02-22 2014-11-17 임텍스 멤브레인스 코포레이션 Unsteady-state gas permeation process

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101755197B1 (en) * 2011-06-21 2017-07-07 코오롱인더스트리 주식회사 Positive Pressure Type Hollow Fiber Membrane Module
US20190022592A1 (en) * 2017-07-18 2019-01-24 Saudi Arabian Oil Company Hollow fiber membrane module
US11406941B2 (en) 2020-02-14 2022-08-09 Saudi Arabian Oil Company Thin film composite hollow fiber membranes fabrication systems
US11253819B2 (en) 2020-05-14 2022-02-22 Saudi Arabian Oil Company Production of thin film composite hollow fiber membranes

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8496826B2 (en) 2003-04-23 2013-07-30 Asahi Kasei Medical Co., Ltd. Body fluid treating device of hollow fiber membrane type
KR20140132376A (en) * 2012-02-22 2014-11-17 임텍스 멤브레인스 코포레이션 Unsteady-state gas permeation process
KR102006192B1 (en) 2012-02-22 2019-10-01 임텍스 멤브레인스 코포레이션 Unsteady-state gas permeation process

Also Published As

Publication number Publication date
JPH04227030A (en) 1992-08-17

Similar Documents

Publication Publication Date Title
US5198110A (en) Bundle of permselective hollow fibers and a fluid separator containing the same
JPS6037029B2 (en) Manufacturing method of yarn package for fluid separation
US4666469A (en) Hollow fiber membrane device with inner wrap
JP3104203B2 (en) Fluid separation module and fluid separation method
US4293418A (en) Fluid separation apparatus
JPH08246283A (en) Hollow fiber bundle and substance- and/or heat exchanger
JPS631404A (en) Hollow yarn type membrane separation device
JPWO2008093654A1 (en) Hollow fiber membrane and hollow fiber membrane module incorporating the same
JPS5911866A (en) Fluid treating apparatus
JP3080430B2 (en) Permselective hollow fiber bundle and fluid separation device incorporating the same
IE50183B1 (en) Hollow fibre separatory device and process for producing such device
JP2791775B2 (en) Nonwoven fabric wound type cartridge filter
CN110944735A (en) Hollow fiber membrane module
JPH04219126A (en) Manufacture of hollow fabric staple and package, and method for separating and eiltering gas from fluid
JPH03238027A (en) Fluid treatment apparatus using hollow fiber
JP3841475B2 (en) Hollow fiber membrane module
SU1722208A3 (en) Method for production of filter medium of labyrinth filter
EA038203B1 (en) Hollow fibre membrane having three dimensional texturing
JPH031054B2 (en)
JPS609841B2 (en) fluid separation device
JPS6013722B2 (en) membrane separation equipment
JPS5959218A (en) Hollow yarn type fluid separation element and preparation thereof
CN217745202U (en) Filter for blood purification
JPH08117563A (en) Hollow yarn membrane bundle and production thereof
JP4269227B2 (en) Hollow fiber membrane blood purifier

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080623

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080623

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090623

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees