JP3080234B2 - Amorphous alloy ribbon - Google Patents

Amorphous alloy ribbon

Info

Publication number
JP3080234B2
JP3080234B2 JP02112680A JP11268090A JP3080234B2 JP 3080234 B2 JP3080234 B2 JP 3080234B2 JP 02112680 A JP02112680 A JP 02112680A JP 11268090 A JP11268090 A JP 11268090A JP 3080234 B2 JP3080234 B2 JP 3080234B2
Authority
JP
Japan
Prior art keywords
ribbon
less
amorphous alloy
amorphous
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP02112680A
Other languages
Japanese (ja)
Other versions
JPH049453A (en
Inventor
卓 目黒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=14592787&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP3080234(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP02112680A priority Critical patent/JP3080234B2/en
Publication of JPH049453A publication Critical patent/JPH049453A/en
Application granted granted Critical
Publication of JP3080234B2 publication Critical patent/JP3080234B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Soft Magnetic Materials (AREA)
  • Continuous Casting (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、高周波磁界において、優れた高透磁率特性
ないし高角形磁気特性を発揮するCo系アモルファス合金
リボンの靭性の改良に関する。
The present invention relates to an improvement in the toughness of a Co-based amorphous alloy ribbon exhibiting excellent high magnetic permeability characteristics or high square magnetic characteristics in a high-frequency magnetic field.

〔従来の技術〕[Conventional technology]

従来、スイッチング電源のコモンモードチョークコイ
ル、磁気ヘッド、磁気センサー等の高透磁率材料には、
フェライトが、また、スイッチング電源の可飽和リアク
トルやノイズアブソーバ等高角形比材料には、50Ni−Fe
合金ストリップよりなる巻磁心が、それぞれ使われてき
た。
Conventionally, high permeability materials such as common mode choke coils for switching power supplies, magnetic heads, magnetic sensors, etc.
Ferrite is also used as a material with a high squareness ratio such as a saturable reactor for switching power supplies and a noise absorber.
Wound cores made of alloy strips have been used.

フェライトは、渦電流損が少ない利点はあるが、飽和
磁束密度が低く、温度特性が悪いという欠点があった。
また、50Ni−Fe合金は、飽和磁束密度が高く、低周波数
域における角形比は高いものの、渦電流損、ヒステリシ
ス損が大きく、高周波用途には対応できない。
Ferrite has the advantage of low eddy current loss, but has the disadvantage of low saturation magnetic flux density and poor temperature characteristics.
Further, the 50Ni-Fe alloy has a high saturation magnetic flux density and a high squareness ratio in a low frequency range, but has a large eddy current loss and a hysteresis loss, and cannot be used for high frequency applications.

このため、フェライトに比して磁束密度が高く、50Ni
−Fe合金など結晶金属に比して渦電流損を含むコア損失
が小さい高周波磁性材料として、アモルファス磁性合金
が有望視され、主に巻磁心として上記二様の用途に実用
されるようになった。特にCoを主元素とし、これにFe,N
i,Mn等原子の最外殻原子数がCoに近い元素を少量添加す
ることによって、飽和磁歪定数を零に近づけたCo系のア
モルファス合金は、保磁力が小さく、軟磁性材料として
最も優れた素材ということができる。高周波帯域におい
ても、電気抵抗が高くかつ15〜50μmの薄肉リボンとし
て使用されることから、渦電流損失が低くフェライトと
同等以上の低損失特性を有している。
For this reason, the magnetic flux density is higher than ferrite, and 50Ni
-Amorphous magnetic alloys are promising as high-frequency magnetic materials with low core loss, including eddy current loss, compared to crystalline metals such as Fe alloys, and have come into practical use in the above two applications mainly as wound cores . In particular, Co is the main element, and Fe, N
Co-based amorphous alloys with a saturation magnetostriction constant approaching zero by adding a small number of elements whose outermost shell atoms such as i and Mn are close to Co have a small coercive force and are the best soft magnetic materials. It can be called a material. Even in a high frequency band, since it is used as a thin ribbon having a high electric resistance and a thickness of 15 to 50 μm, it has a low eddy current loss and a low loss characteristic equal to or higher than that of ferrite.

上記磁歪が零ないし零に近いCo系アモルファス合金
は、キューリー温度以上、結晶化温度以下の温度で加熱
保持後、常温に10℃/sec以上の冷却速度で急冷する熱処
理を施すことによって、透磁率を高めて、コモンモード
チョークコイル、磁気ヘッド、各種磁気センサーに供し
たり、磁界中焼なまし−冷却処理によって磁路方向に一
軸異方性を付与して角形比を高め、可飽和リアクトルや
ノイズアブソーバ等に実用されている。なお、両用途と
も添加元素として、上記以外の広義の遷移金属元素を一
種以上含むことによって、熱的安定性を高めたり、飽和
磁歪定数を微細に調整することが行なわれている。
The Co-based amorphous alloy having a magnetostriction of zero or close to zero has a magnetic permeability by performing a heat treatment of heating and holding at a temperature equal to or higher than the Curie temperature and equal to or lower than the crystallization temperature, and then quenching to room temperature at a cooling rate of 10 ° C / sec or higher. To provide common-mode choke coils, magnetic heads, and various magnetic sensors, and to provide uniaxial anisotropy in the direction of the magnetic path by annealing in a magnetic field and cooling to increase the squareness ratio and increase the saturable reactor and noise. Practical for absorbers and the like. In both applications, thermal stability is enhanced and the saturation magnetostriction constant is finely adjusted by including at least one transition metal element in a broad sense other than the above as an additive element.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

従来各種インダクター、センサー等磁性部品は、単ロ
ール法により、15〜30μmの厚みのアモルファスリボン
を製造した後、主に以下2様の方法で製品形状に仕上げ
られている。
2. Description of the Related Art Conventionally, magnetic components such as various inductors and sensors have been manufactured into an amorphous ribbon having a thickness of 15 to 30 μm by a single roll method, and then finished into a product shape mainly by the following two methods.

一つは、巻磁心とする方法で、所定幅のアモルファス
リボンを、コア占積率を高めるため、適当の張力(数kg
f/mm2〜数10kgf/mm2)を負荷しつつトロイダル形状に巻
き回した後、最適熱処理が施される。一つは、積層磁心
とする方法で、リボンを打抜きプレス(金型)で打抜く
か、フォトエッチングにより強酸等で化学的に成形した
一枚ずつのコア単位に、最適熱処理を施した後、接着剤
等により複数枚積層し、コアとするものである。両者と
も、加工に供されるリボンは、溶湯急冷時に予め所定の
幅に製造されるか、ないしは広幅リボンを超硬合金、高
速度鋼等のスリッター刃によって切断して所定幅に調整
される。
One method is to use a wound core and apply an appropriate tension (several kg) to an amorphous ribbon of a predetermined width to increase the core space factor.
After wound into a toroidal shape f / mm 2 ~ Number 10 kgf / mm 2) while loaded, the optimum heat treatment is performed. One is a method of forming a laminated magnetic core. The ribbon is punched by a punching press (die), or an optimal heat treatment is applied to each core unit chemically molded by strong acid or the like by photoetching. A plurality of sheets are laminated with an adhesive or the like to form a core. In both cases, the ribbon to be processed is manufactured to have a predetermined width in advance at the time of quenching the molten metal, or the wide ribbon is cut to a predetermined width by cutting with a slitter blade of cemented carbide, high-speed steel or the like.

したがって、アモルファスリボンを加工して製品化す
るには、コア巻き工程で張力に耐えつつコア巻きルーテ
ィング途中のベンディングによる破断のないこと、打抜
きプレスやスリット中にリボンの破断、割れ等が発生し
ないことが要求され、これには溶湯急冷ままのリボンに
高い靭性があり、かつそれが均一に確保されていること
が要求される。局部的にせよ脆い部分が存在すること
は、加工中の割れ、破断に直結し、加工の停止、加工歩
留の低下等を来たし好ましくない。
Therefore, in order to process the amorphous ribbon into a product, the core must be able to withstand the tension during the core winding process without breaking due to bending during core winding routing, and the ribbon should not break or crack during punching or slitting. This requires that the ribbon, which has been quenched in the molten metal, has high toughness and that it is uniformly ensured. Existence of a brittle portion even if locally causes undesired cracks and breaks during processing, which results in stoppage of processing, reduction in processing yield, and the like.

上記アモルファスリボンの靭性の確保は、従来主とし
て化学組成とリボン製造条件の両面からアモルファス形
成能として指針が与えられてきた。組成の面では、アモ
ルファス形成元素としての半金属、および熱的安定性、
磁気特性の向上に寄与する遷移金属の種類、組合せ、配
合量の最適化がなされ、アモルファスを得るための臨界
冷却速度やアモルファスとなるための臨界最大板厚との
相関が求められた。例えば、M.Naka,A.Inoue and T.Mas
umoto:Sci.Rep.RITUA29(1981)184.では、最も形成能
の高いとされるSi−Bの半金属組合せで、Co−Si−B3元
合金の臨界厚さが実験的に求められ、Co72.5Si12.5B15
で最大値を示すことが示されている。また、M.Hagiwar
a,A.Inoue and T.Masumoto:Materials Science and Eng
ineering,54(1982)197−207.では(Co100-xMx72.5S
i12.5B15でMとして、12元素を最大X=20まで添加した
ときの臨界厚さが報告され、臨界厚さを高めるためには
Ta,Nb,V,Mo,W,Feの各元素の一定量までの添加が有効
で、効果はこの順に高いことが述べられている。
Conventionally, a guideline for securing the toughness of the amorphous ribbon has been given as an amorphous forming ability mainly from both the chemical composition and the ribbon manufacturing conditions. In terms of composition, semimetals as amorphous forming elements, and thermal stability,
The types, combinations, and amounts of transition metals contributing to the improvement of magnetic properties were optimized, and the correlation with the critical cooling rate for obtaining an amorphous phase and the critical maximum thickness for forming an amorphous phase was determined. For example, M. Naka, A. Inoue and T. Mas
umoto: Sci. Rep. RITUA 29 (1981) 184. The critical thickness of the Co-Si-B ternary alloy is experimentally determined for the Si-B semimetal combination considered to have the highest formability. 72.5 Si 12.5 B 15
Indicates the maximum value. Also, M. Hagiwar
a, A.Inoue and T.Masumoto: Materials Science and Eng
ineering, 54 (1982) 197-207. (Co 100-x M x ) 72.5 S
As M in i 12.5 B 15, it is reported critical thickness when adding a 12 element up X = 20, in order to increase the critical thickness
It is stated that the addition of each element of Ta, Nb, V, Mo, W, and Fe up to a certain amount is effective, and the effect is higher in this order.

リボン製造条件の面では、具体的な単ロール法の製造
パラメータに触れるものはないが、たとえば増本健、鈴
木謙爾、藤森啓安、橋本功二:アモルファス金属の基
礎、オーム社刊(1982)P.34には、各組成固有の臨界冷
却速度を超える冷却速度が確保されることが必要である
こと、また同文献P.15には、冷却速度は主として、冷却
用回転体の材質(熱伝導度、熱容量など)と融体の厚さ
にほぼ依存し、融体の厚さは噴出量(ノズル孔寸法と噴
出圧力に依存)と回転体の周速との相互関係により決ま
ることが述べられている。
In terms of ribbon production conditions, there is no mention of specific production parameters for the single roll method. For example, Ken Masumoto, Kenji Suzuki, Keiyasu Fujimori, Koji Hashimoto: Basics of Amorphous Metals, Ohmsha Publishing (1982) P .34 requires that a cooling rate that exceeds the critical cooling rate specific to each composition be ensured. Also, on page 15 of the same document, the cooling rate is mainly determined by the material of the cooling rotor (thermal conduction). Temperature, heat capacity, etc.) and the thickness of the melt, and it is stated that the thickness of the melt is determined by the correlation between the amount of jet (depending on the nozzle hole size and jet pressure) and the peripheral speed of the rotating body. ing.

しかしながら上記の知見は、アモルファス形成能に対
する主元素および板厚の一般的影響を記述するに留ま
り、アモルファスリボンの靭性確保、なかんずく局部的
な脆性の改良という品質の均一性の観点では不十分なも
のである。すなわち、現実に適用し得る材料組成は、靭
性よりも最適熱処理後の高周波磁性の観点から設定され
るため、必ずしも最大板厚をなす組成とはならないこ
と、仮に最大板厚ないしその近傍組成となっても高周波
磁性上有効な15〜30μmのリボンの局部的な脆性の改良
とは直接つながらないという問題があった。
However, the above findings only describe the general effects of the main element and the plate thickness on the amorphous forming ability, and are insufficient from the viewpoint of securing the toughness of the amorphous ribbon, especially improving the quality of local brittleness. It is. In other words, since the material composition that can be actually applied is set from the viewpoint of high-frequency magnetism after optimal heat treatment rather than toughness, it is not necessarily the composition that forms the maximum thickness, and temporarily becomes the maximum thickness or a composition in the vicinity thereof. However, there is a problem that the improvement of local brittleness of a 15 to 30 μm ribbon which is effective on high frequency magnetism cannot be directly connected.

本発明の目的は、磁歪の低いCo系アモルファス合金リ
ボンのコア、センサー等最終製品に至るまでの各種加工
工程で必要な靭性を向上させること、特に局部的な脆性
を改良して、均一な品質を得ることである。
An object of the present invention is to improve the toughness required in various processing steps from a core of a low magnetostriction Co-based amorphous alloy ribbon to a final product such as a sensor, and in particular, to improve local brittleness and achieve uniform quality. It is to get.

〔課題を解決するための手段〕[Means for solving the problem]

上記目的に鑑み、鋭意検討の結果、本発明者は、いわ
ゆる磁歪を零ないし零近傍に調整し、磁場中熱処理を施
して高角形比と低損失特性を得る。あるいは高透磁率を
得るためキュリー温度以上結晶化温度以下の温度におい
て加熱保持後常温に10℃/sec以上の冷却速度で急冷する
熱処理を施して実用に供されるCo系アモルファス合金に
おいて、不純物元素としてMgを低減することによって、
該Co系アモルファス合金の溶湯急冷状態の靭性が向上す
ることを見出し、本発明に想到した。
In view of the above object, as a result of diligent studies, the present inventor adjusts so-called magnetostriction to zero or near zero, and performs heat treatment in a magnetic field to obtain a high squareness ratio and low loss characteristics. Alternatively, in order to obtain a high magnetic permeability, a Co-based amorphous alloy which is subjected to a heat treatment of being rapidly cooled at a cooling rate of 10 ° C./sec or more to room temperature after being heated and held at a temperature equal to or higher than the Curie temperature and equal to or lower than the crystallization temperature, and is provided with an impurity element By reducing Mg as
The present inventors have found that the toughness of the Co-based amorphous alloy in the molten metal quenching state is improved, and have reached the present invention.

すなわち、本発明は、 基本組成(Co1-a-b-cNiaFebMncxMz ここに、 M:B,Si で、x,zは原子%であって、 x+z=100, 13≦z≦28 a,b,cは原子比であって、 0≦a≦0.20,0≦b≦0.20 0≦c≦0.20 で示される組成を有する飽和磁歪定数が±5×10-6以内
のアモルファス合金であって、不可避不純物であるMg含
有量(重量)が15P.P.M以下であることを特徴とするア
モルファス合金リボンである。また、このアモルファス
合金リボンはO2:50ppm未満、N2:25ppm未満、Al:40ppm未
満、S:30ppm未満であり、介在物面積率がJIS点算法で0.
012%以下であることが好ましい。
That is, the present invention is herein basic composition (Co 1-abc Ni a Fe b Mn c) x M z, M: B, with Si, x, z is an atomic%, x + z = 100, 13 ≦ z ≦ 28 a, b, c are atomic ratios, and 0 ≦ a ≦ 0.20, 0 ≦ b ≦ 0.20, 0 ≦ c ≦ 0.20, an amorphous alloy having a saturated magnetostriction constant within ± 5 × 10 -6 An amorphous alloy ribbon characterized in that the content (weight) of Mg as an inevitable impurity is 15 P.PM or less. Further, the amorphous alloy ribbon O 2: less than 50 ppm, N 2: less than 25 ppm, Al: less than 40 ppm, S: less than 30 ppm, 0 inclusions area ratio in JIS point algorithm.
It is preferably at most 012%.

本発明において、Mgの低減によって、溶湯急冷ままの
アモルファスリボンの靭性が向上する。この場合の靭性
とは、従来なされてきたような180゜密着曲げ可能か否
かとか、あるいは完全弾塑性体を仮定しての曲げ歪等で
は検知できない程度のものである。
In the present invention, the reduction in Mg improves the toughness of the amorphous ribbon as it is when the molten metal is quenched. The toughness in this case is such as to determine whether or not it is possible to make a 180 ° close contact bending as conventionally performed, or to such a degree that it cannot be detected by bending strain or the like assuming a completely elastic-plastic body.

本発明の靭性評価は、リボン長手方向の任意の位置
で、リボンを幅方向に10mm/sec以下のスピードで引き裂
いた場合のクラック進展の様相によってなされる。すな
わち、第1図に示すように十分な靭性を有している場合
は、クラックの進展が引き裂き速度に同じで、破断線が
微細なピッチでジグザクだが、マクロ的にはまっすぐ進
む。第2図に示す脆い場合は、クラックの進展が引き裂
き速度より速くなり、破断線が直線的だが、マクロ的に
は方向が反れたり、一部リボンの欠けが発生することも
ある。同様の分類は、たとえば通常の引張試験における
破断面の観察によってもなすことができるが、10mm/sec
以下もゆっくりした引張速度で多数の試験を行なうこと
は工数が甚大であるという難点があり、実際の検査では
前述の引き裂きによる方法が簡便である。なおこの引き
裂き試験によって脆性と判断される場合でも、いわゆる
180゜密着曲げ可能な場合があること、また脆性部分も
第3図に示すようにリボン幅方向全長でなく一部に限ら
れる場合もある。
The toughness evaluation of the present invention is made based on the aspect of crack propagation when the ribbon is torn in the width direction at a speed of 10 mm / sec or less at an arbitrary position in the longitudinal direction of the ribbon. That is, as shown in FIG. 1, in the case of having sufficient toughness, the crack progresses at the same speed as the tearing speed, and the fracture line is zigzag at a fine pitch, but advances straight on a macro scale. In the case of brittleness shown in FIG. 2, the crack progresses faster than the tearing speed, and the breaking line is linear. However, the direction may be deviated macroscopically or the ribbon may be partially chipped. A similar classification can be made, for example, by observing a fracture surface in a normal tensile test,
In the following, conducting a large number of tests at a slow pulling speed has a disadvantage that the number of steps is enormous, and in the actual inspection, the above-described method using the tear is simple. Even if it is judged brittle by this tear test,
In some cases, 180 ° contact bending is possible, and in some cases, the brittle portion is not limited to the entire length in the ribbon width direction as shown in FIG.

本発明者はMg含有量の低減によって、上記脆性部分の
発生頻度が低減することを新たに見出したものである。
The present inventor has newly found that the frequency of occurrence of the brittle portion is reduced by reducing the Mg content.

引き裂く部分に非金属介在物が存在する場合は、リボ
ンは脆くなるため、ノズルを通過する溶湯中のガス成
分、Al,Sなどの含有量は十分低くし(例えばO2<50pp
m、N2<25ppm、Al<40ppm、S<30ppm)、または母合金
中の介在物面積率をJIS法によって点算しても0.012%以
下であり、長尺リボンの箇所箇所に非金属介在物が現れ
るほどに汚れていない状態であることが好ましい。
If non-metallic inclusions are present at the tearing part, the ribbon becomes brittle, so the content of gas components, Al, S, etc. in the molten metal passing through the nozzle should be sufficiently low (for example, O 2 <50 pp).
m, N 2 <25 ppm, Al <40 ppm, S <30 ppm) or the inclusion area ratio in the mother alloy is 0.012% or less even when calculated by the JIS method. It is preferable that the object is not so dirty as to appear.

Mg低減によるリボン靭性向上のメカニズムは解明され
ていないが、アモルファスリボンの不純物分析を行なう
ことによって、Mgの含有量を検知し、前記引き裂き試験
結果と対照することでその結果を検証し得る。
The mechanism of improving the toughness of the ribbon by reducing Mg has not been elucidated, but the impurity content of the amorphous ribbon can be analyzed to detect the content of Mg and verify the result by comparing the result with the tear test result.

本発明のMgの含有量の少ない前記組成のアモルファス
合金は、通常溶湯から急冷する工程によって製造するこ
とができる。工業的には、高周波炉ないしは電気炉によ
り合金を溶解し、その溶融合金をガス圧によりるつぼの
先端孔(丸形,矩形)から噴出させ、回転する冷却用回
転体の表面上で接触凝固させリボンとする方法が適用さ
れる。特に、単ロール法と呼称されている方法、すなわ
ち冷却用回転体としてロールの外表面を用いる方法が一
般的である。
The amorphous alloy of the present invention having a low content of Mg according to the present invention can be usually produced by a step of quenching from a molten metal. Industrially, an alloy is melted by a high-frequency furnace or an electric furnace, and the molten alloy is jetted from the tip holes (round or rectangular) of the crucible by gas pressure, and is contact-solidified on the surface of a rotating cooling rotating body. The method of making a ribbon is applied. In particular, a method called a single roll method, that is, a method using the outer surface of a roll as a cooling rotating body is generally used.

通常は、予め母合金を溶製しておき、この母合金を上
記るつぼ内で再溶解することが多いので、母合金溶製時
にMg量の低減を図ることが必要である。このための手法
は種々あるが、原料の純度、溶解−除滓−鋳造の温度管
理を含めた諸条件、鋳型、特に砂型の場合は鋳砂等の吟
味によって、不純物を低減し得る。
Usually, a master alloy is melted in advance, and the master alloy is often re-melted in the crucible. Therefore, it is necessary to reduce the amount of Mg when melting the master alloy. Although there are various methods for this purpose, impurities can be reduced by examining the purity of the raw material, various conditions including temperature control of melting, removing slag, and casting, and examining a mold, especially a sand mold in the case of a sand mold.

これらMg量の低減を図るべきエースとなる組成の限定
理由について、以下に述べる。
The reasons for limiting the composition that becomes the ace for which the amount of Mg should be reduced will be described below.

前述のように、高周波における低損失を得るため磁歪
は、零ないし零に近いことが必要で、具体的には、±5
×10-6内の飽和磁歪定数とすることが必要である。その
ためには、Co,Ni,Fe,Mnの原子比を適当に調整してやれ
ばよく、(Co1-a-b-cNiaFebMnc)において、a,b,cとも
各々0からら0.20の範囲の組合せで実施することができ
る。a,b,cのいずれか一つ以上が0.20を越えると飽和磁
歪定数は+5×-6を越えて大きくなる。
As described above, in order to obtain a low loss at a high frequency, the magnetostriction needs to be zero or close to zero.
It is necessary to set a saturation magnetostriction constant within × 10 −6 . To do so, Co, Ni, Fe, may do it by appropriately adjusting the atomic ratio of Mn, at (Co 1-abc Ni a Fe b Mn c), a, b, c with the range of each 0 Carrara 0.20 It can be implemented in combination. When at least one of a, b, and c exceeds 0.20, the saturation magnetostriction constant exceeds + 5 × -6 .

非金属元素Mは、B,Siの二種が13原子%以上28原子%
以下含有される必要がある。
The non-metallic element M is composed of 13 atomic% or more and 28 atomic% of B and Si.
It must be contained below.

13原子%未満では、アモルファス形成が困難になり、
28原子%を越えるとアモルファス形成の困難性とともに
飽和磁化の減少が著しくなる。また、これらB,Siは、通
常の単ロール法の冷却速度104〜106℃/secでは、単独で
アモルファス形成が可能なのはB,Pで、その他は2種以
上の複合添加が必要となる。総合的には、増本:「非晶
質材料の特性と応用」日本金属学会セミナー,(1979)
P.85に示されているようにSi−Bの組合せが最も望まし
い。
If it is less than 13 atomic%, it becomes difficult to form an amorphous phase,
If it exceeds 28 atomic%, the saturation magnetization becomes remarkably reduced along with the difficulty in forming an amorphous phase. At the cooling rate of 10 4 to 10 6 ° C / sec in the normal single-roll method, B and Si are capable of forming an amorphous phase alone by B and P, and the other requires the addition of two or more composites. . Masumoto: "Characteristics and Applications of Amorphous Materials" Seminar of the Japan Institute of Metals, (1979)
The combination of Si-B is most desirable as shown on page 85.

本発明において、(Co1-a-b-cNiaFebMnc)の一部を遷
移元素Tとして、3A,4A,5A,6A,Mnを除く7A,Fe,Co,Niを
除く8族の元素で置換することができる。これらは、1
種以上で合計8原子%以下まで含むことができるが、8
原子%を越えると飽和磁化の著しい減少ないしアモルフ
ァス形成が困難になる。
In the present invention, as (Co 1-abc Ni a Fe b Mn c) some transition element T of, 3A, 4A, 5A, 6A, 7A excluding Mn, Fe, Co, an element of group 8 except Ni Can be replaced. These are 1
It can contain up to 8 atomic% or less in total,
If it exceeds atomic%, it becomes difficult to significantly reduce the saturation magnetization or to form an amorphous phase.

〔実施例〕〔Example〕

以下、本発明の詳細を実施例により説明する。 Hereinafter, details of the present invention will be described with reference to examples.

実施例1 原子%で、(Co0.94Fe0.0672Mo3Si15B10のアモルフ
ァス合金薄帯を製造した。
Example 1 An amorphous alloy ribbon of (Co 0.94 Fe 0.06 ) 72 Mo 3 Si 15 B 10 was produced at atomic%.

薄帯製造に先立ち母合金を溶製した。溶解は、Co,Bの
原料を2種ずつ選択した上でその配合を変え、計6種の
原料により不純物の含有量を変化させた。他のFe,Moは
一定とした。溶解は1450℃とし、1350℃で生成した溶滓
を除去して1300℃にて鋳鉄製鋳型へ鋳造した。
Before the production of the ribbon, the mother alloy was melted. In the dissolution, the raw materials of Co and B were selected two by two and the composition was changed, and the content of impurities was changed by a total of six raw materials. Other Fe and Mo were kept constant. Melting was performed at 1450 ° C., and the slag generated at 1350 ° C. was removed and cast at 1300 ° C. into a cast iron mold.

上記母合金2.5kgを石英るつぼ内で再溶解し、1300℃
の溶湯とした後、5mm幅×0.6mm厚さの矩形スリットから
噴出させ、300mmφのベリリウム銅単ロール上で急冷凝
固させ、5mm幅×20〜24μm厚さで長さ約3000mのアモル
ファス合金リボンした。
Re-melt 2.5 kg of the above master alloy in a quartz crucible, 1300 ° C
After being melted, it was ejected from a rectangular slit of 5 mm width x 0.6 mm thickness, rapidly solidified on a single beryllium copper roll of 300 mmφ, and an amorphous alloy ribbon of 5 mm width × 20 to 24 μm thickness and about 3000 m length was obtained. .

この合金リボンを、全長にわたって300m毎に引き裂
き、靭性の判定を行なった。各位置で20回の引き裂きを
行ない、引き裂き方向に対して2mm以上ずれたものを脆
性部分が存在するとして、各位置ごとの脆性破断率
(%)を求め、各々を比較した。
This alloy ribbon was torn every 300 m over the entire length, and the toughness was determined. Tear was performed 20 times at each position, and a brittle rupture rate (%) at each position was determined, assuming that there was a brittle portion that deviated by 2 mm or more from the tearing direction, and each was compared.

第1表に、6種の母合金によるアモルファス合金のMg
含有量と、このアモルファスリボンの脆性破断率を示
す。
Table 1 shows the Mg values of the amorphous alloys of the six master alloys.
The content and the brittle rupture rate of this amorphous ribbon are shown.

Mgの含有量が低くなるほど、各位置での脆性破断率が
減少する。
The brittle rupture rate at each position decreases as the Mg content decreases.

これら6種のリボンを外径22mmφ、内径14mmφ、厚み
5mmtのトロイダル形状に巻き回した時の巻取中のリボン
破断による停止回数を求めた。この場合、リボンに負荷
される張力は約12kgf/mm2で、リボンは装置内で10mmRの
ガイドリールによって3回180゜進行方向を転換する。
このような巻磁心製造装置は、特に一般的なものがある
わけではなく、装置、製品仕様毎にリボンにかかる負荷
は種々異なっているが、一つの目安として例示するもの
である。
These 6 types of ribbons have outer diameter 22mmφ, inner diameter 14mmφ, thickness
The number of stoppages due to ribbon breakage during winding when wound into a 5 mmt toroidal shape was determined. In this case, the tension applied to the ribbon is about 12 kgf / mm 2 , and the ribbon changes its traveling direction 180 ° three times by a 10 mmR guide reel in the apparatus.
Such a wound core manufacturing apparatus is not particularly general, and the load applied to the ribbon varies depending on the apparatus and the product specifications, but is exemplified as one guide.

各々のリボンの長さ1000m当りの破断停止回数は、No.
1〜No.6で、各々3,9,16,49,80,117回であった。
The number of break stops per 1000m of the length of each ribbon is No.
From No. 1 to No. 6, the number was 3,9,16,49,80,117 times, respectively.

以上から、Mg含有量は、15P.P.M以下とすると急冷ま
まのリボンの靭性向上、殊に局部的な脆性の低減が図ら
れ、その効果は大きい。
From the above, when the Mg content is 15 P.PM or less, the toughness of the as-quenched ribbon is improved, in particular, the local brittleness is reduced, and the effect is large.

実施例2 原子%で、(Co0.94Fe0.06)7575Si15B10のアモルフ
ァス合金リボンを用い、実施例1と同様の方法により、
6種類のリボンとし同様の評価を行なった。
Example 2 By using a (Co 0.94 Fe 0.06 ) 75 75 Si 15 B 10 amorphous alloy ribbon at atomic%, in the same manner as in Example 1,
Similar evaluations were made for six types of ribbons.

なお、母合金は同様にCo,Bの原料を2種ずつ選択した
上でその配合を変え、計6種とした。
In addition, similarly, two kinds of raw materials for Co and B were similarly selected for the mother alloy, and then the composition was changed to a total of six kinds.

第2表に、6種の母合金によるアモルファス合金リボ
ンのMg含有量と、このアモルファスリボンの脆性破断率
を示す。
Table 2 shows the Mg content of the amorphous alloy ribbon made of the six types of mother alloys and the brittle rupture rate of the amorphous ribbon.

Mgの含有量が低くなるほど、各位置での脆性破断率が
減少し、ほぼ15P.P.Mを境に、これ以下とすれば、局部
的な脆化が大きく改善されることがわかる。
It can be seen that the brittle rupture rate at each position decreases as the Mg content decreases, and that the local embrittlement is greatly improved if the Mg content is less than or equal to about 15 PPM.

実施例3 原子%で、(Co0.32Fe0.01Mn0.07)Nb1Si15B9のアモ
ルファス合金リボンを用い、実施例1と同様の方法によ
り同様にリボンを製造し評価を行なった。
Example 3 Using an amorphous alloy ribbon of (Co 0.32 Fe 0.01 Mn 0.07 ) Nb 1 Si 15 B 9 at atomic%, a ribbon was manufactured and evaluated in the same manner as in Example 1.

母合金は、B原料を変えて2種とした。第3表に2種
の母合金によるアモルファス合金リボンのMg含有量と、
脆性破断率を示す。
Two types of mother alloys were prepared by changing the B material. Table 3 shows the Mg content of the amorphous alloy ribbon with the two types of master alloys,
It shows the brittle rupture rate.

Mgの含有量が低い本発明例では、脆性破断率が減少し
て、脆性が改善されることがわかる。
It can be seen that in the example of the present invention having a low Mg content, the brittle rupture rate is reduced, and the brittleness is improved.

実施例4 原子%で、(Co0.93Fe0.02Mn0.0570Cr7Si15B8のア
モルファス合金リボンを用い、実施例1と同様の方法に
より同様にリボンを製造し評価を行なった。
Example 4 Using an amorphous alloy ribbon of (Co 0.93 Fe 0.02 Mn 0.05 ) 70 Cr 7 Si 15 B 8 at atomic%, a ribbon was manufactured and evaluated in the same manner as in Example 1.

母合金はB原料を変えて2種とした。第4表に2種の
母合金によるアモルファス合金リボンのMg含有量と、脆
性破断率を示す。
Two kinds of mother alloys were prepared by changing the B material. Table 4 shows the Mg content and the brittle rupture rate of the amorphous alloy ribbon made of the two types of master alloys.

Mgの含有量が低い本発明例では脆性破断率が減少し
て、脆性が改善されることがわかる。
It is understood that the brittle rupture rate is reduced in the present invention example having a low Mg content, and the brittleness is improved.

実施例5 原子%で、(Co0.92Ni0.02Fe0.0675Nb3Si10B12のア
モルファス合金リボンを用い、実施例1と同様の方法に
より同様にリボンを製造し評価を行なった。
Example 5 Using an amorphous alloy ribbon of (Co 0.92 Ni 0.02 Fe 0.06 ) 75 Nb 3 Si 10 B 12 at atomic%, a ribbon was manufactured and evaluated in the same manner as in Example 1.

母合金はB原料を変えて2種とした。第4表に2種の
母合金によるアモルファス合金リボンのMg含有量と、脆
性破断率を示す。
Two kinds of mother alloys were prepared by changing the B material. Table 4 shows the Mg content and the brittle rupture rate of the amorphous alloy ribbon made of the two types of master alloys.

Mgの含有量が低い本発明例では脆性破断率が減少し
て、脆性が改善されることがわかる。
It is understood that the brittle rupture rate is reduced in the present invention example having a low Mg content, and the brittleness is improved.

〔発明の効果〕 本発明のアモルファス合金によれば、高周波用の各種
コア、センサー等最終製品に至る各加工工程で必要なリ
ボンの靭性が向上し、生産歩留と効率向上が図られ、そ
の工業的価値が高い。
[Effects of the Invention] According to the amorphous alloy of the present invention, the toughness of the ribbon required in various processing steps from a high-frequency core to a final product such as a sensor is improved, thereby improving the production yield and efficiency. High industrial value.

【図面の簡単な説明】[Brief description of the drawings]

第1図は、本発明の目標とする局部的な脆性のないリボ
ンの引き裂き状態を示した模式図、第2図は脆性な引き
裂き状態を示した模式図、第3図は靭性、脆性が混在す
る状態を示す模式図である。
FIG. 1 is a schematic view showing a tear state of a local non-brittle ribbon targeted by the present invention, FIG. 2 is a schematic view showing a brittle tear state, and FIG. 3 is a mixture of toughness and brittleness It is a schematic diagram which shows the state which performs.

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】基本組成(Co1-a-b-cNiaFebMncxMz ここに、 M:B,Si で、x,zは原子%であって、 x+z=100, 13≦z≦28 a,b,cは原子比であって、 0≦a≦0.20,0≦b≦0.20 0≦C≦0.20 で示される組成を有する飽和磁歪定数が±5×10-6以内
のアモルファス合金リボンであって、不可避不純物であ
るMg含有量(重量)が15P.P.M以下であることを特徴と
するアモルファス合金リボン。
Here 1. A basic composition (Co 1-abc Ni a Fe b Mn c) x M z, M: B, with Si, x, z is an atomic%, x + z = 100, 13 ≦ z ≦ 28 a, b, c are atomic ratios, and an amorphous alloy ribbon having a composition represented by 0 ≦ a ≦ 0.20, 0 ≦ b ≦ 0.20 and 0 ≦ C ≦ 0.20 and having a saturation magnetostriction constant within ± 5 × 10 −6. An amorphous alloy ribbon, wherein the Mg content (weight), which is an unavoidable impurity, is 15 P.PM or less.
【請求項2】基本組成(Co1-a-b-cNiaFebMncxTYMz ここに、T:遷移金属, M:B,Si で、x,y,zは原子%であって、 x+y+z=100,y≦8, 13≦z≦28 a,b,cは原子比であって、 0≦a≦0.20,0≦b≦0.20, 0≦c≦0.20 で示される組成を有する飽和磁歪定数が±5×10-6以内
のアモルファス合金リボンであって、不可避不純物であ
るMg含有量(重量)が15P.P.M以下であることを特徴と
するアモルファス合金リボン。
To 2. A basic composition (Co 1-abc Ni a Fe b Mn c) x T Y M z wherein, T: transition metals, M: B, with Si, x, y, z is an atomic% X + y + z = 100, y ≤ 8, 13 ≤ z ≤ 28 a, b, c are atomic ratios, and have a composition represented by 0 ≤ a ≤ 0.20, 0 ≤ b ≤ 0.20, and 0 ≤ c ≤ 0.20. An amorphous alloy ribbon having a magnetostriction constant of ± 5 × 10 −6 or less, wherein the content (weight) of Mg, which is an unavoidable impurity, is 15 PPM or less.
【請求項3】O2:50ppm未満、N2:25ppm未満、Al:40ppm未
満、S:30ppm未満であり、介在物面積率がJIS点算法で0.
012%以下であることを特徴とする請求項1または2に
記載のアモルファス合金リボン。
3. O 2 : less than 50 ppm, N 2 : less than 25 ppm, Al: less than 40 ppm, S: less than 30 ppm, and the inclusion area ratio is less than 0.
The amorphous alloy ribbon according to claim 1 or 2, wherein the content is 012% or less.
JP02112680A 1990-04-27 1990-04-27 Amorphous alloy ribbon Expired - Lifetime JP3080234B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02112680A JP3080234B2 (en) 1990-04-27 1990-04-27 Amorphous alloy ribbon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02112680A JP3080234B2 (en) 1990-04-27 1990-04-27 Amorphous alloy ribbon

Publications (2)

Publication Number Publication Date
JPH049453A JPH049453A (en) 1992-01-14
JP3080234B2 true JP3080234B2 (en) 2000-08-21

Family

ID=14592787

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02112680A Expired - Lifetime JP3080234B2 (en) 1990-04-27 1990-04-27 Amorphous alloy ribbon

Country Status (1)

Country Link
JP (1) JP3080234B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002541331A (en) * 1999-04-12 2002-12-03 アライドシグナル インコーポレイテッド Magnetic glassy alloys for high frequency applications

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6475303B1 (en) * 1999-04-12 2002-11-05 Honeywell International Inc. Magnetic glassy alloys for electronic article surveillance

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002541331A (en) * 1999-04-12 2002-12-03 アライドシグナル インコーポレイテッド Magnetic glassy alloys for high frequency applications

Also Published As

Publication number Publication date
JPH049453A (en) 1992-01-14

Similar Documents

Publication Publication Date Title
JP5316921B2 (en) Fe-based soft magnetic alloy and magnetic component using the same
JP5720674B2 (en) Initial microcrystalline alloy, nanocrystalline soft magnetic alloy and method for producing the same, and magnetic component comprising nanocrystalline soft magnetic alloy
JP4310480B2 (en) Amorphous alloy composition
KR100601413B1 (en) Fe-base amorphous alloy thin strip of excellent soft magnetic characteristic, iron core produced therefrom and master alloy for quench solidification thin strip production for use therein
KR101257248B1 (en) Thin strip of amorphous alloy, nanocrystal soft magnetic alloy, and magnetic core
JP6191908B2 (en) Nanocrystalline soft magnetic alloy and magnetic component using the same
JP6237630B2 (en) Ultracrystalline alloy ribbon, microcrystalline soft magnetic alloy ribbon and magnetic parts using the same
JP6080094B2 (en) Winding core and magnetic component using the same
JP5429613B2 (en) Nanocrystalline soft magnetic alloys and magnetic cores
KR101014396B1 (en) Thin ribbon of amorphous iron alloy
JP3594123B2 (en) Alloy ribbon, member using the same, and method of manufacturing the same
JP2008231533A (en) Soft magnetic thin band, magnetic core, magnetic component, and method for producing soft magnetic thin band
JP6003899B2 (en) Fe-based early microcrystalline alloy ribbon and magnetic parts
TWI452146B (en) Ferromagnetic amorphous alloy ribbon and fabrication thereof
JP2004353090A (en) Amorphous alloy ribbon and member using the same
JP2000328206A (en) Soft magnetic alloy strip and magnetic core using the same, its apparatus and production
JP3080234B2 (en) Amorphous alloy ribbon
JP4257629B2 (en) Fe-based amorphous alloy ribbon and magnetic component for nanocrystalline soft magnetic alloy
JPH07331396A (en) Ferrous amorphous alloy excellent in magnetic property and embrittlement resistance and its production
JP4798642B2 (en) Parts using Fe-based nanocrystalline alloys manufactured from high-toughness Fe-based amorphous alloys and high-toughness Fe-based amorphous alloys
JP4217038B2 (en) Soft magnetic alloy
JP2001252749A (en) METHOD FOR PRODUCING Fe-BASE AMORPHOUS RIBBON FOR NANO- CRYSTAL MATERIAL AND METHOD FOR PRODUCING NANO-CRYSTAL MATERIAL
KR20230169307A (en) Fe-based amorphous alloy and Fe-based amorphous alloy strip
JPH04110450A (en) Amorphous alloy
JPH04110451A (en) Amorphous alloy

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080623

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080623

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090623

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090623

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100623

Year of fee payment: 10

EXPY Cancellation because of completion of term