JP3079330B2 - High-pass filter for impulse - Google Patents

High-pass filter for impulse

Info

Publication number
JP3079330B2
JP3079330B2 JP04135674A JP13567492A JP3079330B2 JP 3079330 B2 JP3079330 B2 JP 3079330B2 JP 04135674 A JP04135674 A JP 04135674A JP 13567492 A JP13567492 A JP 13567492A JP 3079330 B2 JP3079330 B2 JP 3079330B2
Authority
JP
Japan
Prior art keywords
pass filter
circuit
frequency
input
characteristic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04135674A
Other languages
Japanese (ja)
Other versions
JPH05308245A (en
Inventor
元 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Kohden Corp
Original Assignee
Nihon Kohden Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Kohden Corp filed Critical Nihon Kohden Corp
Priority to JP04135674A priority Critical patent/JP3079330B2/en
Publication of JPH05308245A publication Critical patent/JPH05308245A/en
Application granted granted Critical
Publication of JP3079330B2 publication Critical patent/JP3079330B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
  • Networks Using Active Elements (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、心電図のQRS波等の
インパルス直後の微小な高域成分を抽出するためのイン
パルス用ハイパスフィルタに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an impulse high-pass filter for extracting minute high-frequency components immediately after an impulse such as a QRS wave of an electrocardiogram.

【0002】[0002]

【従来の技術】図6に示すように、心電図のQRS波に
は、被検者によってはQRS波に対して高い周波数成分
の微小振幅のレートポテンシャル1(図では拡大して示
す)がS波及びT波間に後続する場合がある。その際、
そのモニタのために遮断周波数が50Hz程度の通常の
CR回路を用いたハイパスフィルタで抽出しようとする
と、QRS波のフィルタ出力信号の持続振動に隠れて検
出が困難になる場合がある。この原因をステップ入力応
答について考えると、基線復帰時間が遅れて、テール部
分の振幅が微小信号レベルに対して大きくなることに在
る。ハイパスフィルタを二次或は三次のCR回路にして
も依然根本的には解決されなかった。
2. Description of the Related Art As shown in FIG. 6, in a QRS wave of an electrocardiogram, a rate potential 1 having a small amplitude of a high frequency component (shown in an enlarged manner in the figure) is an S wave depending on a subject depending on a subject. And between the T-waves. that time,
If an attempt is made to extract with a high-pass filter using a normal CR circuit having a cutoff frequency of about 50 Hz for the monitoring, detection may be difficult due to the continuous oscillation of the filter output signal of the QRS wave. Considering the cause for the step input response, the base line return time is delayed, and the amplitude of the tail portion is larger than the minute signal level. Even if a high-pass filter is replaced by a second-order or third-order CR circuit, it has not been fundamentally solved.

【0003】[0003]

【発明が解決しようとする課題】本発明は、このような
点に鑑みて、抵抗及びコンデンサ等を用いたアナログ回
路により、インパルスの後縁を急峻に回復させ得る冒頭
に述べた類のインパルス用ハイパスフィルタを提供する
ことを目的とする。
SUMMARY OF THE INVENTION In view of the foregoing, an object of the present invention is to provide an impulse signal of the kind described at the beginning which can recover the trailing edge of the impulse sharply by an analog circuit using a resistor, a capacitor, and the like. An object is to provide a high-pass filter.

【0004】[0004]

【課題を解決するための手段】本発明は、この目的を達
成するために、インパルスが入力し、かつ必要な遮断周
波数よりも高い遮断周波数のCRの微分回路よりなる入
力用ハイパスフィルタと、必要な遮断周波数のステップ
応答特性の傾斜で始まり、かつ実質的に零レベルに達す
る経過時間が半分になる目標ステップ応答特性に対する
入力用ハイパスフィルタのステップ応答特性の振幅差に
対応する補償信号を発生する補償信号発生回路と、入力
ハイパスフィルタの出力信号と補償信号とを加算する加
算回路とを備え、補償信号発生回路は、入力用ハイパス
フィルタの出力信号を入力とする第1の積分回路と、こ
の積分回路の出力信号の積分を行う第2の積分回路とを
有すると共に、第2の積分回路の出力信号は第1の積分
回路の積分コンデンサの入力端子と反対側の端子に帰還
され、第1及び第2の積分回路の出力信号の振幅調整及
び第1の積分回路の出力信号から第2の積分回路の出力
信号の減算により補償信号を発生させることを特徴とす
る。
In order to achieve this object, the present invention provides an input high-pass filter comprising a CR differentiating circuit to which an impulse is input and which has a cut-off frequency higher than a required cut-off frequency. A compensation signal corresponding to the amplitude difference between the step response characteristic of the input high-pass filter and the target step response characteristic which starts with the slope of the step response characteristic of a low cut-off frequency and halves the elapsed time to substantially zero level is generated. A compensation signal generation circuit; an addition circuit for adding the output signal of the input high-pass filter and the compensation signal; the compensation signal generation circuit including a first integration circuit that receives the output signal of the input high-pass filter as an input; A second integration circuit that integrates an output signal of the integration circuit, and an output signal of the second integration circuit is integrated by an integration capacitor of the first integration circuit. The compensation signal is fed back to the terminal opposite to the input terminal of the first integration circuit by adjusting the amplitudes of the output signals of the first and second integration circuits and subtracting the output signal of the second integration circuit from the output signal of the first integration circuit. Is generated.

【0005】[0005]

【作用】入力インパルスは、入力用ハイパスフィルタの
通過時に、必要な遮断周波数特性よりも高い遮断周波数
特性に相応して遮断周波数近辺の成分も過剰にカットさ
れる。この間、補償信号発生回路では、第2の積分回路
においては第1の積分回路の出力信号の積分により遮断
周波数に対して遮断領域側の低域成分が相対的に大きな
振幅で発生される。第1の積分回路の出力信号は、第2
の積分回路の出力信号が第1の積分回路の積分コンデン
サの反対側に帰還され、遮断周波数に対して伝送帯域側
の成分が大きくされる。これにより、これらの積分出力
が振幅調整され、第1の積分回路の出力で、遮断周波数
領域を補償すると共に、特に遮断周波数近辺の伝送帯域
側の特性を急峻になるように補足し、かつ第2の積分回
路の出力信号で遮断領域側の成分を減少させる補償信号
が発生される。これにより、ハイパスフィルタはほぼ目
標ステップ応答特性を呈し、したがってローカットさ
れ、かつ素早く基線復帰するインパル出力が得られる。
When the input impulse passes through the input high-pass filter, the components near the cut-off frequency are also excessively cut in accordance with the cut-off frequency characteristic higher than the required cut-off frequency characteristic. During this time, in the compensation signal generating circuit, the low frequency component in the cutoff region side with respect to the cutoff frequency is generated with a relatively large amplitude by the integration of the output signal of the first integration circuit in the second integration circuit. The output signal of the first integrating circuit is
Is output to the opposite side of the integration capacitor of the first integration circuit, and the component on the transmission band side with respect to the cutoff frequency is increased. As a result, the amplitudes of these integrated outputs are adjusted, and the cut-off frequency region is compensated for by the output of the first integrating circuit, and the characteristics on the transmission band side near the cut-off frequency are complemented so as to be steep. A compensation signal for reducing components in the cutoff region is generated by the output signal of the second integration circuit. As a result, the high-pass filter exhibits almost the target step response characteristic, and therefore, an impulse output that is low-cut and quickly returns to the baseline can be obtained.

【0006】[0006]

【実施例】図1は本発明の一実施例による遮断周波数5
0Hzのインパルス用ハイパスフィルタを示すもので、
一次の微分回路よりなる入力用ハイパスフィルタ1と、
第1の積分回路2と、第2の積分回路3と、その出力信
号の振幅を1/4に低減する振幅調整回路4と、入力ハ
イパスフィルタ1の出力信号と補償信号とを加算する加
算器A5とから構成されている。
FIG. 1 shows a cutoff frequency 5 according to an embodiment of the present invention.
It shows a high-pass filter for 0 Hz impulse,
An input high-pass filter 1 comprising a first-order differentiating circuit;
A first integration circuit 2, a second integration circuit 3, an amplitude adjustment circuit 4 for reducing the amplitude of the output signal to 1/4, and an adder for adding the output signal of the input high-pass filter 1 and the compensation signal A5.

【0007】図2はその詳細回路を示すもので、抵抗R
1及びコンデンサC1は、ハイパスフィルタの必要な遮
断周波数50Hzに対して2倍の100Hzに相応する
時定数(1.6ms)のCR(コンデンサ及び抵抗)一
次の微分回路よりなる入力用ハイパスフィルタ1を構成
する。A1〜A3は緩衝用増幅器である。抵抗R2、コ
ンデンサC2は第1の積分回路2、抵抗R3、コンデン
サC3は第2の積分回路3を構成し、積分コンデンサで
あるコンデンサC2の入力と反対側端子に緩衝用増幅器
A2を通して第2の積分回路3の出力信号を帰還され
る。これらの第1及び第2の積分回路2、3は、所謂帰
還型のローパスフィルタを構成している。このローパス
フィルタの出力信号は遮断周波数53Hz程度に設定さ
れ、肩特性はQ=(C2/2C3)1/2 =0.5(この
式でC2、C3は所属のコンデンサ容量値とする)によ
り設定されている。この際、第1の積分回路3は同じ遮
断周波数の一次のローパスフィルタ特性を呈する。緩衝
用増幅器A3は第1の積分回路2の出力電圧Bを加算器
A5に供給し、増幅器A4は第2の積分回路3の出力電
圧Cを1/4に振幅調整して加算器A5に供給する。
FIG. 2 shows a detailed circuit of the circuit.
1 and the capacitor C1 are an input high-pass filter 1 composed of a CR (capacitor and resistor) first-order differentiating circuit having a time constant (1.6 ms) corresponding to 100 Hz which is twice the cut-off frequency required for the high-pass filter of 50 Hz. Constitute. A1 to A3 are buffer amplifiers. The resistor R2 and the capacitor C2 constitute a first integrating circuit 2, and the resistor R3 and the capacitor C3 constitute a second integrating circuit 3. The second integrating circuit 3 is connected to a terminal opposite to the input of the capacitor C2 as an integrating capacitor through a buffer amplifier A2. The output signal of the integration circuit 3 is fed back. These first and second integrating circuits 2 and 3 constitute a so-called feedback low-pass filter. The output signal of this low-pass filter is set to a cutoff frequency of about 53 Hz, and the shoulder characteristic is set by Q = (C2 / 2C3) 1/2 = 0.5 (where C2 and C3 are the associated capacitor capacitance values in this equation). Have been. At this time, the first integration circuit 3 exhibits a primary low-pass filter characteristic of the same cutoff frequency. The buffer amplifier A3 supplies the output voltage B of the first integration circuit 2 to the adder A5, and the amplifier A4 adjusts the output voltage C of the second integration circuit 3 to 1/4 in amplitude and supplies it to the adder A5. I do.

【0008】第1及び第2の積分回路2、3は、図3に
示すように、先ず必要な遮断周波数50Hzの通常のス
テップ応答特性Daの傾斜特性Dbで始まり、かつ最大
値の1%以下の実質的に零レベルに達する時点がステッ
プ応答特性Daの実質的に零レベルに達する経過時間の
半分になる目標ステップ応答特性Dを想定してある。そ
して、この目標ステップ応答特性に対する遮断周波数1
00Hzの入力用ハイパスフィルタ1のステップ応答特
性Aの振幅差(ハッチングで示す)に対応する補償信号
Eを発生させる。
As shown in FIG. 3, the first and second integration circuits 2 and 3 first start with a slope characteristic Db of a normal step response characteristic Da having a required cutoff frequency of 50 Hz, and are 1% or less of the maximum value. Of the step response characteristic Da is assumed to be half of the elapsed time to reach the substantially zero level of the step response characteristic Da. The cutoff frequency 1 for the target step response characteristic
A compensation signal E corresponding to the amplitude difference (indicated by hatching) of the step response characteristic A of the input high-pass filter 1 of 00 Hz is generated.

【0009】即ち、入力用ハイパスフィルタ1のステッ
プ応答特性Aは、加算による補償を可能にするように目
標ステップ応答特性Dに対して50Hz近辺の成分が減
少している。補償信号Eはこの減少成分を補足すると共
に、目標ステップ応答特性Dに近づける補償を行う。第
1及び第2の積分回路2、3の出力電圧は帰還量が零の
場合それぞれ点線のようになり、第2の積分回路3の出
力電圧のテイル部分の振幅は2回積分で大きくなる。実
線で示す第1の積分回路2の出力電圧Bはハッチング領
域の補償信号を発生すると共に、帰還により傾斜特性D
bよりも内側領域、即ち時定数CR(1.6ms)以内
の領域をより多めに補償する。同様に、実線の第2の積
分回路3の出力電圧Cは、1/4に振幅調整され、かつ
極性反転された波形Coとなり、さらに出力電圧Bとの
加算により補償信号Eとなって特にステップ応答特性A
の振幅の1%近辺、即ちテイル部分を有効に補償する。
That is, in the step response characteristic A of the input high-pass filter 1, a component near 50 Hz is reduced with respect to the target step response characteristic D so as to enable compensation by addition. The compensation signal E complements the reduced component and performs compensation to approach the target step response characteristic D. When the feedback amount is zero, the output voltages of the first and second integration circuits 2 and 3 become like dotted lines, respectively, and the amplitude of the tail portion of the output voltage of the second integration circuit 3 increases by the second integration. The output voltage B of the first integration circuit 2 shown by the solid line generates a compensation signal in a hatched area, and the slope characteristic D by feedback.
The region inside b, that is, the region within the time constant CR (1.6 ms) is more compensated. Similarly, the output voltage C of the second integration circuit 3 indicated by the solid line becomes a waveform Co whose amplitude is adjusted to 1 / and whose polarity is inverted, and further becomes a compensation signal E by addition with the output voltage B, and becomes a step signal. Response characteristics A
Around 1% of the amplitude, ie, the tail portion, is effectively compensated.

【0010】換言すれば、図5Aに示すように、実線で
示す遮断周波数50Hzの通常の減衰特性に対して、出
力電圧Bで遮断周波数100Hzから50Hzの特性に
近づけると共にハッチング領域(遮断周波数50Hzに
対して伝送帯域側)を補償し、出力電圧Cが主にドット
領域(遮断周波数50Hzに対して減衰領域側)を6d
B/octにより近づける補償をすることにより、点線
で示すように遮断周波数50Hzに対して肩特性の改善
されたハイパスフィルタ特性が得られる。また、遮断周
波数50Hz近辺で定遅延特性、即ち周波数に比例した
位相回転特性がより広い範囲で得られる。
In other words, as shown in FIG. 5A, the output voltage B approaches the characteristic of the cutoff frequency of 100 Hz to 50 Hz, and the hatching region (the cutoff frequency of 50 Hz). The output voltage C is mainly 6d in the dot area (attenuation area side with respect to cutoff frequency of 50 Hz).
By compensating for closer to B / oct, a high-pass filter characteristic having an improved shoulder characteristic with respect to a cutoff frequency of 50 Hz can be obtained as shown by a dotted line. Further, a constant delay characteristic near a cutoff frequency of 50 Hz, that is, a phase rotation characteristic proportional to the frequency can be obtained in a wider range.

【0011】入力インパルスは、補償信号Eを加算され
る際に、遮断周波数50Hz領域の成分が過剰に補償さ
れるのを回避されるように、ハイパスフィルタ1の通過
時に遮断周波数50Hz領域を予めカットされ、補償時
に急峻に遮断周波数領域が補償される。インパルスの応
答特性を確認するには、通常図4Aに示すような時間幅
100msの三角波に対する応答で確認しており、通常
のCRの遮断周波数50Hzのハイパスフィルタは、図
4Bに示す点線の応答波形になるのに対して、本発明の
ハイパスフィルタは、実線に示すように改善される。こ
の三角波は心電図のQRS波に近似していると見なすこ
とができ、その直後に発生する微小高域成分の検出にも
有効である。
When the input impulse is added with the compensation signal E, the cut-off frequency 50 Hz region is cut beforehand when passing through the high-pass filter 1 so as to prevent components in the cut-off frequency 50 Hz region from being excessively compensated. In this case, the cut-off frequency region is sharply compensated during the compensation. In order to confirm the impulse response characteristics, a response to a triangular wave having a time width of 100 ms as shown in FIG. 4A is normally confirmed. A normal high-pass filter having a cut-off frequency of 50 Hz of a CR has a response waveform indicated by a dotted line in FIG. 4B. In contrast, the high-pass filter of the present invention is improved as shown by the solid line. This triangular wave can be considered to be similar to the QRS wave of the electrocardiogram, and is also effective for detecting a minute high frequency component generated immediately thereafter.

【0012】図7は二次のCRの微分回路より構成され
た入力用ハイパスフィルタを備えた場合の実施例であ
り、図示のような定数を有するコンデンサC11、抵抗
R11及びC12、抵抗R12より構成される二次の入
力用ハイパスフィルタ11に後続する緩衝増幅器A11
に、第1及び第2の積分回路が後続している。このハイ
パスフィルタは、減衰特性の漸近線が二次の12dB/
octとなり、補償すべき肩領域が遮断周波数50Hz
に近づくのに相応して、必要な遮断周波数50Hzに対
して前述の実施例の場合の2倍から約1.7倍の遮断周
波数に設定されている。抵抗R13、R14、緩衝増幅
器A12及びコンデンサC13で第1の積分回路を構成
し、抵抗R15、コンデンサC14で第2の積分回路を
構成している。抵抗R16、R17で1/2の振幅調整
回路を構成する。加算器A13−入力端子へには第2の
積分出力が、また+入力端子には第1の積分出力が抵抗
R13から、入力用ハイパスフィルタ11の出力は、R
14から入力される。
FIG. 7 shows an embodiment provided with an input high-pass filter constituted by a secondary CR differentiating circuit, which comprises a capacitor C11 having constants as shown, resistors R11 and C12, and a resistor R12. Amplifier A11 following the secondary input high-pass filter 11
, Followed by first and second integrating circuits. In this high-pass filter, the asymptote of the attenuation characteristic has a quadratic 12 dB /
oct, and the shoulder area to be compensated is a cutoff frequency of 50 Hz.
Accordingly, the cut-off frequency is set to twice to about 1.7 times the required cut-off frequency of 50 Hz for the above-described embodiment. The resistors R13 and R14, the buffer amplifier A12, and the capacitor C13 form a first integrating circuit, and the resistor R15 and the capacitor C14 form a second integrating circuit. The resistors R16 and R17 form a 1/2 amplitude adjustment circuit. The second integrated output is provided to the adder A13-input terminal, the first integrated output is provided to the + input terminal from the resistor R13, and the output of the input high-pass filter 11 is provided as R
14 is input.

【0013】このような第1及び第2の積分回路で補償
信号発生回路を構成するために、図8に示すように、目
標ステップ応答特性Dは、遮断周波数50Hzのステッ
プ応答特性Daの37%(1/e)レベルまで最初と同
じ傾斜特性で下降し、かつ一旦マイナスに振り込んだ後
に通常の半分の経過時間で零レベルに達するように想定
してある。この目標ステップ応答特性Dに対する入力用
ハイパスフィルタ11のステップ応答特性Aの振幅差
(ハッチングで示す)に対応する補償信号Eを発生させ
る。
In order to form a compensation signal generating circuit with such first and second integrating circuits, as shown in FIG. 8, the target step response characteristic D is 37% of the step response characteristic Da at a cutoff frequency of 50 Hz. It is assumed that it descends to the (1 / e) level with the same inclination characteristics as the first, and reaches zero level in half the elapsed time of the normal after it is once transferred to minus. A compensation signal E corresponding to an amplitude difference (indicated by hatching) of a step response characteristic A of the input high-pass filter 11 with respect to the target step response characteristic D is generated.

【0014】即ち、図8において、第1及び第2の積分
回路2、3の出力電圧B、Cが、点線で示す無帰還が特
性に帰還が加えられて実線で示すように得られる。即
ち、出力電圧Bはステップ応答特性Aを目標ステップ応
答特性Dの直線領域に近づけるように補償する。出力電
圧Cは相対的に外側の成分が大きく、1/2に振幅調整
され、極性反転されて波形Coとなり、出力電圧Bの補
償で零復帰時点が後退するのを目標ステップ応答特性D
の零復帰時点に戻すように補償する。換言すれば、図5
Bに示すように、実線で示す遮断周波数50Hzの通常
の減衰特性に対して、出力電圧Bで遮断周波数近辺の成
分の過剰にカットされた特性を遮断周波数50Hzの特
性に近づけると共にハッチング領域(遮断周波数50H
zに対して伝送帯域側)を補償し、出力電圧Cが主にド
ットで示す減衰領域側を12dB/octにより近づけ
る補償をすることにより、点線で示すように遮断周波数
50Hzに対して肩特性の改善されたハイパスフィルタ
特性が得られる。三角波に対しては、図4Cに示すよう
な応答波形になり、実線に示すように点線波形から改善
される。
That is, in FIG. 8, the output voltages B and C of the first and second integration circuits 2 and 3 are obtained as shown by the solid line with no feedback shown by the dotted line with feedback added to the characteristics. That is, the output voltage B compensates the step response characteristic A so as to approach the linear region of the target step response characteristic D. The output voltage C has a relatively large outer component, the amplitude of which is adjusted to 、, the polarity is inverted, and the waveform Co is obtained.
Is compensated to return to the point of return to zero. In other words, FIG.
As shown in B, the characteristic of the output voltage B, which is excessively cut off in the vicinity of the cut-off frequency, approaches the characteristic of the cut-off frequency of 50 Hz, as well as the normal attenuation characteristic of the cut-off frequency of 50 Hz shown by the solid line. Frequency 50H
z in the transmission band), and compensates for the output voltage C so that the attenuation region side mainly represented by the dots becomes closer to 12 dB / oct, so that the shoulder characteristic of the cutoff frequency 50 Hz is obtained as shown by the dotted line. An improved high-pass filter characteristic is obtained. For a triangular wave, a response waveform as shown in FIG. 4C is obtained, which is improved from a dotted waveform as shown by a solid line.

【0015】さらに、前述の一次ハイパスフィルタ及び
二次のハイパスフィルタを直列に接続することにより、
三次のハイパスフィルタを構成することがでる。この場
合、図5Cに示すように、減衰特性の漸近線が18dB
/octの周波数特性に対して、同様に第1の積分回路
の出力電圧で特性全体及びハッチング領域を補償し、第
2の積分回路の出力電圧でドット領域を補償することに
より、点線で示す周波数特性が得られる。三角波に対し
ては、図4Dに示す応答波形になる。
Further, by connecting the above-mentioned primary high-pass filter and secondary high-pass filter in series,
A third-order high-pass filter can be configured. In this case, as shown in FIG. 5C, the asymptote of the attenuation characteristic is 18 dB.
Similarly, for the frequency characteristic of / oct, the output voltage of the first integration circuit compensates for the entire characteristic and the hatched area, and the output voltage of the second integration circuit compensates for the dot area. Characteristics are obtained. The response waveform for the triangular wave is shown in FIG. 4D.

【0016】尚、本発明は、QRS波に限らず、インパ
ルスの直後に発生する高域成分を抽出する場合に適用可
能である。二次のハイパスフィルタは、前述の一次ハイ
パスフィルタを直列に接続して構成することもでき、三
次のハイパスフィルタは入力用ハイパスフィルタを三次
にして同様に相応の補償回路を付属させて構成すること
もできる。
The present invention is applicable not only to the QRS wave but also to a case where a high-frequency component generated immediately after an impulse is extracted. The secondary high-pass filter can also be configured by connecting the above-mentioned primary high-pass filter in series, and the tertiary high-pass filter should be configured by tertiary input high-pass filter and also with a corresponding compensation circuit attached. Can also.

【0017】[0017]

【発明の効果】以上、本発明の抵抗及びコンデンサを用
いた簡単なアナログ回路によるインパルス用ハイパスフ
ィルタにより、ハイパスフィルタの遮断周波数領域の位
相推移を無くして振幅の肩特性を急峻にすることが可能
となる。つまり、遮断周波数領域を主成分にするインパ
ルスに対するハイパスフィルタ通過後の基線復帰を早く
する。QRS波の直後に発生するLP等の微小高域成分
も抽出可能になる。ハイパスフィルタを二次、三次と高
次化することにより、一層急峻な低域減衰特性が実現さ
れ、インパルス応答特性が一層改善される。
As described above, the impulse high-pass filter using the simple analog circuit using the resistor and the capacitor according to the present invention makes it possible to eliminate the phase transition in the cut-off frequency region of the high-pass filter and to sharpen the shoulder characteristic of the amplitude. Becomes In other words, the return of the base line after passing through the high-pass filter to the impulse whose main component is the cutoff frequency region is accelerated. A minute high-frequency component such as LP generated immediately after the QRS wave can also be extracted. By increasing the order of the high-pass filter to the second and third order, a steeper low-frequency attenuation characteristic is realized, and the impulse response characteristic is further improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例による心電図信号用ハイパス
フィルタの基本構成を示す図である。
FIG. 1 is a diagram showing a basic configuration of an electrocardiogram signal high-pass filter according to an embodiment of the present invention.

【図2】同ハイパスフィルタの詳細回路を示す図であ
る。
FIG. 2 is a diagram showing a detailed circuit of the high-pass filter.

【図3】同ハイパスフィルタの動作を説明する図であ
る。
FIG. 3 is a diagram illustrating the operation of the high-pass filter.

【図4】図1及び図7によるハイパスフィルタの応答特
性を説明する図である。
FIG. 4 is a diagram for explaining a response characteristic of the high-pass filter according to FIGS. 1 and 7;

【図5】図1及び図7によるハイパスフィルタの周波数
特性を示す図である。
FIG. 5 is a diagram showing a frequency characteristic of the high-pass filter according to FIGS. 1 and 7;

【図6】本発明によるハイパスフィルタの入力信号とな
る心電図の波形図である。
FIG. 6 is a waveform diagram of an electrocardiogram which is an input signal of a high-pass filter according to the present invention.

【図7】本発明の別の実施例によるインパルス用ハイパ
スフィルタの構成を示す図である。
FIG. 7 is a diagram showing a configuration of an impulse high-pass filter according to another embodiment of the present invention.

【図8】同別の実施例によるハイパスフィルタの動作を
説明する図である。
FIG. 8 is a diagram illustrating the operation of a high-pass filter according to another embodiment.

【符号の説明】[Explanation of symbols]

1、11 入力用ハイパスフィルタ 1,11 High-pass filter for input

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 インパルスが入力し、かつ必要な遮断周
波数よりも高い遮断周波数のCRの微分回路よりなる入
力用ハイパスフィルタと、必要な遮断周波数のステップ
応答特性の傾斜で始まり、かつ実質的に零レベルに達す
る経過時間が半分になる目標ステップ応答特性に対する
入力用ハイパスフィルタのステップ応答特性の振幅差に
対応する補償信号を発生する補償信号発生回路と、前記
入力ハイパスフィルタの出力信号と前記補償信号とを加
算する加算回路とを備え、 前記補償信号発生回路は、前記入力用ハイパスフィルタ
の出力信号を入力とする第1の積分回路と、この積分回
路の出力信号の積分を行う第2の積分回路とを有すると
共に、前記第2の積分回路の出力信号は前記第1の積分
回路の積分コンデンサの入力端子と反対側の端子に帰還
され、前記第1及び第2の積分回路の出力信号の振幅調
整及び前記第1の積分回路の出力信号から前記第2の積
分回路の出力信号の減算により前記補償信号を発生させ
ることを特徴とするインパルス用ハイパスフィルタ。
1. An input high-pass filter comprising a CR differentiating circuit to which an impulse is input and having a cut-off frequency higher than a required cut-off frequency, and a slope of a step response characteristic of a necessary cut-off frequency, and substantially starts. A compensation signal generating circuit for generating a compensation signal corresponding to an amplitude difference of a step response characteristic of an input high-pass filter with respect to a target step response characteristic in which an elapsed time to reach zero level is reduced, an output signal of the input high-pass filter and the compensation A compensating signal generating circuit, wherein the compensation signal generating circuit receives the output signal of the input high-pass filter as an input, and integrates the output signal of the integrating circuit. And an output signal of the second integration circuit is connected to an input terminal of the first integration circuit opposite to an input terminal of the integration capacitor. And adjusting the amplitude of the output signals of the first and second integration circuits and subtracting the output signal of the second integration circuit from the output signal of the first integration circuit to generate the compensation signal. Characteristic high-pass filter for impulse.
JP04135674A 1992-04-30 1992-04-30 High-pass filter for impulse Expired - Fee Related JP3079330B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04135674A JP3079330B2 (en) 1992-04-30 1992-04-30 High-pass filter for impulse

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04135674A JP3079330B2 (en) 1992-04-30 1992-04-30 High-pass filter for impulse

Publications (2)

Publication Number Publication Date
JPH05308245A JPH05308245A (en) 1993-11-19
JP3079330B2 true JP3079330B2 (en) 2000-08-21

Family

ID=15157279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04135674A Expired - Fee Related JP3079330B2 (en) 1992-04-30 1992-04-30 High-pass filter for impulse

Country Status (1)

Country Link
JP (1) JP3079330B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE44115E1 (en) 2001-12-11 2013-04-02 Transpacific Plasma, Llc Electronic messenger

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5565812A (en) * 1995-03-23 1996-10-15 Texas Instruments Incorporated Increased sensitivity signal shaper circuit to recover a data stream coming from a digitally modulated channel
US5708389A (en) * 1996-03-15 1998-01-13 Lucent Technologies Inc. Integrated circuit employing quantized feedback
CN106886014B (en) * 2017-03-23 2023-06-30 桂林理工大学 Dual receive channel for pulsed lidar

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE44115E1 (en) 2001-12-11 2013-04-02 Transpacific Plasma, Llc Electronic messenger

Also Published As

Publication number Publication date
JPH05308245A (en) 1993-11-19

Similar Documents

Publication Publication Date Title
US6924700B2 (en) Class D amplifier
CA1328301C (en) Continuously adaptive phase locked loop synthesizer
JPH10504155A (en) hearing aid
CA2067562C (en) Frequency doubler with a variable delay circuit and exclusive or gate
WO1998048737A9 (en) Active headset with bridge amplifier
JP3079330B2 (en) High-pass filter for impulse
JP2008507932A (en) Anti-jitter circuit
WO2009131440A1 (en) Method and control circuit for controlling pulse width modulation
EP0135081A2 (en) Noise reduction by linear interpolation using a dual function amplifier circuit
EP1441447A4 (en) D/a converter and output amplifying circuit
CA1102418A (en) Amplifier systems
JP2746152B2 (en) Distortion compensation circuit
RU2160903C2 (en) Current measuring circuit
JPH03112275A (en) Noise reduction circuit
JP2576517B2 (en) Noise reduction circuit
JP3125225B2 (en) Digital / analog converter
JP3106794B2 (en) Pulse width modulation amplifier
JP2004172715A (en) Class-d amplifier
EP0143637A2 (en) Feedback type comb filter
JPH04326294A (en) Frequency band dividing device
JPS5926673Y2 (en) Noise removal circuit
KR0113721Y1 (en) Echo device
JPS6277719A (en) Interference wave eliminating device
JPH044778B2 (en)
JPH02125571A (en) High frequency noise extraction circuit

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees