JP3075785B2 - Tunnel position measurement method - Google Patents

Tunnel position measurement method

Info

Publication number
JP3075785B2
JP3075785B2 JP03218032A JP21803291A JP3075785B2 JP 3075785 B2 JP3075785 B2 JP 3075785B2 JP 03218032 A JP03218032 A JP 03218032A JP 21803291 A JP21803291 A JP 21803291A JP 3075785 B2 JP3075785 B2 JP 3075785B2
Authority
JP
Japan
Prior art keywords
measuring
tunnel
angular velocity
self
traveling vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP03218032A
Other languages
Japanese (ja)
Other versions
JPH0643243A (en
Inventor
一嘉 川端
友博 黒沢
一男 豊川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Airec Engineering Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Airec Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp, Airec Engineering Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP03218032A priority Critical patent/JP3075785B2/en
Publication of JPH0643243A publication Critical patent/JPH0643243A/en
Application granted granted Critical
Publication of JP3075785B2 publication Critical patent/JP3075785B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Optical Radar Systems And Details Thereof (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、トンネル(管路,溝
(半円形等)を含む)を築造中、トンネル完成検査時ま
たは既存のトンネル等の調査時の線形、つまりトンネル
の布設ルートを計測するトンネルの位置計測方法に関す
るものである。
BACKGROUND OF THE INVENTION The present invention relates to the construction of tunnels (including pipelines, grooves (semicircular shapes, etc.)), the completion of tunnel inspections, or the survey of existing tunnels. The present invention relates to a method for measuring a position of a tunnel to be measured.

【0002】[0002]

【従来の技術】従来、回転角速度計測用ジャイロスコー
プ、回転角計測用加速度計および仰角計測用加速度計を
設置した自走式走行台車を有線または無線により無人で
走行させることにより得られる角速度信号を使ってトン
ネルの線形を計測する際の距離計測方法は、自走式走行
台車に取り付けた走行距離計測用距離計による計測であ
った。
2. Description of the Related Art Conventionally, an angular velocity signal obtained by running a self-propelled traveling vehicle equipped with a gyroscope for measuring a rotational angular velocity, an accelerometer for measuring a rotational angle and an accelerometer for measuring an elevation angle unattended by wire or wirelessly is used. The distance measurement method used to measure the alignment of the tunnel using a trolley was a mileage measurement odometer attached to a self-propelled traveling vehicle.

【0003】[0003]

【発明が解決しようとする課題】しかし、走行距離計測
用距離計による計測は走行車輪の回転数より走行距離を
算出するものであるため、トンネル内表面の微妙な凹凸
によって走行車輪の回転数が変化してしまうため、高精
度に距離を計測することは不可能である。また、自走式
走行台車のトンネル内の位置が走行中に移動することに
より、正確な測定ができないという問題点があった。
However, since the measurement by the odometer for measuring the mileage is to calculate the mileage from the number of revolutions of the traveling wheels, the number of revolutions of the traveling wheels may be reduced due to minute irregularities on the inner surface of the tunnel. Because of the change, it is impossible to measure the distance with high accuracy. In addition, since the position of the self-propelled traveling vehicle in the tunnel moves during traveling, there is a problem that accurate measurement cannot be performed.

【0004】本発明の目的は、上記の問題点を解決し、
トンネル内表面の微妙な凹凸や自走式走行台車の断面内
での位置の変化により、計測値が変化しないトンネルの
位置計測方法を提供することにある。
An object of the present invention is to solve the above problems,
An object of the present invention is to provide a tunnel position measuring method in which a measured value does not change due to subtle irregularities on the inner surface of the tunnel or a change in position in a cross section of the self-propelled traveling vehicle.

【0005】[0005]

【課題を解決するための手段】本発明にかかるトンネル
の位置計測方法は、回転角速度計測用ジャイロスコー
プ、回転角計測用加速度計および仰角計測用加速度計等
からなる3軸方向角速度測定手段を設置した自走式走行
台車を、有線または無線により無人で走行させることに
より得られる角速度信号を使ってトンネルの線形を計測
する際の距離計測方法として、トンネル内に所定間隔で
設置された走行距離を表す標識から得られる、あるいは
干渉縞の変化から得られる電気的走行距離信号を用い、
この電気的走行距離信号と、上記角速度信号をトンネル
の断面内における水平方向および鉛直方向での位置を示
す信号により補正し、演算処理することによってトンネ
ル等の線形を計測するようにしたものである。
The method for measuring the position of a tunnel according to the present invention includes a three-axis angular velocity measuring means including a gyroscope for measuring a rotational angular velocity, an accelerometer for measuring a rotational angle, an accelerometer for measuring an elevation angle, and the like. A self-propelled traveling vehicle that travels unattended by wire or wirelessly as a distance measurement method when measuring the alignment of the tunnel using an angular velocity signal obtained by running the vehicle at a predetermined distance in the tunnel Using the electrical mileage signal obtained from the sign representing or obtained from the change in interference fringes,
The electrical traveling distance signal and the angular velocity signal are corrected by signals indicating the horizontal and vertical positions in the cross section of the tunnel, and the linearity of the tunnel or the like is measured by performing arithmetic processing. .

【0006】[0006]

【作用】本発明においては、3軸方向角速度測定手段か
ら得られる角速度信号と、標識等から得られる電気的走
行距離信号を、トンネルの断面内で発射される光線の反
射によって得られるトンネルの断面内における水平方向
および鉛直方向での位置を示す信号により補正し演算処
理するので、トンネル内表面の微妙な凹凸によって走行
車輪の回転数が変化してしまうことによる距離測定精度
の低下を免れることや、自走式走行台車の断面内で位置
変化等による距離測定精度の低下を免れることができ
る。
In the present invention, the angular velocity signal obtained from the three-axis direction angular velocity measuring means and the electric traveling distance signal obtained from a sign or the like are converted into the cross section of the tunnel obtained by the reflection of the light beam emitted within the cross section of the tunnel. Compensation and processing are performed using signals indicating the horizontal and vertical positions within the tunnel, so that the accuracy of distance measurement due to changes in the rotation speed of the traveling wheel due to minute irregularities on the inner surface of the tunnel can be avoided. In addition, a decrease in distance measurement accuracy due to a change in position or the like in the cross section of the self-propelled traveling vehicle can be avoided.

【0007】[0007]

【実施例】本発明における自走式走行台車に設置するX
軸,Y軸,Z軸回りの角速度の測定手段としては、A.
3軸回転角速度計測用ジャイロスコープ、B.2軸回転
角速度計測用ジャイロスコープと回転角計測用加速度計
の組合せおよび、C.1軸回転角速度計測用ジャイロス
コープと回転角計測用加速度計の組合せの3つの方法が
あるが、まず最初に、Aの3軸回転角速度計測用ジャイ
ロスコープを用いた実施例について述べる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS X installed on a self-propelled traveling vehicle according to the present invention
As means for measuring angular velocities around the Y axis, the Y axis, and the Z axis, A.I.
Gyroscope for measuring three-axis rotation angular velocity, B. C. a combination of a gyroscope for measuring two-axis rotational angular velocity and an accelerometer for measuring rotational angle; There are three methods of combining a gyroscope for measuring a one-axis rotational angular velocity and an accelerometer for measuring a rotational angle. First, an embodiment using the three-axis rotational angular velocity measuring gyroscope A will be described.

【0008】図1に概要側断面図を示す。図2図1
トンネル内断面拡大図を示す。図3に自走式走行台車の
正面図を示す。図4に自走式走行台車側面を示す。
FIG. 1 is a schematic sectional side view. Figure 2 shows a <br/> tunnel sectional enlarged view of FIG. FIG. 3 shows a front view of the self-propelled traveling vehicle. FIG. 4 shows a side view of the self-propelled traveling vehicle.

【0009】図1に示すように、トンネル1内に標識2
を一定距離Lの間隔で順次固定設置する。この標識2
は、例えばバーコードとし、基準地点からの距離が直ち
に分かるようにする。自走式走行台車10には、車輪1
1が具備され、図示しない駆動源を無線または有線で制
御して自走可能となっている。そして、第1回転角速度
計測用ジャイロスコープ12、第2回転角速度計測用ジ
ャイロスコープ13および第3回転角速度計測用ジャイ
ロスコープ14を固定設置する。これら各ジャイロスコ
ープ12〜14で3軸方向角速度測定手段15が構成さ
れる。第1回転角速度計測用ジャイロスコープ12は自
走式走行台車10の進行方向Y軸回りの角度を演算処理
可能な方向に固定設置する。第2回転角速度計測用ジャ
イロスコープ13は自走式走行台車10の進行方向Yに
直角の鉛直方向Z軸回りの角度を演算処理可能な方向に
固定設置する。第3回転角速度計測用ジャイロスコープ
14は自走式走行台車10の進行方向Yに直角の水平方
向X軸回りの角度を演算処理可能な方向に固定設置す
る。16は信号増幅装置、17は演算処理装置であり、
両者は実際には離れており、ケーブルを介して接続され
る。18は表示装置、19はデータ蓄積装置である。2
0は識別光線光源であり、標識2を照明し、21は識別
光線受信器で、標識2からの反射光を読み取る。22は
支持具である。23は離隔距離計測用光線光源、24は
離隔距離計測用光線受信器であり、支持具25で取付け
られている。
[0009] As shown in FIG.
Are sequentially fixedly installed at intervals of a fixed distance L. This sign 2
Is a bar code, for example, so that the distance from the reference point can be immediately known. The self-propelled traveling vehicle 10 has wheels 1
1 is provided, and a driving source (not shown) is controlled wirelessly or by wire so that it can run on its own. Then, the first rotational angular velocity measuring gyroscope 12, the second rotational angular velocity measuring gyroscope 13, and the third rotational angular velocity measuring gyroscope 14 are fixedly installed. These gyroscopes 12 to 14 constitute a three-axis direction angular velocity measuring means 15. The first rotational angular velocity measuring gyroscope 12 is fixedly installed in a direction in which the angle of the self-propelled traveling vehicle 10 around the Y direction in the traveling direction can be processed. The second rotational angular velocity measuring gyroscope 13 is fixedly installed in a direction in which an angle around a vertical Z axis perpendicular to the traveling direction Y of the self-propelled traveling vehicle 10 can be processed. The third rotational angular velocity measuring gyroscope 14 is fixedly installed in a direction in which the angle about the horizontal X axis perpendicular to the traveling direction Y of the self-propelled traveling vehicle 10 can be processed. 16 is a signal amplifying device, 17 is an arithmetic processing device,
The two are actually separated and connected via a cable. Reference numeral 18 denotes a display device, and 19 denotes a data storage device. 2
Reference numeral 0 denotes an identification light source, which illuminates the marker 2, and reference numeral 21 denotes an identification light receiver, which reads reflected light from the marker 2. 22 is a support. Reference numeral 23 denotes a light source for measuring the separation distance, and reference numeral 24 denotes a light beam receiver for measuring the separation distance.

【0010】次に、動作について説明する。自走式走行
台車10をトンネル1内に設置された標識2に沿って走
行させると、第1,第2,第3回転角速度計測用ジャイ
ロスコープ12,13,14によってそれぞれY軸・Z
軸・X軸回りの角速度を検知,演算し、信号増幅装置1
6によって角速度信号が増幅された後にケーブルを介し
て演算処理装置17に送られる。また、識別光線光源2
0から標識2へ向けて光線が発射され、その反射光線を
識別光線受信器21で受信して得られる電気的走行距離
信号より自走式走行台車10の走行距離を検知し、信号
増幅装置16によって走行距離信号が増幅された後にケ
ーブルを介して演算処理装置17に伝送される。演算処
理装置17に伝送された角速度信号および電気的走行距
離信号は、トンネル1の断面内で離隔距離計測用光線光
源23から壁へ向けて光線が発射され、その反射光線を
離隔距離計測用光線受信器24で受信して得られるトン
ネル1等の断面内における水平方向および鉛直方向での
位置を示す信号により補正され、演算処理することによ
ってトンネル1の線形を表示装置18に表示する。デー
タは、データ蓄積装置19に蓄積する。
Next, the operation will be described. When the self-propelled traveling vehicle 10 travels along the sign 2 installed in the tunnel 1, the first, second, and third rotational angular velocity measuring gyroscopes 12, 13, and 14 respectively provide Y-axis and Z-axis.
Detects and calculates angular velocities around the axis and X axis, and amplifies the signal.
After being amplified by 6, the angular velocity signal is sent to the arithmetic processing unit 17 via a cable. In addition, the identification light source 2
A light beam is emitted from 0 toward the sign 2 and the traveling distance of the self-propelled traveling vehicle 10 is detected from the electric traveling distance signal obtained by receiving the reflected light beam by the identification light beam receiver 21, and the signal amplifying device 16. After the travel distance signal is amplified by this, it is transmitted to the arithmetic processing unit 17 via a cable. The angular velocity signal and the electric traveling distance signal transmitted to the arithmetic processing unit 17 are such that a light beam is emitted from the light source 23 for measuring the distance in the cross section of the tunnel 1 toward the wall, and the reflected light is converted to a light beam for measuring the distance. The signal is corrected by signals indicating the horizontal and vertical positions in the cross section of the tunnel 1 and the like obtained by the receiver 24, and the alignment of the tunnel 1 is displayed on the display device 18 by arithmetic processing. The data is stored in the data storage device 19.

【0011】以下に、さらに各部分の動作について詳し
く説明する。
Hereinafter, the operation of each part will be described in detail.

【0012】図4の識別光線光源20は、自走式走行台
車10の進行方向Yと直角のX方向に光を放射して標識
2を照射し、その反射光を識別光線受信器21で受光し
基準地点からの距離を計測する。離間距離計測用光線光
源23からは図5に示すようにレーザ光線が発せられて
おり、トンネル1の壁面1Aに当たって反射したレーザ
光線を離間距離計測用光線受信器24で受光し、その強
弱により離間距離Dを測定する。離間距離計測用光線光
源23と離間距離計測用光線受信器24と壁面1Aとの
離間距離、自走式走行台車10における各ジャイロスコ
ープ12〜14の取付け位置より各ジャイロスコープ1
2〜14と壁面1Aとの距離がわかる。すなわち、図6
トンネル壁面1と各ジャイロスコープ12〜14との
離間距離が求められる。
The discriminating light source 20 shown in FIG. 4 emits light in the X direction perpendicular to the traveling direction Y of the self-propelled traveling vehicle 10 to irradiate the sign 2, and the reflected light is received by the discriminating light receiver 21. Measure the distance from the reference point. As shown in FIG. 5, a laser beam is emitted from the light source 23 for measuring the distance, and the laser beam reflected on the wall 1A of the tunnel 1 is received by the light receiver 24 for measuring the distance. Measure the distance D. Each gyroscope 1 is determined based on the distance between the distance measuring light source 23, the distance measuring light receiver 24, and the wall 1A, and the mounting position of each of the gyroscopes 12 to 14 on the self-propelled traveling vehicle 10.
The distance between 2 to 14 and the wall surface 1A is known. That is, FIG.
The distance between the tunnel wall 1 and each of the gyroscopes 12 to 14 is determined.

【0013】このように、各ジャイロスコープ12〜1
4の位置を求めるのは、実際に計測するのは各ジャイロ
スコープ12〜14の進行軌跡となるので、各ジャイロ
スコープ12〜14がトンネル1の断面内のどの位置に
あるかを知る必要があり、トンネル壁面1と各ジャイロ
スコープ12〜14との離間距離を求めて、後述するよ
うに軌跡の演算の補正を行う。
As described above, each of the gyroscopes 12 to 1
Since the actual measurement is the traveling locus of each of the gyroscopes 12 to 14, it is necessary to know the position of each of the gyroscopes 12 to 14 in the cross section of the tunnel 1. , Tunnel wall 1 and each gyro
The distance from the scopes 12 to 14 is obtained, and the calculation of the trajectory is corrected as described later.

【0014】図7はトンネル1の線形を求めるための説
明図で、図7(a)は水平方向をX、垂直方向をZ、台
車進行方向をYを定めるもので、図7(b),(c),
(d)のように、定められた走行距離ごとにX−Y平
面、Y−Z平面、Z−X平面における方位角θ,台車の
仰角β,台車の回転角αを求め、台車の仰角β,回転角
αにより方位角θを補正する。
FIG. 7 is an explanatory view for obtaining the alignment of the tunnel 1. FIG. 7 (a) defines the horizontal direction as X, the vertical direction as Z, and the bogie traveling direction as Y. (C),
As shown in (d), the azimuth θ, the elevation angle β of the bogie, and the rotation angle α of the bogie in the XY plane, the YZ plane, and the ZX plane are determined for each predetermined traveling distance, and the elevation angle β of the bogie is obtained. , The azimuth angle θ is corrected by the rotation angle α.

【0015】図8は、図7で説明した補正した方位角θ
と、一定の距離d(標識2で求められる)とを使用して
軌跡を演算している様子を示す。
FIG. 8 shows the corrected azimuth angle θ described in FIG.
And a trajectory being calculated using a constant distance d (determined by the sign 2).

【0016】図9は表示装置18に表示される図形例を
示すもので、横軸は走行距離、縦軸は水平方向ずれ量を
示し、曲線は台車進行軌跡を示す。なお、微細に見れば
図8に示すように、曲線ではなく折線となる。この図形
からトンネル1の布設ルートがわかる。
FIG. 9 shows an example of a graphic displayed on the display device 18, wherein the horizontal axis represents the traveling distance, the vertical axis represents the amount of deviation in the horizontal direction, and the curve represents the truck traveling locus. When viewed finely, as shown in FIG. 8, it is not a curve but a broken line. From this figure, the installation route of the tunnel 1 can be known.

【0017】次に、自走式走行台車10に設置する3軸
方向角速度測定方法として2軸回転角速度計測用ジャイ
ロスコープと回転角計測用加速度計の組合せを用いた実
施例について述べる。図10に自走式走行台車10の正
面図を示し、図11に側面図を示す。
Next, an embodiment using a combination of a gyroscope for measuring a two-axis rotational angular velocity and an accelerometer for measuring a rotational angle will be described as a method of measuring an angular velocity in a three-axis direction installed on the self-propelled traveling vehicle 10. FIG. 10 shows a front view of the self-propelled traveling vehicle 10, and FIG. 11 shows a side view.

【0018】自走式走行台車10には、回転角計測用加
速度計26,第2回転角速度計測用ジャイロスコープ1
3および第3回転角速度計測用ジャイロスコープ14を
固定設置する。回転角計測用加速度計26は、自走式走
行台車10の進行方向Y軸回りの角度を演算処理可能な
方向に固定設置する。第2回転角速度計測用ジャイロス
コープ13は自走式走行台車10の進行方向Yに直角の
鉛直方向Z軸回りの角度を演算処理可能な方向に固定設
置する。第3回転角速度計測用ジャイロスコープ14は
自走式走行台車10の進行方向Yに直角の水平方向X軸
回りの角度を演算処理可能な方向に固定設置する。
The self-propelled traveling vehicle 10 has a rotational angle measuring accelerometer 26 and a second rotational angular velocity measuring gyroscope 1.
The third and third rotational angular velocity measuring gyroscopes 14 are fixedly installed. The rotational angle measuring accelerometer 26 is fixedly installed in a direction in which the angle of the self-propelled traveling vehicle 10 about the traveling direction Y axis can be processed. The second rotational angular velocity measuring gyroscope 13 is fixedly installed in a direction in which an angle around a vertical Z axis perpendicular to the traveling direction Y of the self-propelled traveling vehicle 10 can be processed. The third rotational angular velocity measuring gyroscope 14 is fixedly installed in a direction in which the angle about the horizontal X axis perpendicular to the traveling direction Y of the self-propelled traveling vehicle 10 can be processed.

【0019】自走式走行台車10をトンネル1内に設置
された標識2に沿って走行させると、回転角計測用加速
度計26,第2回転角速度計測用ジャイロスコープ13
および第3回転角速度計測用ジャイロスコープ14によ
って、それぞれY軸・Z軸・X軸回りの角速度を検知,
演算し、信号増幅装置16によって角速度信号が増幅さ
れた後にケーブルを介して角速度信号が演算処理装置1
7に送られる。以後の動作は図4に示す実施例と全く同
じである。
When the self-propelled traveling vehicle 10 travels along the sign 2 installed in the tunnel 1, the rotational angle measuring accelerometer 26 and the second rotational angular velocity measuring gyroscope 13
And the third rotational angular velocity measuring gyroscope 14 detects angular velocities around the Y, Z, and X axes, respectively.
After the calculation, the angular velocity signal is amplified by the signal amplifying device 16 and then the angular velocity signal is converted to the arithmetic processing device 1 via the cable.
7 The subsequent operation is exactly the same as that of the embodiment shown in FIG.

【0020】ここで、回転角計測用加速度計26の動作
について図12(a),(b)で説明する。この回転角
計測用加速度計26は、俗にローリング計と云われてい
るもので、受信コイル26A内に発信コイル26Bを振
子状に配置構成したもので、図12(a)のように自走
式走行台車10が水平のときと、図12(b)のように
傾斜したときでは、受信コイル26Aに誘起される電圧
が異なる。これを利用して回転角αを算出するものであ
る。
Here, the operation of the accelerometer 26 for measuring the rotation angle will be described with reference to FIGS. This rotational angle measuring accelerometer 26 is commonly called a rolling meter, in which a transmitting coil 26B is arranged in a pendulum shape within a receiving coil 26A, and is self-propelled as shown in FIG. The voltage induced in the receiving coil 26A differs between when the traveling vehicle 10 is horizontal and when it is inclined as shown in FIG. 12B. This is used to calculate the rotation angle α.

【0021】最後に、自走式走行台車10に設置する3
軸方向角速度測定方法として、1軸回転角速度計測用ジ
ャイロスコープと回転角計測用加速度計と仰角計測用加
速度計の組合せを用いた実施例を図13,図14につい
て述べる。
Finally, 3 to be installed on the self-propelled traveling vehicle 10
As an axial angular velocity measuring method, an embodiment using a combination of a gyroscope for measuring a uniaxial rotational angular velocity, an accelerometer for measuring a rotational angle, and an accelerometer for measuring an elevation angle will be described with reference to FIGS.

【0022】自走式走行台車10には、回転角計測用加
速度計26,仰角計測用加速度計27および第3回転角
速度計測用ジャイロスコープ14を固定設置する。回転
角計測用加速度計26は、自走式走行台車10の進行方
向Y軸回りの角度を演算処理可能な方向に固定設置す
る。仰角計測用加速度計27は自走式走行台車10の進
行方向Yに直角鉛直方向Z軸回りの角度を演算処理可
能な方向に固定設置する。第3回転角速度計測用ジャイ
ロスコープ14は自走式走行台車10の進行方向Yに直
水平方向X軸回りの角度を演算処理可能な方向に固
定設置する。
On the self-propelled traveling vehicle 10, a rotational angle measuring accelerometer 26, an elevation angle measuring accelerometer 27, and a third rotational angular velocity measuring gyroscope 14 are fixedly installed. The rotational angle measuring accelerometer 26 is fixedly installed in a direction in which the angle of the self-propelled traveling vehicle 10 about the traveling direction Y axis can be processed. The elevation angle measuring accelerometer 27 is fixedly installed in a direction in which an angle around a vertical Z axis perpendicular to the traveling direction Y of the self-propelled traveling vehicle 10 can be processed. The third rotational angular velocity measuring gyroscope 14 is fixedly installed in a direction in which the angle about the horizontal X axis perpendicular to the traveling direction Y of the self-propelled traveling vehicle 10 can be processed.

【0023】仰角計測用加速度計27は、俗にピッチン
グ計と云われているもので、動作原理は図12で説明し
た回転角計測用加速度計26と全く同じである。
The elevation angle measuring accelerometer 27 is commonly called a pitching meter, and its operating principle is exactly the same as the rotation angle measuring accelerometer 26 described with reference to FIG.

【0024】自走式走行台車10をトンネル1内に設置
された標識2に沿って走行させると、回転角計測用加速
度計26,仰角計測用加速度計27および第3回転角速
度計測用ジャイロスコープ14によって、それぞれY軸
・Z軸・X軸回りの角速度を検知,演算し、信号増幅装
置16によって角速度信号が増幅された後にケーブルを
介して角速度信号が演算処理装置17に送られる。以後
の動作は図4に示す実施例と全く同じである。
When the self-propelled traveling vehicle 10 travels along the sign 2 installed in the tunnel 1, a rotational angle measuring accelerometer 26, an elevation measuring accelerometer 27, and a third rotational angular velocity measuring gyroscope 14 are provided. Thus, the angular velocities around the Y-axis, Z-axis, and X-axis are respectively detected and calculated, and after the signal amplifier 16 amplifies the angular velocity signal, the angular velocity signal is sent to the arithmetic processing unit 17 via a cable. The subsequent operation is exactly the same as that of the embodiment shown in FIG.

【0025】上記の各実施例では、トンネル1内に標識
2を所定間隔で順次設けておき、これを検出することに
より正確な走行距離を求めているが、この他の壁面1A
を利用した走行距離測定方法として、図15に示すよう
な方法も用いうる。図15において、28はレーザ発振
器、29は受信器で、レーザ光が壁面1Aに当たると壁
面1Aの微妙な凹凸により拡散光に位相の差が生じ光の
干渉が起きる。壁面1Aが静止していれば干渉縞も静止
しているが、自走式走行台車10の走行によって干渉縞
が動くので、その変化により移動距離を知ることができ
る。このように、標識2のような壁面1Aの利用と干渉
縞の変化を用いる壁面1Aの利用のいずれの方法でも、
従来の走行車輪を利用した走行距離の計測に比べ、正確
な計測ができる。
In each of the above-described embodiments, the signs 2 are sequentially provided at predetermined intervals in the tunnel 1, and an accurate traveling distance is obtained by detecting the signs.
As a traveling distance measuring method using the method, a method as shown in FIG. 15 can be used. In FIG. 15, reference numeral 28 denotes a laser oscillator, and reference numeral 29 denotes a receiver. When a laser beam hits the wall surface 1A, a phase difference occurs in diffused light due to minute irregularities on the wall surface 1A, and light interference occurs. If the wall surface 1A is stationary, the interference fringes are also stationary, but since the interference fringes move as the self-propelled traveling vehicle 10 travels, the movement distance can be known from the change. As described above, in any of the method of using the wall 1A such as the sign 2 and the method of using the wall 1A using the change of the interference fringe,
Accurate measurement can be performed as compared with the conventional measurement of the traveling distance using traveling wheels.

【0026】上記3つの実施例のそれぞれに対し自走式
走行台車10にデータ発信装置を搭載しておき、最後に
得られたデータをデータ発信装置で無線伝送し、これを
所要地点に設置したデータ受信装置で受け、トンネル1
の線形を表示装置18に表示する方法もある。
For each of the above three embodiments, a data transmitting device is mounted on the self-propelled traveling vehicle 10, and the data obtained at the end is wirelessly transmitted by the data transmitting device, and is installed at a required point. Tunnel 1 received by data receiving device
Is displayed on the display device 18.

【0027】[0027]

【発明の効果】本発明は、3軸方向角速度測定手段を設
置した自走式走行台車を有線または無線により無人で走
行させることにより得られる角速度信号と、トンネルの
壁面を利用して得られる電気的走行距離信号を、トンネ
ルの断面内で発射される光線の反射により得られるトン
ネルの断面内における水平方向および鉛直方向での位置
を示す信号により補正し、演算処理することによってト
ンネルの線形を計測するようにしたので、トンネル内に
自走式走行台車を走行させることによって、トンネル築
造中,トンネル完成検査時およびトンネル調査時の線形
をトンネル内表面の凹凸や自走式走行台車の断面内での
位置に影響されずに連続的に高精度に測定・把握が可能
となり、人による作業を大幅に減少させ安全作業が確保
される。
According to the present invention, an angular velocity signal obtained by driving a self-propelled traveling vehicle provided with a three-axis direction angular velocity measuring means unattended by wire or wirelessly, and an electric signal obtained by using a tunnel wall surface. The target travel distance signal is corrected by signals indicating the horizontal and vertical positions in the tunnel cross section obtained by the reflection of the light rays emitted in the tunnel cross section, and the tunnel alignment is measured by processing. By running the self-propelled traveling vehicle in the tunnel, the alignment during tunnel construction, tunnel completion inspection, and tunnel survey can be controlled by the unevenness of the inner surface of the tunnel and the cross section of the self-propelled traveling vehicle. The measurement and comprehension can be continuously performed with high precision without being affected by the position of the work, and the work by humans is greatly reduced, and the safety work is secured.

【0028】さらに、トンネルの線形を測定するととも
に、即座に測定データが演算処理可能であるため、トン
ネル線形の測定と同時にトンネル線形の把握が可能であ
る。
Furthermore, since the alignment of the tunnel can be measured and the measurement data can be processed immediately, the tunnel alignment can be simultaneously measured and grasped.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例を説明するための概要側断面
図である。
FIG. 1 is a schematic sectional side view for explaining one embodiment of the present invention.

【図2】図1のトンネル内断面拡大図である。FIG. 2 is an enlarged cross-sectional view of the inside of the tunnel of FIG. 1;

【図3】本発明に用いる自走式走行台車の正面略図であ
る。
FIG. 3 is a schematic front view of a self-propelled traveling vehicle used in the present invention.

【図4】図3の自走式走行台車の側面略図である。4 is a schematic side view of the self-propelled traveling vehicle of FIG. 3;

【図5】本発明における離隔距離の計測を説明する図で
ある。
FIG. 5 is a diagram illustrating measurement of a separation distance according to the present invention.

【図6】本発明における離隔距離の計測を説明するトン
ネルの断面図である。
FIG. 6 is a sectional view of a tunnel for explaining measurement of a separation distance in the present invention.

【図7】本発明における台車進行方向左右の方位角θと
台車の回転角α、仰角βを説明する図である。
FIG. 7 is a view for explaining a left and right azimuth θ, a rotation angle α, and an elevation angle β of the truck in the present invention.

【図8】本発明で求める軌跡を説明する図である。FIG. 8 is a diagram illustrating a trajectory obtained in the present invention.

【図9】本発明における表示装置の表示例を示す図であ
る。
FIG. 9 is a diagram illustrating a display example of a display device according to the present invention.

【図10】本発明の他の実施例を示す自走式走行台車の
正面略図である。
FIG. 10 is a schematic front view of a self-propelled traveling vehicle showing another embodiment of the present invention.

【図11】図10の自走式走行台車の側面略図である。FIG. 11 is a schematic side view of the self-propelled traveling vehicle of FIG. 10;

【図12】本発明に用いる回転角計測用加速度計の動作
原理を説明するための図である。
FIG. 12 is a diagram for explaining the operating principle of the rotational angle measuring accelerometer used in the present invention.

【図13】本発明のさらに他の実施例を示す自走式走行
台車の正面略図である。
FIG. 13 is a schematic front view of a self-propelled traveling vehicle showing still another embodiment of the present invention.

【図14】図13の自走式走行台車の側面略図である。FIG. 14 is a schematic side view of the self-propelled traveling vehicle shown in FIG. 13;

【図15】本発明における壁面を利用して距離信号を得
る方法を説明する図である。
FIG. 15 is a diagram illustrating a method of obtaining a distance signal using a wall surface according to the present invention.

【符号の説明】[Explanation of symbols]

1 トンネル 2 標識 10 自走式走行台車 11 車輪 12 第1回転角速度計測用ジャイロスコープ 13 第2回転角速度計測用ジャイロスコープ 14 第3回転角速度計測用ジャイロスコープ 15 3軸方向角速度測定手段 16 信号増幅装置 17 演算処理装置 18 表示装置 19 データ蓄積装置 20 識別光線光源 21 識別光線受信器 22 支持具 23 離隔距離計測用光線光源 24 離隔距離計測用光線受信器 25 支持具 26 回転角計測用加速度計 27 仰角計測用加速度計 DESCRIPTION OF SYMBOLS 1 Tunnel 2 Sign 10 Self-propelled traveling vehicle 11 Wheel 12 Gyroscope for 1st rotation angular velocity measurement 13 Gyroscope for 2nd rotation angular velocity measurement 14 Gyroscope for 3rd rotation angular velocity measurement 15 3-axis direction angular velocity measuring means 16 Signal amplifier REFERENCE SIGNS LIST 17 arithmetic processing device 18 display device 19 data storage device 20 identification light source 21 identification light receiver 22 support tool 23 light source light source for separation distance measurement 24 light reception device for separation distance measurement 25 support tool 26 accelerometer for rotation angle measurement 27 elevation angle Accelerometer for measurement

───────────────────────────────────────────────────── フロントページの続き (72)発明者 黒沢 友博 東京都千代田区内幸町1丁目1番6号 日本電信電話株式会社内 (72)発明者 豊川 一男 東京都台東区秋葉原5丁目8番 アイレ ック技建株式会社内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Tomohiro Kurosawa 1-1-6 Uchisaiwaicho, Chiyoda-ku, Tokyo Nippon Telegraph and Telephone Corporation (72) Inventor Kazuo Toyokawa 5-8 Akihabara, Taito-ku, Tokyo Airec Giken Co., Ltd.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】3軸方向角速度測定手段を設置した自走式
走行台車を有線または無線により無人で走行させること
により得られる角速度信号と、トンネルの壁面を利用し
て得られる電気的走行距離信号とにより得られる上記自
走式走行台車の位置信号を、トンネルの断面内で発射さ
れる光線の反射により得られるトンネルの断面内におけ
る水平方向および鉛直方向での位置を示す信号により補
正し、演算処理することによってトンネルの線形を計測
することを特徴とするトンネルの位置計測方法。
An angular velocity signal obtained by driving a self-propelled traveling vehicle provided with a three-axis direction angular velocity measuring means unattended by wire or wirelessly, and an electric traveling distance signal obtained by using a wall surface of a tunnel. And the self
The position signal of the traveling trolley is corrected by a signal indicating the position in the horizontal and vertical directions in the cross section of the tunnel obtained by the reflection of the light beam emitted in the cross section of the tunnel, and is processed by arithmetic processing. A method for measuring the position of a tunnel, comprising measuring a linear shape.
JP03218032A 1991-08-05 1991-08-05 Tunnel position measurement method Expired - Lifetime JP3075785B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03218032A JP3075785B2 (en) 1991-08-05 1991-08-05 Tunnel position measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03218032A JP3075785B2 (en) 1991-08-05 1991-08-05 Tunnel position measurement method

Publications (2)

Publication Number Publication Date
JPH0643243A JPH0643243A (en) 1994-02-18
JP3075785B2 true JP3075785B2 (en) 2000-08-14

Family

ID=16713574

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03218032A Expired - Lifetime JP3075785B2 (en) 1991-08-05 1991-08-05 Tunnel position measurement method

Country Status (1)

Country Link
JP (1) JP3075785B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101794690B1 (en) * 2016-07-07 2017-12-01 한국철도기술연구원 Tunnel inspection system having individual driving rail-guided vehicle (rgv) and inertial navigation system (ins)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6218704B2 (en) * 1982-03-27 1987-04-24 Fuji Satsushi Kk
JPS63246610A (en) * 1987-04-01 1988-10-13 Iseki Kaihatsu Koki:Kk Method for inspecting pipeline and apparatus for measuring said pipeline

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6218704U (en) * 1985-07-18 1987-02-04

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6218704B2 (en) * 1982-03-27 1987-04-24 Fuji Satsushi Kk
JPS63246610A (en) * 1987-04-01 1988-10-13 Iseki Kaihatsu Koki:Kk Method for inspecting pipeline and apparatus for measuring said pipeline

Also Published As

Publication number Publication date
JPH0643243A (en) 1994-02-18

Similar Documents

Publication Publication Date Title
US5440923A (en) Drivable slope-sensitive unit for measuring curvature and crossfall of ground surfaces
EP0496538B1 (en) Vehicle heading correction apparatus
US5075864A (en) Speed and direction sensing apparatus for a vehicle
GB2088554A (en) Pipeline route surveying device
ITTO20100720A1 (en) SYSTEM AND METHOD OF MEASURING THE ROUGHNESS OF A ROAD SURFACE
US7832111B2 (en) Magnetic sensing device for navigation and detecting inclination
JP2006119144A (en) Road linearity automatic survey device
JP3075785B2 (en) Tunnel position measurement method
JP3868337B2 (en) Method and apparatus for detecting a trajectory of a carriage on a rail
JP2843904B2 (en) Inertial navigation system for vehicles
JP2006189450A (en) Navigation system
JPH04279812A (en) Shield surveying method
JP2866078B2 (en) Excavation propulsion position detecting device and position detecting method
JP3219204B2 (en) Road surface unevenness measurement vehicle
JP3168789B2 (en) Pipe measurement method
JPS617414A (en) Dynamic state measuring apparatus of transportation machine
JP2814829B2 (en) Position measurement device for tunnel machine
JPH07128058A (en) Method for measuring conduit
CN113819902B (en) Three-dimensional measurement method and application of travelling path line based on single-axis gyroscope
JPS61130814A (en) Automatic position measurement by self-propelling gyrocar method
JPH09304067A (en) Apparatus for measuring bearing of excavator and apparatus for measuring bearing and position of the excavator
JPH04181118A (en) Method for measuring position of tunnel
JP2005345104A (en) Surveying robot carriage
JPS61219827A (en) Apparatus for measuring position in pit for tunnel construction method
JPH04201B2 (en)

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090609

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090609

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100609

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100609

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110609

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110609

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120609

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120609

Year of fee payment: 12