JP3073807B2 - Iron-rare earth permanent magnet material and method for producing the same - Google Patents

Iron-rare earth permanent magnet material and method for producing the same

Info

Publication number
JP3073807B2
JP3073807B2 JP03257932A JP25793291A JP3073807B2 JP 3073807 B2 JP3073807 B2 JP 3073807B2 JP 03257932 A JP03257932 A JP 03257932A JP 25793291 A JP25793291 A JP 25793291A JP 3073807 B2 JP3073807 B2 JP 3073807B2
Authority
JP
Japan
Prior art keywords
powder
iron
rare earth
alloy
permanent magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP03257932A
Other languages
Japanese (ja)
Other versions
JPH0565603A (en
Inventor
雅夫 岩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP03257932A priority Critical patent/JP3073807B2/en
Publication of JPH0565603A publication Critical patent/JPH0565603A/en
Application granted granted Critical
Publication of JP3073807B2 publication Critical patent/JP3073807B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/058Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IVa elements, e.g. Gd2Fe14C
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/059Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and Va elements, e.g. Sm2Fe17N2
    • H01F1/0593Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and Va elements, e.g. Sm2Fe17N2 of tetragonal ThMn12-structure

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、すぐれた磁気特性を有
する鉄−希土類系永久磁石材料およびその製造方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an iron-rare earth permanent magnet material having excellent magnetic properties and a method for producing the same.

【0002】[0002]

【従来の技術】Fe,Co等の3d遷移金属とR(Y,
Thおよびすべてのランタノイド元素からなる群の中か
ら選ばれた1種または2種以上の元素の組合せ)とから
なる金属間化合物の中には高い結晶磁気異方性と大きな
飽和磁化とを示すものがあり、高保磁力、高エネルギ−
積を有する永久磁石材料として有望である。しかし、F
e−Rのみの2元系からなる合金では、高いキュリー点
や一軸の結晶磁気異方性を得ることは難しい場合が多
い。このために、第3の元素としてN(窒素)を添加する
ことによりその点を改良した材料が、先に本発明者によ
り提供されている(特開昭60−131944号)。ま
た、Sm−Feの2元系合金もキュリー点・結晶磁気異
方性の両面から見て永久磁石材料としては適さないが、
近年、これに第3の元素としてTi,V,Cr,Al,
Si,Mo,Wを添加することにより特性の改善を計る
試みが行われている( K.H.J.Buschow: Journal of App
lied Physics, 63巻, 3130頁, 1988年発行)。 すなわ
ち、GをTi,V,Cr,Al,Si,Mo,Wとする
とき、Sm(Fe1-xx12なる組成の合金では体心正
方晶構造が安定化され、これが優れた永久磁石特性を示
す、というものである。中でも、SmFe11Tiが優れ
ている、とされる。
2. Description of the Related Art 3d transition metals such as Fe and Co and R (Y,
And one or more elements selected from the group consisting of Th and all of the lanthanoid elements) which exhibit high magnetocrystalline anisotropy and large saturation magnetization. With high coercive force and high energy
It is promising as a permanent magnet material having a product. But F
It is often difficult to obtain a high Curie point or uniaxial crystal magnetic anisotropy with a binary alloy composed of only e-R. To this end, a material improved in this respect by adding N (nitrogen) as a third element has been previously provided by the present inventor (JP-A-60-131944). Also, a binary alloy of Sm-Fe is not suitable as a permanent magnet material in terms of both Curie point and crystal magnetic anisotropy,
In recent years, Ti, V, Cr, Al,
Attempts have been made to improve characteristics by adding Si, Mo, and W (KHJ Buschow: Journal of App.
lied Physics, 63, 3130, 1988). That is, when G is Ti, V, Cr, Al, Si, Mo, and W, the alloy having the composition of Sm (Fe 1-x G x ) 12 stabilizes the body-centered tetragonal structure, which is an excellent permanent material. It shows magnet properties. Among them, SmFe 11 Ti is said to be excellent.

【0003】[0003]

【発明が解決しようとする課題】しかし、Sm(Fe
1-xx12なる組成の合金において、体心正方晶構造を
生成させ所望の特性を得るためには超急冷法やメカニカ
ルアロイング法,等の特殊な製法を必要としているのが
現状である。しかも、その場合でも所期の特性が必ずし
も安定的には得られにくい、すなわち、同じ組成の合金
を同じように処理しても所期の特性は得られない場合が
あったりする、といった問題もある。
However, Sm (Fe
In 1-x G x) 12 comprising an alloy of composition, current situation is in order to obtain the desired properties to produce a body-centered tetragonal structure in need rapid quenching method or the mechanical alloying method, a special production method etc. It is. Moreover, even in such a case, the desired characteristics are not always obtained stably, that is, even if the alloys having the same composition are treated in the same manner, the desired characteristics may not be obtained in some cases. is there.

【0004】[0004]

【課題を解決するための手段】上記のように、Sm(F
1-xx12なる合金において体心正方晶構造を生成さ
せ所望の特性を得るためには超急冷法やメカニカルアロ
イング法等の特殊な製法を必要とすること、また、その
場合でも所期の特性が必ずしも安定的には得られにくい
こと、の理由につき、本発明者は鋭意検討を重ねた結
果、これらの問題の解決のためには、いわゆる「準安定
・非平衡な状態」の関与に着目することが重要であるら
しいことがわかった。すなわち、超急冷法においてはそ
の急速なる冷却により原子拡散が抑制されることから、
また、メカニカルアロイング法では処理そのものの特質
から、いずれも「準安定・非平衡な状態」が出現しやす
い状況にあるが、目的とする体心正方晶構造が形成され
るためには、その生成過程においてこのような「準安定
・非平衡な状態」の出現することが必須要件であるらし
いことがわかった。
As described above, Sm (F
In order to generate a body-centered tetragonal structure and obtain desired characteristics in an alloy of e 1-x G x ) 12, a special manufacturing method such as a super-quenching method or a mechanical alloying method is required. However, the present inventor has conducted intensive studies on the reason that the desired characteristics are not always obtained stably, and as a result of solving these problems, a so-called “metastable and non-equilibrium state” was found. It seems that it is important to focus on the involvement of "." In other words, in the rapid quenching method, atom diffusion is suppressed by rapid cooling,
In addition, in the mechanical alloying method, the “metastable and non-equilibrium state” is likely to appear due to the nature of the treatment itself, but in order for the desired body-centered tetragonal structure to be formed, It has been found that the appearance of such a “metastable and non-equilibrium state” appears to be an essential requirement in the generation process.

【0005】しかし、これらのいわゆる「準安定・非平
衡な状態」は、元来が安定ではないところの "準安定・
非平衡" な状態のものなのであるから、わずかな微妙な
条件の違いにより、該相が生成されたり生成されなかっ
たりする場合があることは、むしろ当然とも言える。そ
こで、上記問題を解決して、体心正方晶構造が安定的に
生成されるようにするためには、合金中に格子間侵入型
原子であるN(窒素)もしくはB(硼素)もしくはC(炭素)
またはこれらの元素の組合せを含有させるようにすれ
ば、局所的な格子の乱れ、すなわち、本来の熱力学的完
全安定な状態とは異なったいわば準安定・非平衡な状態
がより容易に惹起されやすくなるようになり、効果的で
あるのではないかと考えて、この面からの検討を進めた
結果、本発明を完成するに到ったものである。
However, these so-called "metastable and non-equilibrium states" are originally "metastable and non-equilibrium".
It is rather natural that the phase may or may not be produced by subtle differences in conditions, since it is in a "non-equilibrium" state. In order to stably generate a body-centered tetragonal structure, interstitial atoms such as N (nitrogen) or B (boron) or C (carbon) are required in the alloy.
Alternatively, when a combination of these elements is contained, local lattice disorder, that is, a metastable / non-equilibrium state which is different from the original thermodynamically completely stable state is more easily caused. As a result, the present invention has been completed, and as a result of studying from this aspect, the present invention has been completed.

【0006】すなわち、本発明は、RをY,Thおよび
すべてのランタノイド元素からなる群の中から選ばれた
1種または2種以上の元素の組合せ、XをN(窒素)、C
(炭素)もしくはB(硼素)またはこれらの元素の組合せと
するとき、原子百分率で 、R:3〜30%、X:0.
3〜50%を含み、残部が実質的にFeから成り、主相
が体心正方晶ThMn12型構造を有することを特徴と
する鉄−希土類系永久磁石材料である。また本発明は、
予め、実質的にNを含有しないかまたはN含有量が所望
の量よりは少ない鉄−希土類系合金を作製した後、これ
をNを含む気体中で処理して前記合金中にNを侵入させ
ることにより所望のN含有量にする前記鉄−希土類系永
久磁石材料の製造方法である。
That is, according to the present invention, R represents a combination of one or more elements selected from the group consisting of Y, Th and all lanthanoid elements, and X represents N (nitrogen), C
When (carbon) or B (boron) or a combination of these elements is used, R: 3 to 30%, X: 0.
An iron-rare earth permanent magnet material containing 3 to 50%, the balance substantially consisting of Fe, and a main phase having a body-centered tetragonal ThMn 12 type structure. The present invention also provides
After previously preparing an iron-rare earth alloy containing substantially no N or having a N content smaller than a desired amount, the alloy is treated in a gas containing N to allow N to enter the alloy. This is a method for producing the iron-rare earth permanent magnet material having a desired N content.

【0007】[0007]

【作用】以下、本発明の鉄−希土類系永久磁石材料につ
き詳細に説明する。本発明において、Rは、磁気異方性
を生み保磁力を発生させる上で本質的な役割を担う、極
めて重要な構成元素である。Rとしては、Y,Thおよ
びすべてのランタノイド元素、すなわち、Y,La,C
e,Pr,Nd,Pm,Sm,Eu,Gd,Tb,D
y,Ho,Er,Tm,Yb,LuおよびThが含ま
れ、これらからなる群の中から選ばれた1種または2種
以上の元素の組合せとして用いればよい。Rは、原子百
分率で3〜30%、好ましくは5〜18%、さらに好ま
しくは6〜12%の範囲にあることが必要である。Rが
3%未満では保磁力が得られないので、Rの下限は3%
とする。一方、Rが30%を超えると飽和磁化が小さく
なりすぎるとともに、材料の酸化が激しく耐食性がきわ
めて悪くなるので、Rの上限は30%とする。安定した
磁気特性を得るためには、Rの量は通常5〜18%の範
囲に選ぶことが望ましい。とりわけRの量を6〜12%
とするときは体心正方晶構造が安定に得られやすい。な
お、特に高い磁束密度と大きなエネルギ−積とを得たい
時には、Rを7〜9%に選択することが有効である。
Hereinafter, the iron-rare earth permanent magnet material of the present invention will be described in detail. In the present invention, R is a very important constituent element that plays an essential role in generating magnetic anisotropy and generating coercive force. R represents Y, Th and all lanthanoid elements, ie, Y, La, C
e, Pr, Nd, Pm, Sm, Eu, Gd, Tb, D
y, Ho, Er, Tm, Yb, Lu, and Th are included and may be used as a combination of one or more elements selected from the group consisting of these. R needs to be in the range of 3 to 30%, preferably 5 to 18%, more preferably 6 to 12% in atomic percentage. If R is less than 3%, a coercive force cannot be obtained, so the lower limit of R is 3%.
And On the other hand, if R exceeds 30%, the saturation magnetization becomes too small, and the material is oxidized severely, resulting in extremely poor corrosion resistance. Therefore, the upper limit of R is set to 30%. In order to obtain stable magnetic characteristics, it is desirable that the amount of R is usually selected in the range of 5 to 18%. Especially the amount of R is 6-12%
In this case, a body-centered tetragonal structure is easily obtained in a stable manner. In particular, when it is desired to obtain a high magnetic flux density and a large energy product, it is effective to select R to be 7 to 9%.

【0008】Mは、体心正方晶構造を生成する上で大き
な効果を持つ元素である。Mとしては、Ti,Cr,
V,Zr,Nb,Al,Mo,Mn,Hf,Ta,W,
Mg,Si,Sn,Geが含まれ、これらからなる群の
中から選ばれた1種または2種以上の元素の組合せとし
て用いればよい。Mの中の多くの元素は、また一方、本
発明構成元素の中のXとの親和力が強い元素でもあるの
で、本発明においては、特に比較的不安定なNを合金中
で安定化させる上でもMがまた大きな効果を有してい
る。そして、後述のようにX自体もまた体心正方晶構造
を安定化させる効果を有しているので、結局、MとXと
は相乗的に作用して体心正方晶構造を安定化する上に大
いに効果がある。これらの効果を発揮させるためには、
Mの量は原子百分率で0.5〜30%であればよいが、
通常は1〜15%であることが好ましい。Mが0.5%
未満では上記した効果が得られないので、Mの下限は
0.5%とする。一方、Mが30%を超えると飽和磁化
が小さくなりすぎるので、Mの上限は30%とする。こ
の内でも、安定した磁気特性を得るためには、Mの量は
通常1〜15%の範囲に選ぶことが望ましい。特にMが
Tiの場合には、その含有量が重量百分率で10%を超
えるように選ぶことにより、いっそう安定なThMn12
型体心正方晶構造を生成させることができ、材料の熱的
安定性をも増すことができる。上記したMは、いずれも
保磁力Hcを発生させる上で効果があるが、それらの中
でAl,Si,Sn,Geには飽和磁化を低下させやす
い欠点がある。
[0008] M is an element having a great effect in generating a body-centered tetragonal structure. As M, Ti, Cr,
V, Zr, Nb, Al, Mo, Mn, Hf, Ta, W,
Mg, Si, Sn, and Ge are included, and may be used as a combination of one or more elements selected from the group consisting of these. Many of the elements in M are also elements having a strong affinity for X in the constituent elements of the present invention. Therefore, in the present invention, particularly, the relatively unstable N is stabilized in the alloy. But M also has a great effect. Since X itself also has the effect of stabilizing the body-centered tetragonal structure as described later, M and X eventually act synergistically to stabilize the body-centered tetragonal structure. Is very effective. To achieve these effects,
The amount of M may be 0.5 to 30% in atomic percentage,
Usually, it is preferably 1 to 15%. M is 0.5%
If it is less than the above, the above-mentioned effects cannot be obtained, so the lower limit of M is set to 0.5%. On the other hand, if M exceeds 30%, the saturation magnetization becomes too small, so the upper limit of M is set to 30%. Among them, in order to obtain stable magnetic properties, it is desirable that the amount of M is usually selected in the range of 1 to 15%. In particular, when M is Ti, the content is selected to be more than 10% by weight, so that the more stable ThMn 12
A type-centered tetragonal structure can be generated and the thermal stability of the material can be increased. All of the above M are effective in generating the coercive force Hc, but among them, Al, Si, Sn, and Ge have a disadvantage that the saturation magnetization is easily reduced.

【0009】X,即ちN(窒素)もしくはB(硼素)もしく
はC(炭素)またはこれらの元素の組合せ,は、本発明に
おいて、合金中に準安定・非平衡な状態を惹起すること
により体心正方晶構造を生成する上でのいわば一種の駆
動力としての作用を発揮するとともに、磁気特性面から
いうと飽和磁化を増すとともに高保磁力を発生させる本
質的に重要な役割を果たしているところの必須構成成分
であるが、その含有量は、原子百分率で0.3〜50
%、好ましくは2〜20%、さらに好ましくは5〜15
%の範囲にあることが必要である。Xが0.3%未満で
はXの添加効果が認められず飽和磁化が小さいので、X
の下限は0.3%とする。一方、Xが50%を超えると
飽和磁化がかえって小さくなりすぎるので、Xの上限は
50%とする。体心正方晶構造を安定的に生成させるた
めには、Xの量は通常2〜20%、とりわけ5〜15%
の範囲に選ぶことが望ましい。
X, that is, N (nitrogen) or B (boron) or C (carbon) or a combination of these elements, is used in the present invention to induce a metastable and non-equilibrium state in the alloy, thereby achieving a body-centered state. Indispensable in that it acts as a kind of driving force in generating a tetragonal structure, and plays an essentially important role in increasing saturation magnetization and generating high coercive force in terms of magnetic properties. Although it is a constituent component, its content is from 0.3 to 50 in atomic percentage.
%, Preferably 2 to 20%, more preferably 5 to 15%
%. When X is less than 0.3%, the effect of addition of X is not recognized and the saturation magnetization is small.
Is 0.3%. On the other hand, when X exceeds 50%, the saturation magnetization is rather too small, so the upper limit of X is set to 50%. In order to stably form a body-centered tetragonal structure, the amount of X is usually 2 to 20%, particularly 5 to 15%.
It is desirable to select within the range.

【0010】Xは材料中において、少なくとも一時期
は、格子間侵入型の原子として存在する必要がある。そ
うすることによって、Xは合金中に局所的な格子の乱れ
を生じ一種の準安定・非平衡な状態を惹起し、これが体
心正方晶構造を生成する上でのいわば「活性化された状
態」として作用し得る。
X must exist as interstitial atoms in the material for at least one time. By doing so, X causes a local lattice disorder in the alloy, causing a kind of metastable and non-equilibrium state, which is a so-called "activated state" in forming a body-centered tetragonal structure. "

【0011】このためには、特にNについて言えば、こ
れを材料中に含有させる方法としては、Nをもともと含
むようなものを原材料として用いるという方法によって
もよいが、むしろ、後の工程において、適宜な気体中も
しくは液体中において処理することによりNを材料の中
へ侵入させる方法が推奨される。Nを侵入させるために
用いる気体としては、N2ガス、N2+H2混合ガス、N
3ガス、およびこれらの混合ガス等(H2ガスもしくは
その他の不活性ガス等で希釈する場合を含む)を用いる
ことが出来る。また、その場合の処理温度としては通常
200〜1000℃、特に400〜700℃とすればよ
い。また、その場合の処理時間としては通常0.2〜5
0時間程度でよいが、材料の所望特性に応じて適宜選択
すればよい。
[0011] For this purpose, particularly with respect to N, the method of incorporating N into the material may be a method of using a material that originally contains N as a raw material, but rather, in a later step, It is recommended that N be introduced into the material by treating in an appropriate gas or liquid. Examples of the gas used for infiltrating N include N 2 gas, N 2 + H 2 mixed gas, and N 2 gas.
H 3 gas and a mixed gas thereof (including a case of dilution with H 2 gas or another inert gas) can be used. In this case, the processing temperature may be generally 200 to 1000 ° C, particularly 400 to 700 ° C. The processing time in that case is usually 0.2 to 5
The time may be about 0 hours, but may be appropriately selected according to the desired characteristics of the material.

【0012】一方、B,Cを含有させる方法について
は、B,Cをもともと含むようなものを原材料として用
いることが通常に可能である。ただし、この場合でも、
もしB,Cの化合物の形のものを用いる場合には、極め
て安定な化合物,例えばM元素との硼化物,R元素との
硼化物,M元素との炭化物,R元素との炭化物,等は合
金中においてB,C原子単体の形に解離せず、従って格
子間侵入型の原子として存在させることが困難な場合が
多いので、あまり好ましくない。B,Cの原材料として
は、金属ボロン,黒鉛等の純元素,または比較的安定度
の低い化合物,例えばフェロボロン,Fe3C等Feと
の炭化物,等が推奨される。本発明において、Bは他の
2つの格子間侵入型元素N,Cに比較して、原材料から
合金中に添加することは最も容易である点が特長であ
る。B,Cは、本発明の鉄−希土類系永久磁石材料の中
でMを含有しないような鉄−希土類系永久磁石材料に対
しては特に効果的である。これは、B,CはNと異なり
最初から材料中に存在させておくことが容易に可能であ
るためであると考えられる。
On the other hand, as for the method of containing B and C, it is usually possible to use those containing B and C as raw materials. However, in this case,
If the compounds in the form of compounds B and C are used, extremely stable compounds such as borides with element M, borides with element R, carbides with element M, carbides with element R, etc. It is not preferable because it does not dissociate into B and C atoms alone in the alloy, and it is often difficult to make them exist as interstitial atoms. As raw materials for B and C, pure elements such as metal boron and graphite, or compounds having relatively low stability, for example, ferroboron, carbides with Fe such as Fe 3 C, etc. are recommended. In the present invention, B is characterized in that it is easiest to add B from a raw material into an alloy as compared with the other two interstitial elements N and C. B and C are particularly effective for the iron-rare earth permanent magnet material containing no M in the iron-rare earth permanent magnet material of the present invention. This is presumably because B and C, unlike N, can be easily present in the material from the beginning.

【0013】なお、NもしくはB,Cを材料中に存在さ
せることにより体心正方晶構造が安定化される理由につ
いては、正確なところは未だ不明であり鋭意検討中の段
階であるが、一応次のように推定される。例えばSmF
12では体心正方晶構造が生成されないが、これはTh
(+4価のイオン半径=1.02 )対 Mn(+2価のイ
オン半径=0.80 ),Sm(+3価のイオン半径=1.00
)対 Fe(+3価のイオン半径=0.60 )で比較し
た場合、Feの大きさがSmに比べて小さすぎるためで
あると考えられる。そして、この中のFeの一部を例え
ばTi(+3価のイオン半径=0.69 )等で置換して前
記SmFe11Ti等とすることにより体心正方晶ThM
12型構造が生成されるようになるのであるが、Ti等
は図1に示す体心正方晶ThMn12型構造において8i
サイトに存在するといわれている。従って、このときの
Ti等の役割は、その原子径がFeよりも大きいこと等
に由来して8iサイトにおいて格子を拡張している点に
あると考えられ、このことからSm原子径に見合うよう
な格子の整合が実現され体心正方晶構造の生成が可能に
なってくるものと考えられる。そうであるとするなら
ば、格子を伸長する上で大いに効果のある格子間侵入型
原子のXを上記Tiに代えて,あるいは上記Tiと併せ
用いることにより、いっそう安定的にThMn12型構造
の生成を実現することが可能になる。
The exact reason why the body-centered tetragonal crystal structure is stabilized by the presence of N or B, C in the material is not yet clear and is under intensive study. It is estimated as follows. For example, SmF
body-centered tetragonal structure at e 12 is not generated, but this is Th
(+4 ion radius = 1.02) vs. Mn (+2 ion radius = 0.80), Sm (+3 ion radius = 1.00)
This is considered to be because the size of Fe is too small compared to Sm when compared with Fe (+ trivalent ion radius = 0.60). Then, a part of Fe therein is replaced with, for example, Ti (+3 valent ion radius = 0.69) or the like to obtain the above-mentioned SmFe 11 Ti or the like, thereby obtaining a body-centered tetragonal ThM
An n 12 type structure is generated, and Ti and the like are 8i in the body-centered tetragonal ThMn 12 type structure shown in FIG.
It is said that it exists on the site. Therefore, the role of Ti or the like at this time is considered to be that the lattice is expanded at the 8i site due to the fact that its atomic diameter is larger than that of Fe. It is considered that a proper lattice matching is realized and a body-centered tetragonal structure can be generated. If so, X of the interstitial interpenetrating atom, which is very effective in elongating the lattice, can be used more stably for the ThMn 12 type structure by using the above-mentioned Ti instead of or in combination with the above-mentioned Ti. Generation can be realized.

【0014】格子間侵入型原子Xとしては、N(窒素)も
しくはB(硼素)もしくはC(炭素)の各々を単独で用いて
もよいが、それらを組み合わせて用いるといっそう効果
的である場合もある。合金が元素Mを含まない場合に
は、特にNとB,ならびにCとBの組み合わせが効果的
である。N,Cが占める格子間位置サイトとBが占める
格子間位置サイトとはおそらく異なると思われる点にそ
の理由があるものと考えられる。また、NならびにB,
Cはいずれも格子間侵入型に存在し得る原子であるとい
う点では共通点を有するのであるが、前記のように、N
は気体から、B,Cは原材料から、というふうに敢えて
異なった機構を通じて合金中に含有させるようにすれ
ば、それらの各々の機構で占めやすい格子間位置を各々
に占めさせ得ることから、性格の異なる両機構をともに
利用することにより格子間侵入型構造の形成をより確実
なものとするようにできることが期待される。また、そ
のような機構の違いに由来して、NとB,Cとの間には
メカニズム細部については当然差異があることが予想さ
れ、また、BとCとの間にも原子径・原子価(即ち,電
子構造)等の違いに由来して当然差異があることも予想
される。
As the interstitial atom X, N (nitrogen), B (boron) or C (carbon) may be used alone, but it may be more effective to use them in combination. is there. When the alloy does not contain the element M, a combination of N and B and a combination of C and B are particularly effective. The reason is that the interstitial position site occupied by N and C is probably different from the interstitial position site occupied by B. Also, N and B,
C has a common feature in that C is an atom that can exist in an interstitial manner.
If the alloys are intentionally included in the alloy through different mechanisms, such as from gases and B and C from raw materials, they can occupy interstitial positions easily occupied by each of these mechanisms. It is expected that the formation of the interstitial interstitial structure can be made more reliable by using both different mechanisms. Also, it is expected that there is a difference in the details of the mechanism between N and B and C due to such a difference in the mechanism. It is also expected that there will naturally be differences due to differences in valence (ie, electronic structure).

【0015】なお、体心正方晶構造の生成をいっそう確
実なものとし、所望の特性を得るために、本発明と超急
冷法やメカニカルアロイング法等の処理を組み合わせて
もよいことは言うまでもない。
It is needless to say that the present invention may be combined with a process such as a super-quenching method or a mechanical alloying method in order to further secure the formation of the body-centered tetragonal structure and obtain desired characteristics. .

【0016】本発明の鉄−希土類系永久磁石材料におい
て、Feの一部をCoで置換することにより、保磁力を
向上させると共に材料磁気特性の温度特性を向上させる
ことができる。このためにはCoの量は原子百分率で1
〜50%、好ましくは5〜30%の範囲にあることが望
ましい。Co含有量が1%未満では保磁力を向上する効
果が小さく、また50%を越えると飽和磁束密度が次第
に低下してくる。Coの量を5〜30%に選ぶことによ
り材料磁気特性の温度特性が向上する。
In the iron-rare earth permanent magnet material of the present invention, by substituting a part of Fe with Co, the coercive force can be improved and the temperature characteristics of the material magnetic characteristics can be improved. For this purpose, the amount of Co is 1 atomic percent.
It is desirably in the range of ~ 50%, preferably 5-30%. If the Co content is less than 1%, the effect of improving the coercive force is small, and if it exceeds 50%, the saturation magnetic flux density gradually decreases. By selecting the amount of Co from 5 to 30%, the temperature characteristics of the magnetic properties of the material are improved.

【0017】本発明の鉄−希土類系永久磁石材料におい
て、Feの一部をNiで置換することにより、材料の耐
食性を改善させることができる。このためにはNiの量
は原子百分率で0.5〜30%、好ましくは2〜10%
の範囲にあることが望ましい。0.5%未満では耐食性
の向上効果が少なく、また30%を越えると飽和磁束密
度が低下する。
In the iron-rare earth permanent magnet material of the present invention, the corrosion resistance of the material can be improved by substituting a part of Fe with Ni. For this purpose, the amount of Ni is 0.5 to 30% by atom, preferably 2 to 10%.
Is desirably within the range. If it is less than 0.5%, the effect of improving the corrosion resistance is small, and if it exceeds 30%, the saturation magnetic flux density decreases.

【0018】[0018]

【実施例】以下、実施例により本発明をさらに詳細に説
明するが、本発明は特にこれらに限定されるものではな
い。
EXAMPLES The present invention will be described in more detail with reference to the following Examples, which should not be construed as limiting the invention thereto.

【0019】(実施例1) 重量比でFe67.1%,Nd21.5%,Ti5.4
8%,Cr5.95%となるように原料を秤量し、これ
をアルゴン雰囲気中で溶製した。この合金は原子%でF
e76.1%,Nd9.42%,Ti7.25%,Cr
7.25%に相当する。得られたインゴットを900℃
で7日間焼鈍した後、鉄製乳鉢中で粗粉砕し、さらにデ
ィスクミルで粉砕して、約30μm径の粉体とした。こ
の粉体にNを含有させるために、これをN2ガス中ほぼ
500℃付近の温度において処理した。この処理により
材料中にNが1.31重量%含有された。したがって材
料全体としての組成は、重量%でFe66.2%,Nd
21.2%,Ti5.41%,Cr5.87%,N
1.31%、すなわち原子%ではFe71.8%,Nd
8.89%,Ti6.84%,Cr6.84%,N
5.67%に相当する。この粉体をジェットミルでさら
に微粉砕した後、20kOeの磁場中において配向させワ
ックスで固化して磁気特性を測定したところ、飽和磁化
(4πIs)は137emu/g,保磁力(iHc)は53
00 Oeであった。また、得られた粉体をCuKα線を
用いてX線回折したところ、その多くが体心正方晶Th
Mn12型の結晶構造であると認められた。
Example 1 67.1% Fe, 21.5% Nd, 5.4% Ti by weight
The raw materials were weighed so as to be 8% and Cr 5.95%, and were melted in an argon atmosphere. This alloy is F
e76.1%, Nd9.42%, Ti 7.25%, Cr
Equivalent to 7.25%. 900 ° C of the obtained ingot
For 7 days, and then roughly pulverized in an iron mortar and further pulverized with a disc mill to obtain a powder having a diameter of about 30 μm. This powder was treated at a temperature of about 500 ° C. in N 2 gas so as to contain N. As a result of this treatment, 1.31% by weight of N was contained in the material. Therefore, the composition of the whole material is Fe 66.2% by weight%, Nd
21.2%, Ti 5.41%, Cr 5.87%, N
1.31%, that is, 71.8% Fe and Nd in atomic%
8.89%, Ti 6.84%, Cr 6.84%, N
This corresponds to 5.67%. This powder was further pulverized by a jet mill, and then oriented in a magnetic field of 20 kOe, solidified with wax, and measured for magnetic properties. The saturation magnetization (4πIs) was 137 emu / g, and the coercive force (iHc) was 53.
00 Oe. Further, when the obtained powder was subjected to X-ray diffraction using CuKα ray, most of the powder was found to have a body-centered tetragonal Th.
The crystal structure was confirmed to be of Mn 12 type.

【0020】(実施例2) 重量比でFe67.4%,Nd21.6%,Ti11.
0%となるように原料を秤量し、これをアルゴン雰囲気
中で溶製した。この合金は原子%でFe76.1%,N
d9.42%,Ti14.5%に相当する。得られたイ
ンゴットを900℃で7日間焼鈍した後、鉄製乳鉢中で
粗粉砕し、さらにディスクミルで粉砕して、約30μm
径の粉体とした。この粉体にNを含有させるために、こ
れをN2ガス中ほぼ500℃付近の温度において処理し
た。この処理により材料中にNが1.26重量%含有さ
れた。したがって材料全体としての組成は、重量%でF
e66.6%,Nd21.3%,Ti10.9%,N
1.26%、すなわち原子%ではFe72.0%,Nd
8.91%,Ti13.7%,N 5.42%に相当す
る。この粉体をジェットミルでさらに微粉砕した後、2
0kOeの磁場中において配向させワックスで固化して磁
気特性を測定したところ、飽和磁化(4πIs)は14
3emu/g,保磁力(iHc)は7800 Oeであった。ま
た、得られた粉体をCuKα線を用いてX線回折したと
ころ、その多くが体心正方晶ThMn12型の結晶構造で
あると認められた。
(Example 2) Fe67.4%, Nd21.6%, Ti11.
The raw materials were weighed so as to be 0%, and were melted in an argon atmosphere. This alloy contains 76.1% Fe in atomic%, N
d corresponds to 9.42% and Ti corresponds to 14.5%. After the obtained ingot was annealed at 900 ° C. for 7 days, it was roughly pulverized in an iron mortar and further pulverized by a disc mill to obtain about 30 μm.
It was a powder of a diameter. This powder was treated at a temperature of about 500 ° C. in N 2 gas so as to contain N. As a result of this treatment, 1.26% by weight of N was contained in the material. Therefore, the composition of the material as a whole is expressed as F% by weight.
e66.6%, Nd21.3%, Ti10.9%, N
1.26%, that is, 72.0% of Fe in atomic%, Nd
It corresponds to 8.91%, Ti 13.7% and N 5.42%. After further pulverizing this powder with a jet mill,
When the magnetic properties were measured by orientation in a magnetic field of 0 kOe and solidification with wax, the saturation magnetization (4πIs) was 14
3 emu / g and coercive force (iHc) were 7800 Oe. Further, when the obtained powder was subjected to X-ray diffraction using CuKα ray, it was recognized that most of the powder had a body-centered tetragonal ThMn 12 type crystal structure.

【0021】(実施例3) 重量比でFe71.1%,Nd21.7%,Ti7.2
0%となるように原料を秤量し、これをアルゴン雰囲気
中で溶製した。この合金は原子%でFe80.9%,N
d9.56%,Ti9.56%に相当する。得られたイ
ンゴットを900℃で7日間焼鈍した後、鉄製乳鉢中で
粗粉砕し、さらにディスクミルで粉砕して、約30μm
径の粉体とした。この粉体にNを含有させるために、こ
れをN2ガス中ほぼ500℃付近の温度において処理し
た。この処理により材料中にNが1.15重量%含有さ
れた。したがって材料全体としての組成は、重量%でF
e70.3%,Nd21.5%,Ti7.12%,N
1.15%、すなわち原子%ではFe76.8%,Nd
9.08%,Ti9.08%,N 5.03%に相当す
る。この粉体をジェットミルでさらに微粉砕した後、2
0kOeの磁場中において配向させワックスで固化して磁
気特性を測定したところ、飽和磁化(4πIs)は98
emu/g,保磁力(iHc)は3100 Oeであった。ま
た、得られた粉体をCuKα線を用いてX線回折したと
ころ、その多くが体心正方晶ThMn12型の結晶構造で
あると認められた。
Example 3 Fe 71.1%, Nd 21.7%, Ti 7.2 by weight
The raw materials were weighed so as to be 0%, and were melted in an argon atmosphere. This alloy is 80.9% Fe in atomic%, N
This corresponds to d 9.56% and Ti 9.56%. After the obtained ingot was annealed at 900 ° C. for 7 days, it was roughly pulverized in an iron mortar and further pulverized by a disc mill to obtain about 30 μm.
It was a powder of a diameter. This powder was treated at a temperature of about 500 ° C. in N 2 gas so as to contain N. As a result of the treatment, 1.15% by weight of N was contained in the material. Therefore, the composition of the material as a whole is expressed by weight% of F
e 70.3%, Nd 21.5%, Ti 7.12%, N
1.15%, that is, 76.8% Fe in atomic%, Nd
It corresponds to 9.08%, Ti 9.08%, and N 5.03%. After further pulverizing this powder with a jet mill,
When the magnetic properties were measured by orientation in a magnetic field of 0 kOe and solidification with wax, the saturation magnetization (4πIs) was 98%.
emu / g and coercive force (iHc) were 3100 Oe. Further, when the obtained powder was subjected to X-ray diffraction using CuKα ray, it was recognized that most of the powder had a body-centered tetragonal ThMn 12 type crystal structure.

【0022】(実施例4) 重量比でFe73.9%,Sm23.5%,B 2.6
0%となるように原料を秤量し、これをアルゴン雰囲気
中で溶製した。この合金は原子%でFe76.9%,S
m9.09%,B 14.0%に相当する。得られたイ
ンゴットを900℃で7日間焼鈍した後、鉄製乳鉢中で
粗粉砕し、さらにディスクミルで粉砕して、約30μm
径の粉体とした。この粉体にNを含有させるために、こ
れをN2+H2ガス中ほぼ500℃付近の温度において処
理した。この処理により材料中にNが1.58重量%含
有された。したがって材料全体としての組成は、重量%
でFe72.7%,Sm23.1%,B 2.56%,
N 1.58%、すなわち原子%ではFe72.1%,
Sm8.53%,B 13.1%,N 6.23%に相当
する。この粉体をジェットミルでさらに微粉砕した後、
20kOeの磁場中において配向させワックスで固化して
磁気特性を測定したところ、飽和磁化(4πIs)は1
15emu/g,保磁力(iHc)は3100 Oeであった。
また、得られた粉体をCuKα線を用いてX線回折した
ところ、その多くが体心正方晶ThMn12型の結晶構造
であると認められた。
Example 4 Fe 73.9%, Sm 23.5%, B 2.6 by weight
The raw materials were weighed so as to be 0%, and were melted in an argon atmosphere. This alloy contains 76.9% Fe in atomic%, S
m 9.09% and B 14.0%. After the obtained ingot was annealed at 900 ° C. for 7 days, it was roughly pulverized in an iron mortar and further pulverized by a disc mill to obtain about 30 μm.
It was a powder of a diameter. In order to make this powder contain N, it was treated in N 2 + H 2 gas at a temperature of about 500 ° C. As a result of this treatment, 1.58% by weight of N was contained in the material. Therefore, the composition of the whole material is
With Fe 72.7%, Sm 23.1%, B 2.56%,
N 1.58%, that is, 72.1% Fe in atomic%,
This corresponds to 8.53% of Sm, 13.1% of B, and 6.23% of N. After further pulverizing this powder with a jet mill,
When the magnetic properties were measured after orientation in a magnetic field of 20 kOe and solidification with wax, the saturation magnetization (4πIs) was 1
15 emu / g and coercive force (iHc) were 3100 Oe.
Further, when the obtained powder was subjected to X-ray diffraction using CuKα ray, it was recognized that most of the powder had a body-centered tetragonal ThMn 12 type crystal structure.

【0023】(実施例5) 重量比でFe73.9%,Nd22.5%,C 1.0
1%,B 2.60%となるように原料を秤量し、これ
をアルゴン雰囲気中で溶製した。この合金は原子%でF
e73.3%,Nd8.67%,C 4.67%,B 1
3.3%に相当する。得られたインゴットを900℃で
7日間焼鈍した後、鉄製乳鉢中で粗粉砕し、さらにディ
スクミルで粉砕して、約30μm径の粉体とした。この
粉体をジェットミルでさらに微粉砕した後、20kOeの
磁場中において配向させワックスで固化して磁気特性を
測定したところ、飽和磁化(4πIs)は110emu/
g,保磁力(iHc)は2500 Oeであった。また、得
られた粉体をCuKα線を用いてX線回折したところ、
その多くが体心正方晶ThMn12型の結晶構造であると
認められた。
Example 5 73.9% Fe, 22.5% Nd, 1.0 C by weight
The raw materials were weighed so as to be 1% and B 2.60%, and were melted in an argon atmosphere. This alloy is F
e 73.3%, Nd 8.67%, C 4.67%, B1
It corresponds to 3.3%. After the obtained ingot was annealed at 900 ° C. for 7 days, it was roughly pulverized in an iron mortar and further pulverized by a disk mill to obtain a powder having a diameter of about 30 μm. After further pulverizing the powder with a jet mill, orienting it in a magnetic field of 20 kOe, solidifying it with wax, and measuring its magnetic properties, the saturation magnetization (4πIs) was 110 emu /
g, the coercive force (iHc) was 2500 Oe. When the obtained powder was subjected to X-ray diffraction using CuKα radiation,
Most of them were recognized as having a body-centered tetragonal ThMn 12 type crystal structure.

【0024】(実施例6) 重量比でFe55.6%,Nd20.8%,Ti10.
6%,Co13.0%となるように原料を秤量し、これ
をアルゴン雰囲気中で溶製した。この合金は原子%でF
e62.9%,Nd9.09%,Ti14.0%,Co
14.0%に相当する。得られたインゴットを900℃
で7日間焼鈍した後、鉄製乳鉢中で粗粉砕し、さらにデ
ィスクミルで粉砕して、約30μm径の粉体とした。こ
の粉体にNを含有させるために、これをNH3ガス中ほ
ぼ450℃付近の温度において処理した。この処理によ
り材料中にNが1.63重量%含有された。したがって
材料全体としての組成は、重量%でFe54.7%,N
d20.4%,Ti10.4%,Co12.8%,N
1.63%、すなわち原子%ではFe58.6%,Nd
8.46%,Ti13.0%,Co13.0%,N
6.96%に相当する。この粉体をジェットミルでさら
に微粉砕した後、20kOeの磁場中において配向させワ
ックスで固化して磁気特性を測定したところ、飽和磁化
(4πIs)は117emu/g,保磁力(iHc)は43
00 Oeであった。また、得られた粉体をCuKα線を
用いてX線回折したところ、その多くが体心正方晶Th
Mn12型の結晶構造であると認められた。
Example 6 By weight ratio, 55.6% of Fe, 20.8% of Nd, 10% of Ti10.
The raw materials were weighed so as to be 6% and 13.0% Co, and were melted in an argon atmosphere. This alloy is F
e 62.9%, Nd 9.09%, Ti 14.0%, Co
This corresponds to 14.0%. 900 ° C of the obtained ingot
For 7 days, and then roughly pulverized in an iron mortar and further pulverized with a disc mill to obtain a powder having a diameter of about 30 μm. This powder was treated at approximately 450 ° C. in NH 3 gas in order to make the powder contain N. As a result of this treatment, 1.63% by weight of N was contained in the material. Therefore, the composition of the whole material is 54.7% Fe,
d 20.4%, Ti 10.4%, Co 12.8%, N
1.63%, that is, 58.6% Fe in atomic%, Nd
8.46%, Ti 13.0%, Co 13.0%, N
This corresponds to 6.96%. This powder was further finely pulverized by a jet mill, then oriented in a magnetic field of 20 kOe, solidified with wax, and measured for magnetic properties. The saturation magnetization (4πIs) was 117 emu / g and the coercive force (iHc) was 43
00 Oe. Further, when the obtained powder was subjected to X-ray diffraction using CuKα ray, most of the powder was found to have a body-centered tetragonal Th.
The crystal structure was confirmed to be of Mn 12 type.

【0025】(実施例7) 重量比でFe61.5%,Sm21.5%,Ti10.
5%,Ni6.46%から成る合金をアルゴン雰囲気中
で溶製した。この合金は原子%でFe69.9%,Sm
9.09%,Ti14.0%,Ni6.99%に相当す
る。得られたインゴットを900℃で7日間焼鈍した
後、鉄製乳鉢中で粗粉砕し、さらにディスクミルで粉砕
して、約30μm径の粉体とした。この粉体にNを含有
させるために、これをN2ガス中ほぼ450℃付近の温
度において処理した。この処理により材料中にNが0.
292重量%含有された。したがって材料全体としての
組成は、重量%でFe61.3%,Sm21.5%,T
i10.5%,Ni6.44%,N 0.292%、す
なわち原子%ではFe69.0%,Sm8.97%,T
i13.8%,Ni6.90%,N 1.31%に相当
する。この粉体をジェットミルでさらに微粉砕した後、
20kOeの磁場中において配向させワックスで固化して
磁気特性を測定したところ、飽和磁化(4πIs)は1
05emu/g,保磁力(iHc)は2900 Oeであった。
また、得られた粉体をCuKα線を用いてX線回折した
ところ、その多くが体心正方晶ThMn12型の結晶構造
であると認められた。
(Example 7) Fe61.5%, Sm21.5%, Ti10.
An alloy composed of 5% and Ni 6.46% was melted in an argon atmosphere. This alloy contains 69.9% Fe in atomic%, Sm
It corresponds to 9.09%, Ti 14.0% and Ni 6.99%. After the obtained ingot was annealed at 900 ° C. for 7 days, it was roughly pulverized in an iron mortar and further pulverized by a disk mill to obtain a powder having a diameter of about 30 μm. This powder was treated at a temperature of about 450 ° C. in N 2 gas in order to contain N. By this processing, N in the material is reduced to 0.
292% by weight. Therefore, the composition of the material as a whole is 61.3% Fe, 21.5% Sm,
i 10.5%, Ni 6.44%, N 0.292%, that is, in atomic%, 69.0% of Fe, 8.97% of Sm, T
It corresponds to i 13.8%, Ni 6.90%, and N 1.31%. After further pulverizing this powder with a jet mill,
When the magnetic properties were measured after orientation in a magnetic field of 20 kOe and solidification with wax, the saturation magnetization (4πIs) was 1
05 emu / g and coercive force (iHc) were 2900 Oe.
Further, when the obtained powder was subjected to X-ray diffraction using CuKα ray, it was recognized that most of the powder had a body-centered tetragonal ThMn 12 type crystal structure.

【0026】(実施例8) 重量比でFe65.6%,Sm21.9%,Ti10.
7%,B 1.81%となるように原料を秤量し、これ
をアルゴン雰囲気中で溶製した。この合金は原子%でF
e68.6%,Sm8.50%,Ti13.1%,B
9.80%に相当する。この粉体をジェットミルでさら
に微粉砕した後、20kOeの磁場中において配向させワ
ックスで固化して磁気特性を測定したところ、飽和磁化
(4πIs)は114emu/g,保磁力(iHc)は59
00 Oeであった。また、得られた粉体をCuKα線を
用いてX線回折したところ、その多くが体心正方晶Th
Mn12型の結晶構造であると認められた。
(Example 8) Fe65.6%, Sm21.9%, Ti10.
The raw materials were weighed so as to be 7% and B 1.81%, and were melted in an argon atmosphere. This alloy is F
e68.6%, Sm8.50%, Ti13.1%, B
This corresponds to 9.80%. This powder was further finely pulverized by a jet mill, then oriented in a magnetic field of 20 kOe, solidified with wax, and measured for magnetic properties. The saturation magnetization (4πIs) was 114 emu / g, and the coercive force (iHc) was 59.
00 Oe. Further, when the obtained powder was subjected to X-ray diffraction using CuKα ray, most of the powder was found to have a body-centered tetragonal Th.
The crystal structure was confirmed to be of Mn 12 type.

【0027】(実施例9) 重量比でFe66.5%,Nd21.3%,Ti10.
9%,C 1.36%となるように原料を秤量し、これ
をアルゴン雰囲気中で溶製した。この合金は原子%でF
e70.9%,Nd8.78%,Ti13.5%,C
6.76%に相当する。得られたインゴットを900℃
で7日間焼鈍した後、鉄製乳鉢中で粗粉砕し、さらにデ
ィスクミルで粉砕して、約30μm径の粉体とした。こ
の粉体をジェットミルでさらに微粉砕した後、20kOe
の磁場中において配向させワックスで固化して磁気特性
を測定したところ、飽和磁化(4πIs)は111emu/
g,保磁力(iHc)は4200 Oeであった。また、得
られた粉体をCuKα線を用いてX線回折したところ、
その多くが体心正方晶ThMn12型の結晶構造であると
認められた。
(Example 9) Fe66.5%, Nd21.3%, Ti10.
The raw materials were weighed so as to be 9% and C 1.36%, and were melted in an argon atmosphere. This alloy is F
e70.9%, Nd8.78%, Ti13.5%, C
This corresponds to 6.76%. 900 ° C of the obtained ingot
For 7 days, and then roughly pulverized in an iron mortar and further pulverized with a disc mill to obtain a powder having a diameter of about 30 μm. After further pulverizing this powder with a jet mill,
When the magnetic properties were measured after being oriented in a magnetic field and solidified with wax, the saturation magnetization (4πIs) was 111 emu /
g, the coercive force (iHc) was 4200 Oe. When the obtained powder was subjected to X-ray diffraction using CuKα radiation,
Most of them were recognized as having a body-centered tetragonal ThMn 12 type crystal structure.

【0028】(実施例10) 重量比でFe74.0%,Sm19.9%,Ti6.0
6%から成る合金をアルゴン雰囲気中で溶製した。この
合金は原子%でFe83.7%,Sm8.37%,Ti
7.98%に相当する。得られたインゴットを900℃
で7日間焼鈍した後、鉄製乳鉢中で粗粉砕し、さらに有
機溶媒中でボールミル粉砕し、約10μm径の粉末とし
た。この粉末にNを含有させるために、これをN2ガス
中ほぼ550℃付近の温度において処理した。この処理
により材料中にNが2.20重量%含有された。したが
って材料全体としての組成は、重量%でFe72.4
%,Sm19.5%,Ti5.92%,N 2.20
%、すなわち原子%ではFe76.0%,Sm7.60
%,Ti7.25%,N 9.19%に相当する。この
粉体を20kOeの磁場中において配向させた後、ワック
スで固化して磁気特性を測定したところ、飽和磁化(4
πIs)は122emu/g,保磁力(iHc)は5000
Oeであった。また、得られた粉体をCuKα線を用いて
X線回折したところ、その多くが体心正方晶ThMn12
型の結晶構造であると認められた。
Example 10 74.0% Fe, 19.9% Sm, 6.0% Ti by weight
An alloy consisting of 6% was melted in an argon atmosphere. This alloy contains 83.7% Fe, 8.37% Sm,
It corresponds to 7.98%. 900 ° C of the obtained ingot
For 7 days, and coarsely pulverized in an iron mortar, and further ball-milled in an organic solvent to obtain a powder having a diameter of about 10 μm. This powder was treated at a temperature of about 550 ° C. in N 2 gas in order to contain N. As a result of this treatment, 2.20% by weight of N was contained in the material. Therefore, the composition of the material as a whole is 72.4% by weight of Fe.
%, Sm 19.5%, Ti 5.92%, N 2.20
%, That is, 76.0% of Fe and 7.60 of Sm in atomic%.
%, 7.25% of Ti, and 9.19% of N. After the powder was oriented in a magnetic field of 20 kOe, it was solidified with wax and the magnetic properties were measured.
πIs) is 122 emu / g and coercive force (iHc) is 5000
Oe. When the obtained powder was subjected to X-ray diffraction using CuKα ray, most of the powder was found to have a body-centered tetragonal ThMn 12
The crystal structure was found to be of the type.

【0029】(実施例11) 重量比でFe67.7%,Sm20.1%,Ti6.0
9%,V 6.17%から成る合金をアルゴン雰囲気中
で溶製した。この合金は原子%でFe76.1%,Sm
8.37%,Ti7.98%,V 7.60%に相当す
る。得られたインゴットを900℃で7日間焼鈍した
後、鉄製乳鉢中で粗粉砕し、さらに有機溶媒中でボール
ミル粉砕し、約10μm径の粉末とした。この粉末にN
を含有させるために、これをN2ガス中ほぼ550℃付
近の温度において処理した。この処理により材料中にN
が2.37重量%含有された。したがって材料全体とし
ての組成は、重量%でFe66.1%,Sm19.6
%,Ti5.95%,V 6.03%,N 2.37%、
すなわち原子%ではFe68.6%,Sm7.55%,
Ti7.20%,V 6.86%,N 9.81%に相当
する。この粉体を20kOeの磁場中において配向させた
後、ワックスで固化して磁気特性を測定したところ、飽
和磁化(4πIs)は106emu/g,保磁力(iHc)
は6200 Oeであった。また、得られた粉体をCuK
α線を用いてX線回折したところ、その多くが体心正方
晶ThMn12型の結晶構造であると認められた。
(Example 11) Fe67.7%, Sm20.1%, Ti6.0 by weight ratio
An alloy consisting of 9% and 6.17% V was melted in an argon atmosphere. This alloy contains 76.1% Fe in atomic%, Sm
8.37%, Ti 7.98%, and V 7.60%. The obtained ingot was annealed at 900 ° C. for 7 days, coarsely ground in an iron mortar, and further ball-milled in an organic solvent to obtain a powder having a diameter of about 10 μm. N
Was treated in N 2 gas at a temperature around 550 ° C. By this process, N
Was contained 2.37% by weight. Therefore, the composition of the whole material is Fe 66.1% by weight and Sm 19.6% by weight.
%, 5.95% Ti, 6.03% V, 2.37% N,
That is, in atomic%, Fe is 68.6%, Sm is 7.55%,
This corresponds to 7.20% of Ti, 6.86% of V, and 9.81% of N. This powder was oriented in a magnetic field of 20 kOe, then solidified with wax, and the magnetic properties were measured. The saturation magnetization (4πIs) was 106 emu / g, and the coercive force (iHc).
Was 6200 Oe. Moreover, the obtained powder is CuK
When subjected to X-ray diffraction using α-rays, it was confirmed that most of the crystals had a body-centered tetragonal ThMn 12 type crystal structure.

【0030】(実施例12) 重量比でFe73.9%,Sm19.9%,Cr6.2
5%から成る合金をアルゴン雰囲気中で溶製した。この
合金は原子%でFe84.0%,Sm8.40%,Cr
7.63%に相当する。得られたインゴットを900℃
で7日間焼鈍した後、鉄製乳鉢中で粗粉砕し、さらに有
機溶媒中でボールミル粉砕し、約10μm径の粉末とし
た。この粉末にNを含有させるために、これをN2ガス
中ほぼ550℃付近の温度において処理した。この処理
により材料中にNが1.97重量%含有された。したが
って材料全体としての組成は重量%でFe72.4%,
Sm19.5%,Cr6.13%,N 1.97%、す
なわち原子%では、Fe77.0%,Sm7.70%,
Cr7.00%,N 8.33%に相当する。この粉体
を20kOeの磁場中において配向させた後、ワックスで
固化して磁気特性を測定したところ、飽和磁化(4πI
s)は97emu/g,保磁力(iHc)は3000 Oeであ
った。また、得られた粉体をCuKα線を用いてX線回
折したところ、その多くが体心正方晶ThMn12型の結
晶構造であると認められた。
(Example 12) 73.9% of Fe, 19.9% of Sm, and 6.2% of Cr by weight ratio
An alloy consisting of 5% was melted in an argon atmosphere. This alloy contains 84.0% Fe, 8.40% Sm,
It corresponds to 7.63%. 900 ° C of the obtained ingot
For 7 days, and coarsely pulverized in an iron mortar, and further ball-milled in an organic solvent to obtain a powder having a diameter of about 10 μm. This powder was treated at a temperature of about 550 ° C. in N 2 gas in order to contain N. As a result of this treatment, 1.97% by weight of N was contained in the material. Therefore, the composition of the whole material is 72.4% by weight of Fe,
Sm 19.5%, Cr 6.13%, N 1.97%, that is, in atomic%, Fe 77.0%, Sm 7.70%,
This corresponds to 7.00% of Cr and 8.33% of N. After the powder was oriented in a magnetic field of 20 kOe, it was solidified with wax and the magnetic properties were measured.
s) was 97 emu / g, and the coercive force (iHc) was 3000 Oe. Further, when the obtained powder was subjected to X-ray diffraction using CuKα ray, it was recognized that most of the powder had a body-centered tetragonal ThMn 12 type crystal structure.

【0031】(実施例13) 重量比でFe80.2%,Sm19.8%から成る合金
をアルゴン雰囲気中で溶製した。この合金は原子%でF
e91.6%,Sm8.40%に相当する。得られたイ
ンゴットを900℃で7日間焼鈍した後、鉄製乳鉢中で
粗粉砕し、さらに有機溶媒中でボールミル粉砕し、約1
0μm径の粉末とした。この粉末にNを含有させるため
に、これをNH3ガス中ほぼ450℃付近の温度におい
て処理した。この処理により材料中にNが2.52重量
%含有された。したがって材料全体としての組成は、重
量%でFe78.2%,Sm19.3%,N 2.52
%、すなわち原子%ではFe82.0%,Sm7.51
%,N 10.5%に相当する。この粉体を20kOeの磁
場中において配向させた後、ワックスで固化して磁気特
性を測定したところ、飽和磁化(4πIs)は121em
u/g,保磁力(iHc)は5700 Oeであった。また、
得られた粉体をCuKα線を用いてX線回折したとこ
ろ、その多くが体心正方晶ThMn12型の結晶構造であ
ると認められた。
Example 13 An alloy composed of 80.2% of Fe and 19.8% of Sm by weight was melted in an argon atmosphere. This alloy is F
e91.6% and Sm 8.40%. After the obtained ingot was annealed at 900 ° C. for 7 days, it was roughly pulverized in an iron mortar, and further ball-milled in an organic solvent to obtain about 1 kg.
The powder had a diameter of 0 μm. This powder was treated in NH 3 gas at a temperature of about 450 ° C. in order to contain N. As a result of this treatment, 2.52% by weight of N was contained in the material. Therefore, the composition of the entire material is 78.2% Fe, 19.3% Sm, and 2.52% N by weight.
%, That is, 82.0% of Fe and 7.51 of Sm in atomic%.
%, N 10.5%. This powder was oriented in a magnetic field of 20 kOe, then solidified with wax, and the magnetic properties were measured. The saturation magnetization (4πIs) was 121 em.
u / g and coercive force (iHc) were 5700 Oe. Also,
When the obtained powder was subjected to X-ray diffraction using CuKα radiation, it was confirmed that most of the powder had a body-centered tetragonal ThMn 12 type crystal structure.

【0032】(実施例14) 重量比でFe73.4%,Sm19.8%,Ti6.0
1%,C 0.43%,B 0.39%となるように原料
を秤量し、これをアルゴン雰囲気中で溶製した。この合
金は原子%でFe80.0%,Sm8.00%,Ti
7.64%,C2.18%,B 2.18%に相当す
る。得られたインゴットを900℃で7日間焼鈍した
後、鉄製乳鉢中で粗粉砕し、さらに有機溶媒中でボール
ミル粉砕し、約10μm径の粉末とした。この粉末にN
を含有させるために、これをN2ガス中ほぼ550℃付
近の温度において処理した。この処理により材料中にN
が1.68重量%含有された。したがって材料全体とし
ての組成は、重量%でFe72.2%,Sm19.4
%,Ti5.91%,C 0.423%,B 0.381
%,N 1.68%、すなわち原子%ではFe74.5
%,Sm7.45%,Ti7.11%,C 2.03
%,B 2.03%,N 6.91%に相当する。この粉
体を20kOeの磁場中において配向させた後、ワックス
で固化して磁気特性を測定したところ、飽和磁化(4π
Is)は126emu/g,保磁力(iHc)は5600 Oe
であった。また、得られた粉体をCuKα線を用いてX
線回折したところ、その多くが体心正方晶ThMn12
の結晶構造であると認められた。
Example 14 Fe 73.4%, Sm 19.8%, Ti 6.0 by weight ratio
The raw materials were weighed so as to be 1%, C 0.43% and B 0.39%, and were melted in an argon atmosphere. This alloy contains 80.0% Fe, 8.00% Sm,
It corresponds to 7.64%, C 2.18% and B 2.18%. The obtained ingot was annealed at 900 ° C. for 7 days, coarsely ground in an iron mortar, and further ball-milled in an organic solvent to obtain a powder having a diameter of about 10 μm. N
Was treated in N 2 gas at a temperature around 550 ° C. By this process, N
1.68% by weight. Therefore, the composition of the whole material is 72.2% by weight of Fe and 19.4% by weight of Sm.
%, Ti 5.91%, C 0.423%, B 0.381
%, N 1.68%, that is, 74.5 atomic% Fe
%, Sm 7.45%, Ti 7.11%, C 2.03
%, B 2.03% and N 6.91%. After the powder was oriented in a magnetic field of 20 kOe, it was solidified with wax and the magnetic properties were measured.
Is) is 126 emu / g and coercive force (iHc) is 5600 Oe
Met. Further, the obtained powder is converted into X by using CuKα ray.
Line diffraction revealed that most of the crystals had a body-centered tetragonal ThMn 12 type crystal structure.

【0033】(実施例15) 重量比でFe66.4%,Sm19.7%,Ti5.9
7%,V 6.05%,C 0.428%,B 1.54
%となるように原料を秤量し、これをアルゴン雰囲気中
で溶製した。。この合金は原子%でFe68.3%,S
m7.51%,Ti7.17%,V 6.83%,C
2.05%,B 8.19%に相当する。得られたイン
ゴットを900℃で7日間焼鈍した後、鉄製乳鉢中で粗
粉砕し、さらに有機溶媒中でボールミル粉砕し、約10
μm径の粉末とした。この粉末をアルゴンガス中ほぼ5
00℃付近の温度において処理した。この粉体を20kO
eの磁場中において配向させた後、ワックスで固化して
磁気特性を測定したところ、飽和磁化(4πIs)は9
9emu/g,保磁力(iHc)は6700 Oeであった。ま
た、得られた粉体をCuKα線を用いてX線回折したと
ころ、その多くが体心正方晶ThMn12型の結晶構造で
あると認められた。
(Example 15) Fe66.4%, Sm19.7%, Ti5.9 by weight ratio
7%, V 6.05%, C 0.428%, B 1.54
% Of the raw material was weighed and melted in an argon atmosphere. . This alloy contains 68.3% Fe in atomic%, S
m 7.51%, Ti 7.17%, V 6.83%, C
2.05% and 8.19% of B. After the obtained ingot was annealed at 900 ° C. for 7 days, it was roughly pulverized in an iron mortar, and further ball-milled in an organic solvent to obtain about 10%.
A powder having a diameter of μm was obtained. This powder is placed in argon gas for approximately 5
The treatment was performed at a temperature around 00 ° C. 20 kO of this powder
After orientation in the magnetic field of e, solidification with wax and measurement of magnetic properties revealed that the saturation magnetization (4πIs) was 9
9 emu / g and coercive force (iHc) were 6700 Oe. Further, when the obtained powder was subjected to X-ray diffraction using CuKα ray, it was recognized that most of the powder had a body-centered tetragonal ThMn 12 type crystal structure.

【0034】(実施例16) 重量比でFe79.1%,Sm19.5%,C 0.7
1%,B 0.64%となるように原料を秤量し、これ
をアルゴン雰囲気中で溶製した。この合金は原子%でF
e85.1%,Sm7.80%,C 3.55%,B
3.55%に相当する。得られたインゴットを900℃
で7日間焼鈍した後、鉄製乳鉢中で粗粉砕し、さらに有
機溶媒中でボールミル粉砕し、約10μm径の粉末とし
た。この粉末にNを含有させるために、これをN2ガス
中ほぼ550℃付近の温度において処理した。この処理
により材料中にNが1.03重量%含有された。したが
って材料全体としての組成は、重量%でFe78.3
%,Sm19.3%,C 0.702%,B 0.632
%,N 1.03%、すなわち原子%ではFe81.5
%,Sm7.47%,C 3.39%,B 3.39%,
N 4.28%に相当する。この粉体を20kOeの磁場中
において配向させた後、ワックスで固化して磁気特性を
測定したところ、飽和磁化(4πIs)は126emu/
g,保磁力(iHc)は4900 Oeであった。また、得
られた粉体をCuKα線を用いてX線回折したところ、
その多くが体心正方晶ThMn12型の結晶構造であると
認められた。
Example 16 79.1% Fe, 19.5% Sm, C 0.7
The raw materials were weighed so as to be 1% and B 0.64%, and were melted in an argon atmosphere. This alloy is F
e 85.1%, Sm 7.80%, C 3.55%, B
It corresponds to 3.55%. 900 ° C of the obtained ingot
For 7 days, and coarsely pulverized in an iron mortar, and further ball-milled in an organic solvent to obtain a powder having a diameter of about 10 μm. This powder was treated at a temperature of about 550 ° C. in N 2 gas in order to contain N. By this treatment, 1.03% by weight of N was contained in the material. Therefore, the composition of the material as a whole is Fe78.3% by weight.
%, Sm19.3%, C 0.702%, B 0.632
%, N 1.03%, that is, at atomic%, Fe 81.5
%, Sm 7.47%, C 3.39%, B 3.39%,
N corresponds to 4.28%. After the powder was oriented in a magnetic field of 20 kOe, it was solidified with wax and the magnetic properties were measured. The saturation magnetization (4πIs) was 126 emu /
g, the coercive force (iHc) was 4900 Oe. When the obtained powder was subjected to X-ray diffraction using CuKα radiation,
Most of them were recognized as having a body-centered tetragonal ThMn 12 type crystal structure.

【0035】(実施例17) 重量比でFe78.7%,Sm19.4%,C 0.9
9%,B 0.89%となるように原料を秤量し、これ
をアルゴン雰囲気中で溶製した。この合金は原子%でF
e82.8%,Sm7.59%,C 4.83%,B
4.83%に相当する。得られたインゴットを900℃
で7日間焼鈍した後、鉄製乳鉢中で粗粉砕し、さらに有
機溶媒中でボールミル粉砕し、約10μm径の粉末とし
た。この粉末をアルゴンガス中ほぼ500℃付近の温度
において処理した。この粉体を20kOeの磁場中におい
て配向させた後、ワックスで固化して磁気特性を測定し
たところ、飽和磁化(4πIs)は120emu/g,保磁
力(iHc)は5000 Oeであった。また、得られた
粉体をCuKα線を用いてX線回折したところ、その多
くが体心正方晶ThMn12型の結晶構造であると認めら
れた。
(Example 17) Fe78.7%, Sm19.4%, C0.9 by weight ratio
The raw materials were weighed so as to be 9% and B 0.89%, and were melted in an argon atmosphere. This alloy is F
e 82.8%, Sm 7.59%, C 4.83%, B
This corresponds to 4.83%. 900 ° C of the obtained ingot
For 7 days, and coarsely pulverized in an iron mortar, and further ball-milled in an organic solvent to obtain a powder having a diameter of about 10 μm. This powder was treated in argon gas at a temperature around 500 ° C. After the powder was oriented in a magnetic field of 20 kOe, it was solidified with wax and the magnetic properties were measured. The saturation magnetization (4πIs) was 120 emu / g and the coercive force (iHc) was 5000 Oe. Further, when the obtained powder was subjected to X-ray diffraction using CuKα ray, it was recognized that most of the powder had a body-centered tetragonal ThMn 12 type crystal structure.

【0036】(実施例18) 実施例1と同様にして表1〜3に示すような組成の合金
を作製したところ、本発明の効果が得られることが確認
された。
Example 18 Alloys having the compositions shown in Tables 1 to 3 were produced in the same manner as in Example 1, and it was confirmed that the effects of the present invention could be obtained.

【0037】[0037]

【表1】 [Table 1]

【表2】 [Table 2]

【表3】 [Table 3]

【0038】(実施例19) 実施例7と同様にして表4に示すような組成の合金を作
製したところ、本発明の効果が得られることが確認され
た。
Example 19 An alloy having a composition shown in Table 4 was produced in the same manner as in Example 7, and it was confirmed that the effects of the present invention could be obtained.

【0039】[0039]

【表4】 [Table 4]

【0040】[0040]

【発明の効果】以上に説明したように、本発明による鉄
−希土類系永久磁石材料によれば、Feを主体とする希
土類磁石でありながら、大きな飽和磁化と高い保磁力と
を安定的に得ることができるので、実用上きわめて有用
なものである。また、本発明による鉄−希土類系永久磁
石材料の製造方法によれば、N(窒素)を含むような本発
明の鉄−希土類系永久磁石材料を安定的に製造し得るの
で、実用上きわめて有用なものである。
As described above, according to the iron-rare earth permanent magnet material of the present invention, a large saturation magnetization and a high coercive force can be stably obtained even though the rare earth magnet is mainly composed of Fe. It is very useful in practice. Further, according to the method for producing an iron-rare earth permanent magnet material of the present invention, the iron-rare earth permanent magnet material of the present invention containing N (nitrogen) can be produced stably, which is extremely useful in practical use. It is something.

【図面の簡単な説明】[Brief description of the drawings]

【図1】体心正方晶ThMn12型結晶構造を説明する図
である。
FIG. 1 is a diagram illustrating a body-centered tetragonal ThMn 12- type crystal structure.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI C23C 8/24 C23C 8/24 H01F 1/053 H01F 1/04 H A (31)優先権主張番号 特願平2−306590 (32)優先日 平成2年11月13日(1990.11.13) (33)優先権主張国 日本(JP) (31)優先権主張番号 特願平2−306591 (32)優先日 平成2年11月13日(1990.11.13) (33)優先権主張国 日本(JP) (31)優先権主張番号 特願平2−306592 (32)優先日 平成2年11月13日(1990.11.13) (33)優先権主張国 日本(JP) (58)調査した分野(Int.Cl.7,DB名) C22C 38/00 B22F 1/00,9/04 C01B 21/06 H01F 1/053 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI C23C 8/24 C23C 8/24 H01F 1/053 H01F 1/04 HA (31) Priority claim number Japanese Patent Application No. Hei 2-306590 ( 32) Priority Date November 13, 1990 (November 13, 1990) (33) Priority Country Japan (JP) (31) Priority Claim Number Japanese Patent Application No. 2-306591 (32) Priority Date 1990 November 13, 1990 (November 13, 1990) (33) Priority claiming country Japan (JP) (31) Priority claim number Japanese Patent Application No. 2-306592 (32) Priority date November 13, 1990 (1990. 11.13) (33) Priority country Japan (JP) (58) Fields investigated (Int. Cl. 7 , DB name) C22C 38/00 B22F 1/00, 9/04 C01B 21/06 H01F 1 / 053

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 RをY,Thおよびすべてのランタノイ
ド元素からなる群の中から選ばれた1種または2種以上
の元素の組合せ、XをN(窒素)、C(炭素)もしくはB
(硼素)またはこれらの元素の組合せとするとき、 原子百分率で 、R:3〜30%、X:0.3〜50%
を含み、残部が実質的にFeから成り、主相が体心正方
ThMn 12 構造を有することを特徴とする鉄−希
土類系永久磁石材料。
1. R is a combination of one or more elements selected from the group consisting of Y, Th and all lanthanoid elements, and X is N (nitrogen), C (carbon) or B
(Boron) or a combination of these elements, R: 3 to 30%, X: 0.3 to 50% in atomic percentage
Wherein the balance substantially consists of Fe, and the main phase has a body-centered tetragonal ThMn 12- type structure.
【請求項2】 MをTi,Cr,V,Zr,Nb,A
l,Mo,Mn,Hf,Ta,W,Mg,Si,Sn,
Ge,Gaからなる群の中から選ばれた1種または2種
以上の元素の組合せとするとき、Feの一部をMで置換
することにより、原子百分率で、M:0.5〜30%を
含むようにしたことを特徴とする請求項1に記載の鉄−
希土類系永久磁石材料。
2. M is Ti, Cr, V, Zr, Nb, A
1, Mo, Mn, Hf, Ta, W, Mg, Si, Sn,
When one or a combination of two or more elements selected from the group consisting of Ge and Ga is used, by substituting a part of Fe with M, M: 0.5 to 30% by atomic percentage. 2. The iron according to claim 1, wherein
Rare earth permanent magnet material.
【請求項3】 XがN、NとCの組み合わせ、NとCと
Bの組み合わせ、またはNとBの組み合わせであること
を特徴とする請求項1または2に記載の鉄−希土類系永
久磁石材料。
3. X is N, a combination of N and C, and N and C are
The iron-rare earth permanent magnet material according to claim 1, wherein the material is a combination of B or a combination of N and B. 4 .
【請求項4】 予め、実質的にNを含有しないかまたは
N含有量が所望の量よりは少ない鉄−希土類系合金を作
製した後、これをNを含む気体中で処理して前記合金中
にNを侵入させることにより所望のN含有量にしたこと
を特徴とする請求項3に記載の鉄−希土類系永久磁石材
料の製造方法。
4. The method according to claim 1, wherein the composition contains substantially no N or
An iron-rare earth alloy with a lower N content than desired is produced.
After being produced, it is treated in a gas containing N to
The desired N content by infiltrating N into the steel
The iron-rare earth permanent magnet material according to claim 3, characterized in that:
Method of manufacturing the ingredients.
JP03257932A 1990-10-05 1991-10-04 Iron-rare earth permanent magnet material and method for producing the same Expired - Lifetime JP3073807B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03257932A JP3073807B2 (en) 1990-10-05 1991-10-04 Iron-rare earth permanent magnet material and method for producing the same

Applications Claiming Priority (13)

Application Number Priority Date Filing Date Title
JP2-267736 1990-10-05
JP26773690 1990-10-05
JP27274290 1990-10-11
JP2-272742 1990-10-11
JP2-306589 1990-11-13
JP30658990 1990-11-13
JP2-306591 1990-11-13
JP2-306592 1990-11-13
JP30659290 1990-11-13
JP2-306590 1990-11-13
JP30659090 1990-11-13
JP30659190 1990-11-13
JP03257932A JP3073807B2 (en) 1990-10-05 1991-10-04 Iron-rare earth permanent magnet material and method for producing the same

Publications (2)

Publication Number Publication Date
JPH0565603A JPH0565603A (en) 1993-03-19
JP3073807B2 true JP3073807B2 (en) 2000-08-07

Family

ID=27566734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03257932A Expired - Lifetime JP3073807B2 (en) 1990-10-05 1991-10-04 Iron-rare earth permanent magnet material and method for producing the same

Country Status (1)

Country Link
JP (1) JP3073807B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009249682A (en) * 2008-04-04 2009-10-29 Nec Tokin Corp Hard magnetic alloy and method for producing the same
JP6547141B2 (en) * 2014-08-18 2019-07-24 国立研究開発法人物質・材料研究機構 Rare earth anisotropic magnet material and method of manufacturing the same
CN104724684B (en) * 2015-01-30 2016-07-13 南京邮电大学 A kind of Inxfe4-xn/Fe3n composite material and preparation method thereof
WO2021065254A1 (en) * 2019-10-02 2021-04-08 国立研究開発法人物質・材料研究機構 Magnet, membrane, laminate, motor, generator, and automobile
KR20240030327A (en) * 2022-08-30 2024-03-07 한국재료연구원 METHOD OF PREPARING ThMn12 MAGNETIC MATERIAL POWDER

Also Published As

Publication number Publication date
JPH0565603A (en) 1993-03-19

Similar Documents

Publication Publication Date Title
JP3741597B2 (en) Multi-element rare earth-iron lattice intrusion-type permanent magnet material, permanent magnet comprising the same, and method for producing them
JP2001189206A (en) Permanent magnet
US5800728A (en) Permanent magnetic material made of iron-rare earth metal alloy
JPH06283316A (en) Iron-rare earth permanent magnet material and its manufacture
JP3215700B2 (en) Hard magnetic material and magnet having the material
JP3073807B2 (en) Iron-rare earth permanent magnet material and method for producing the same
JPH04129203A (en) Permanent magnet powder
Burzo et al. Magnetic properties of Nd2Fe14− x− yCoxAlyB alloys
JPH06207203A (en) Production of rare earth permanent magnet
JP3524941B2 (en) Method for producing permanent magnet containing NdFeB as a main component
JPS60176202A (en) Iron-rare earth-nitrogen permanent magnet
JPH06207204A (en) Production of rare earth permanent magnet
JPH0620813A (en) Rare earth anisotropic permanent magnet powder and manufacture thereof
JPS62240742A (en) Production of permanent magnet material
JP3157659B2 (en) Manufacturing method of permanent magnet powder
JP3312908B2 (en) Iron-rare earth-nitrogen permanent magnet material
JPH0467324B2 (en)
JP3516820B2 (en) Alloy raw material for rare earth permanent magnet, alloy powder for rare earth permanent magnet, and method for producing rare earth permanent magnet
JP3199506B2 (en) Rare earth permanent magnet
JPH0533095A (en) Permanent magnet alloy and its production
JPH10340806A (en) Rare earth-iron magnetic material and manufacture thereof
JPH04254303A (en) Parmanent magnet
JPH04254304A (en) Manufacture of sm-fe-n-based magnetic material
JPH07211526A (en) Iron-rare earth-nitrogen group permanent magnet material and its manufacturing method
JP2809946B2 (en) Iron-rare earth-nitrogen permanent magnet powder

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080602

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090602

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100602

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100602

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110602

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120602

Year of fee payment: 12