JP3066672B2 - Groundwater condensing method for underground diaphragm wall - Google Patents

Groundwater condensing method for underground diaphragm wall

Info

Publication number
JP3066672B2
JP3066672B2 JP4050039A JP5003992A JP3066672B2 JP 3066672 B2 JP3066672 B2 JP 3066672B2 JP 4050039 A JP4050039 A JP 4050039A JP 5003992 A JP5003992 A JP 5003992A JP 3066672 B2 JP3066672 B2 JP 3066672B2
Authority
JP
Japan
Prior art keywords
groundwater
excavation hole
continuous wall
underground continuous
crushed stone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4050039A
Other languages
Japanese (ja)
Other versions
JPH05247929A (en
Inventor
博恭 堤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Corp
Original Assignee
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Corp filed Critical Shimizu Corp
Priority to JP4050039A priority Critical patent/JP3066672B2/en
Publication of JPH05247929A publication Critical patent/JPH05247929A/en
Application granted granted Critical
Publication of JP3066672B2 publication Critical patent/JP3066672B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Bulkheads Adapted To Foundation Construction (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、埋殺し山留め壁によ
る連続した地下構造物や、建物の基礎となる地中連続壁
において、地下水遮断による水位上昇または低下や、水
の腐れ等の公害を防止することができる地中連続壁の地
下水復水化工法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a continuous underground structure formed by buried mountain retaining walls and an underground continuous wall serving as a foundation of a building. The present invention relates to a groundwater condensing method for underground diaphragm walls that can be prevented.

【0002】[0002]

【従来の技術】地中連続壁は周知のとおり土留め壁、止
水壁や構造物の基礎あるいは地下構造物などを構成する
ものである。地中連続壁は、例えば、以下のようにして
構築される。すなわち、地盤中に、連続壁の部分を構成
する先行エレメントを、互いにほぼ一つのエレメントの
長さ分を隔てた状態に形成する。これら先行エレメント
は、この先行エレメント を形成するための掘削孔を穿
孔した後、その掘削孔内に鉄筋籠を建て込み、そこにコ
ンクリートを打設することにより築造する。先行エレメ
ント が築造されたならば、それら先行エレメント 間を
掘削して後行エレメント 用の掘削孔を穿孔する。しか
る後、この後行エレメント用掘削孔 に鉄筋籠を建て込
み、コンクリートを打設して後行エレメント を形成
し、前記先行エレメント と後行エレメントとを接続す
ることにより地中に連続した壁体、すなわち地中連続壁
を形成する。
2. Description of the Related Art As is well known, underground continuous walls constitute earth retaining walls, water blocking walls, foundations of structures or underground structures. The underground continuous wall is constructed, for example, as follows. That is, the preceding elements constituting the continuous wall portion are formed in the ground so as to be separated from each other by substantially one element length. These precedent elements are constructed by drilling a borehole to form this precedent element, then laying a steel cage in the borehole and casting concrete there. Once the preceding elements have been built, drill between them and drill holes for the following elements. Thereafter, a reinforcing bar is erected in the drilling hole for the subsequent element, concrete is cast to form a subsequent element, and the preceding element and the subsequent element are connected to form a continuous wall in the ground. That is, an underground continuous wall is formed.

【0003】[0003]

【発明が解決しようとする課題】ところで、上記のよう
にして構築された地中連続壁では、地下鉄、道路、共同
溝等の基礎等のように延長が長いものの場合、地下水が
地中連続壁で遮断されてしまい、上流側では地下水位上
昇、地盤軟弱化、下流側では地下水位低下、圧密沈下、
井戸枯れ、水の腐れ等の公害を引き起こすことになる。
この発明は上記事情に鑑みてなされたものであり、地下
水を通水して上記のような公害を防止することができる
地中連続壁の地下水復水化工法を提供することを目的と
している。
In the underground continuous wall constructed as described above, if the extension is long, such as the foundation of a subway, a road, a common ditch, or the like, the groundwater flows through the underground continuous wall. The groundwater level rises and the ground softens on the upstream side, the groundwater level drops on the downstream side, consolidation settlement,
It causes pollution such as well withering and water decay.
The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a method of condensing groundwater into a ground wall, which can prevent the above-mentioned pollution by passing groundwater.

【0004】[0004]

【課題を解決するための手段】上記目的を達成するため
に、この発明の地中連続壁の地下水復水化工法は、地盤
に地中連続壁を構築するための掘削孔を穿孔し、次い
で、この掘削孔に、該掘削孔をその長さ方向に仕切る一
対の仕切り板と、この仕切り板間に配設されて、これら
仕切り板間の掘削孔をその幅方向に仕切る鋼管からなる
矢板とを挿入し、次に、上記仕切り板間の掘削孔に多数
の透水砕石を充填した後、上記一対の仕切り板の外側に
位置する上記掘削孔にコンクリートを打設し、次いで、
地下構築物完了後上記矢板を掘削孔から引き抜くことを
特徴としている。
SUMMARY OF THE INVENTION In order to achieve the above object, a method for condensing groundwater in an underground continuous wall according to the present invention comprises: drilling an excavation hole for constructing an underground continuous wall in the ground; A pair of partition plates that partition the borehole in the length direction thereof, and a steel pipe disposed between the partition plates to partition the borehole between the partition plates in the width direction. After inserting a sheet pile and then filling a number of permeable crushed stones in the excavation holes between the partition plates, concrete is poured into the excavation holes located outside the pair of partition plates,
After completion of the underground construction, the sheet pile is pulled out of the excavation hole.

【0005】[0005]

【0006】[0006]

【作用】この発明の地中連続壁の地下水復水化工法にあ
っては、地中連続壁を構築するための掘削孔に、砕石を
充填した後、矢板を掘削孔から引き抜くようにしたの
で、砕石が充填された砕石層が地中連続壁の厚さ方向に
おいて通水可能になり、これによって地下水が地中連続
壁で遮断されてしまうことがなく、砕石層を通水する。
[Action] In the groundwater recovery hydration method of underground continuous wall according to the present invention, the wellbore for constructing underground continuous walls, after filling the crushed stone. Thus pull the sheet piles from borehole Then, the crushed stone layer filled with crushed stone can flow in the thickness direction of the underground continuous wall, whereby the groundwater is not interrupted by the underground continuous wall, and the crushed stone layer flows through.

【0007】また、この発明の地中連続壁の地下水復水
化工法にあっては、矢板を通常の鋼鈑より剛性の高い鋼
管によって構成したので、通常の地中連続壁と同程度の
強度・変位を期待でき、特に大規模な地中構造物を構築
する際に有効である。また、鋼管の底部をスリット構造
にすることにより、排水用深井戸として利用でき、本体
構築物を痛めることなく、排水処理が可能になる。
In the groundwater condensing method for underground continuous wall according to the present invention, since the sheet pile is formed of a steel pipe having higher rigidity than a normal steel plate, the strength is substantially the same as that of a normal underground continuous wall.・ Displacement can be expected, which is especially effective when constructing large-scale underground structures. In addition, by forming the bottom of the steel pipe in a slit structure, it can be used as a deep well for drainage, and can perform drainage treatment without damaging the main body structure.

【0008】[0008]

【実施例】以下、この発明の実施例を説明するが、本発
明の実施例の説明に先立ち、図1〜図7を参照して本発
明の基礎となった技術について説明する。まず地盤G中
に、地中連続壁1の部分を構成する先行エレメント2…
を、互いにほぼ一つのエレメントの長さ分を隔てた状態
に形成する。先行エレメント2の形成は、次のようにし
て行う。すなわち、先行エレメント2を形成するための
掘削孔を、ガット(掘削機の一種)で掘削し、1次スラ
イム処理を施した後、その掘削孔に、前後土木シートを
備えた鉄筋篭4を建て込む。次に、左右端の仕切り鋼鈑
に沿わしてカバープレートを建て込み、両端部の下部に
根固め用の砕石を投入する。次いで、トレミー管を建て
込み、2次スライム処理後、コンクリートを打設する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below.
Prior to the description of the embodiment, the present invention will be described with reference to FIGS.
The technology on which Ming was based will be described. First, in the ground G, a preceding element 2 which forms a part of the underground continuous wall 1 ...
Are formed so as to be separated from each other by substantially one element length. The formation of the preceding element 2 is performed as follows. That is, after excavating the excavation hole for forming the preceding element 2 with a gut (a type of excavator) and performing the primary slime treatment, the rebar cage 4 having the front and rear civil engineering sheets is built in the excavation hole. Put in. Next, cover plates are erected along the partition steel plates at the left and right ends, and crushed stones for consolidation are put into lower portions at both ends. Next, a tremy tube is erected, and after the secondary slime treatment, concrete is poured.

【0009】先行エレメント2…が築造されたならば、
次のようにして後行エレメント5…を構築する。すなわ
ち、上記先行エレメント2,2間をガットで掘削して後
行エレメント用の掘削孔6を穿孔し、1次スライム処理
を施した後、上記先行エレメント2の両端部のカバープ
レートを引き上げる。
When the preceding elements 2 are constructed,
The following elements 5 are constructed as follows. That is, after excavating between the preceding elements 2 and 2 with a gut, the excavation hole 6 for the following element is drilled, and after performing the primary slime treatment, the cover plates at both ends of the preceding element 2 are pulled up.

【0010】次に、上記後行エレメント用の掘削孔6の
中央部に通水部10を建て込む。この通水部10は次の
ように構成されている。すなわち図2ないし図5に示す
ように、後行エレメント用の掘削孔6の中央部には該掘
削孔6をその長さ方向に仕切る一対の仕切り板11,1
1が設けられている。これら仕切り板11,11はその
幅が上記掘削孔6より若干短いH形鋼からなるものであ
り、そのウェブ11a,11aを互いに対向させて配設
されている。上記ウェブ11aの裏面側には略コ字状を
なすジベル筋12…が掘削孔6の深さ方向に所定間隔で
固定されている。
Next, a water flow section 10 is erected at the center of the drilling hole 6 for the trailing element. The water passage 10 is configured as follows. That is, as shown in FIGS. 2 to 5, a pair of partition plates 11, 1 for dividing the excavation hole 6 in its longitudinal direction are provided at the center of the excavation hole 6 for the following element.
1 is provided. These partition plates 11, 11 are made of H-section steel, the width of which is slightly shorter than the above-mentioned excavation hole 6, and their webs 11a, 11a are arranged facing each other. On the back side of the web 11a, substantially U-shaped dowels 12 are fixed at predetermined intervals in the depth direction of the excavation hole 6.

【0011】上記仕切り板11,11間の前方側(図2
において下方側)には、腹起こし13…がその両端部を
仕切り板11,11の一方のフランジ11b,11bに
固定されて水平に設けられている。腹起こし13は断面
コ字状の溝形鋼からなるものであり、掘削孔の深さ方向
に所定間隔で互いに平行に設けられている。また、仕切
り板11,11間の後方側(図2において上方側)に
は、断面L字状の支持梁14…がその両端部を仕切り板
11,11の他方のフランジ11c,11cに固定され
て設けられている。これら支持梁14…は、図5に示す
ように、最上方に位置するものが水平に設けられ、それ
から下方に位置するものは、互いに逆方向に傾斜し、か
つ互いに連接して設けられている。
The front side between the partition plates 11, 11 (FIG. 2)
Are provided horizontally with their both ends fixed to one of the flanges 11b, 11b of the partition plates 11, 11, respectively. The prow 13 is made of a channel steel having a U-shaped cross section, and is provided in parallel with each other at predetermined intervals in the depth direction of the excavation hole. On the rear side (upper side in FIG. 2) between the partition plates 11, 11, support beams 14 having an L-shaped cross section are fixed at both ends to the other flanges 11c, 11c of the partition plates 11, 11, respectively. It is provided. As shown in FIG. 5, the support beams 14 are horizontally provided at the uppermost position, and are inclined in opposite directions and connected to each other at the lower position. .

【0012】さらに、上記仕切り板11,11間の中央
部には、これら仕切り板11,11間の掘削孔6をその
幅方向に仕切る鋼矢板(矢板)15が挿入されている。
この鋼矢板15は、上記掘削孔の深さ方向に長尺なもの
であり、2枚の断面略コ字状をなす鋼鈑15a,15b
によって構成されている。これら鋼鈑15a,15b
は、それぞれ断面略コ字状をなす溝形鋼からなり、それ
ぞれの開口部を掘削孔6の幅方向に互いに逆に向けて配
設され、互いに隣接する耳部が掘削孔6の深さ方向に摺
動自在に連結されている。また、鋼鈑15a,15bの
他方の耳部はそれぞれ上記仕切り板11,11に掘削孔
6の深さ方向に摺動自在に連結されている。
Further, a steel sheet pile (sheet pile) 15 for partitioning the excavation hole 6 between the partition plates 11 and 11 in the width direction thereof is inserted into a central portion between the partition plates 11 and 11.
The steel sheet pile 15 is elongated in the depth direction of the excavation hole, and has two steel sheets 15a and 15b having a substantially U-shaped cross section.
It is constituted by. These steel plates 15a, 15b
Are each formed of a channel steel having a substantially U-shaped cross section, and each opening is disposed so as to be opposite to each other in the width direction of the drilling hole 6. Are slidably connected to each other. The other ears of the steel plates 15a and 15b are slidably connected to the partition plates 11 and 11 in the depth direction of the excavation hole 6, respectively.

【0013】上記構成の通水部10は図6に示すよう
に、掘削孔の深さ方向において符号Dで示す部分におい
て2分割されている。このような通水部10を掘削孔に
建て込んだならば、該通水部10の両側にそれぞれ鉄筋
篭16,16を建て込む(図1および図2参照)。その
後、通水部10が建て込まれた掘削孔6に注入管を用い
て泥水固化材を注入して、根固め部17を形成し、これ
によって2分割された通水部10の下側の部分を固定す
る。この泥水固化材は通水部の根固めおよび遮水を行う
ものであり、その注入高さは土層構成によって決定され
る。
As shown in FIG. 6, the water passage section 10 having the above structure is divided into two portions at a portion indicated by reference symbol D in the depth direction of the excavation hole. When such a water passage part 10 is built in the excavation hole, reinforcing steel cages 16 and 16 are built on both sides of the water passage part 10 (see FIGS. 1 and 2). After that, the muddy water solidifying material is injected into the excavation hole 6 in which the water passage section 10 is built using an injection pipe to form a root consolidation section 17, whereby the lower part of the water passage section 10 divided into two parts is formed. Secure the part. This muddy water solidifying material is used to consolidate and block water in the water passage portion, and the injection height is determined by the soil layer configuration.

【0014】次に、上記通水部10が建て込まれた掘削
孔6に単粒砕石(径:20〜30mm)を投入して、根固
め部17の上に、多数の砕石を構築すべき地中連続壁の
天端まで充填して砕石層20を形成する。この砕石層2
0は、砕石間の隙間を介して通水可能であり、またコン
クリート側圧に対する支保材としても機能する。
Next, a single crushed stone (diameter: 20 to 30 mm) is put into the excavation hole 6 in which the water passage section 10 is built, and a large number of crushed stones are to be constructed on the root compaction section 17. The crushed stone layer 20 is formed by filling up to the top of the underground continuous wall. This crushed stone layer 2
Numeral 0 allows water to flow through the gap between the crushed stones, and also functions as a supporting material against concrete side pressure.

【0015】次いで、上記鉄筋篭16,16にトレミー
管を建て込み、2次スライム処理後、コンクリートを打
設して後行エレメント5を構築する。その後、上記砕石
層20に、導水管を用いて圧縮空気・清水を送り込み、
砕石の安定液等を洗い流して砕石層20の透水性を良く
する。
Next, a tremy tube is erected in the reinforced cages 16 and 16, and after the secondary slime treatment, concrete is cast to construct the succeeding element 5. Thereafter, compressed air and fresh water are sent into the crushed stone layer 20 using a water pipe,
The stable liquid of the crushed stone is washed away to improve the water permeability of the crushed stone layer 20.

【0016】そして、埋め戻し完了後、上記矢板15
(鋼鈑15a,15b)を、多滑車等によって引き抜
く。この時、若干砕石層20が低下するが、この低下分
はさらに砕石を投入して補充する。
After completion of the backfill, the sheet pile 15
(The steel plates 15a and 15b) are pulled out with a multiple pulley or the like. At this time, the crushed stone layer 20 slightly lowers, and the reduced amount is further supplied by adding crushed stone.

【0017】上記のように最後に矢板15を引き抜くこ
とによって、上記砕石層20は地中連続壁1の厚さ方向
において通水可能になる。したがって、地下水が地中連
続壁1で遮断されてしまうことがなく、砕石層20を通
水するので、上流側における地下水位上昇、地盤軟弱
化、下流側における地下水位低下、圧密沈下、井戸枯
れ、水の腐れ等の公害を防止することができる。
By finally pulling out the sheet pile 15 as described above, the crushed stone layer 20 can pass water in the thickness direction of the underground continuous wall 1. Therefore, the groundwater is not interrupted by the underground continuous wall 1 and flows through the crushed stone layer 20, so that the groundwater level rises on the upstream side, the ground softens, the groundwater level decreases on the downstream side, consolidation settlement, and well wither. , Water pollution and the like can be prevented.

【0018】また、地層が複数層から構成されていて
も、上記砕石層20は地盤の深さ方向に連続しているの
で、問題なく地下水を通水させることができ、さらに、
図7に示すように、地中連続壁1に隣接する地下構造物
等Kによって透水層Tの地下水の流通が遮断されていて
も、該地下水は砕石層20を上昇・下降して通水するの
で問題が生じることがないし、砕石層20の厚さを調節
することによって砕石層20における上昇・下降の通水
量を調節することができる。
Even if the stratum is composed of a plurality of layers, the crushed stone layer 20 is continuous in the depth direction of the ground, so that groundwater can be passed without any problem.
As shown in FIG. 7, even if the underground structure K or the like adjacent to the underground continuous wall 1 blocks the flow of the groundwater in the permeable layer T, the groundwater flows up and down the crushed stone layer 20. Therefore, there is no problem, and the amount of water flowing up and down in the crushed stone layer 20 can be adjusted by adjusting the thickness of the crushed stone layer 20.

【0019】さらに、通常の地盤に地中連続壁を構築し
た場合において、地下水の通水性を保つには、地下水頭
差が地盤の透水係数によって異なるが、地中連続壁の総
面積に対して5〜15%の通水部が必要であることが試
算によって確認されている。したがって、上記地中連続
壁1ではその延長10m当り、砕石層20の厚さは0.
5〜1.5m程度の薄さでよいので、連壁端部に無理な
応力が作用することがない。また、矢板15は腹起こし
13…によって補強されているので、上記地中連続壁1
の長さ方向における変位も、通常の地中連続壁と同程度
に抑さえることができる。
Further, in the case where an underground continuous wall is constructed on ordinary ground, in order to maintain the permeability of groundwater, the difference in groundwater head differs depending on the permeability of the ground. It has been confirmed by trial calculation that a water passage of 5 to 15% is required. Therefore, the underground continuous
On the wall 1, the thickness of the crushed stone layer 20 is 0.1 mm per 10 m of the extension.
Since the thickness may be as thin as about 5 to 1.5 m, no unreasonable stress acts on the end of the continuous wall. Further, since the sheet pile 15 is reinforced by the belly bars 13, the underground continuous wall 1 is formed.
Can be suppressed to the same extent as a normal underground continuous wall.

【0020】加えて、上記地中連続壁1はその一部に砕
石層20があるだけの簡単な構造であるので、従来のラ
ップジョイント式地中連続壁と同程度の工事費で済み、
また施工も容易である。
In addition, since the underground continuous wall 1 has a simple structure in which only the crushed stone layer 20 is provided in a part thereof, the construction cost is substantially the same as that of the conventional lap joint type underground continuous wall.
Construction is also easy.

【0021】以上でこの発明の基礎となった技術につい
て説明したが、次に図8および図9を参照してこの発明
の実施例を示す。この実施例では矢板を掘削孔の深さ方
向に延在する鋼管22,22で構成したものであり、他
の構成は上記の地中連続壁1と同様なので同一符号を付
してその説明を省略する。この実施例では、先行エレメ
ント間を掘削し、この掘削孔6の中央部に仕切り板1
1,11を建て込み、これら仕切り板11,11間に一
対の鋼管22,22を互いに平行に建て込む。この際、
鋼管22,22どうし、および鋼管22と仕切り板11
とを上下方向に摺動自在に連結する。
The above is a description of the technology on which the present invention is based.
The invention has been described with reference to FIGS.
The following shows an example. In this embodiment, the sheet pile is
It is composed of steel pipes 22, 22 extending in
Is the same as that of the underground continuous wall 1 described above, and the same reference numerals are given and the description thereof is omitted. In this embodiment, the space between the preceding elements is excavated, and the partition plate 1 is provided at the center of the excavation hole 6.
1 and 11 are erected, and a pair of steel pipes 22 and 22 are erected between the partition plates 11 and 11 in parallel with each other. On this occasion,
The steel pipes 22, 22 and the steel pipe 22 and the partition plate 11
Are slidably connected in the vertical direction.

【0022】次いで、上記鋼管22,22が建て込まれ
た掘削孔に単粒砕石(径:20〜30mm)を投入して砕
石層20を形成する。この砕石層20は、砕石間の隙間
を介して通水可能であり、またコンクリート側圧に対す
る支保材としても機能する。
Next, a single crushed stone (diameter: 20 to 30 mm) is introduced into the excavation hole in which the steel pipes 22 and 22 are erected to form the crushed stone layer 20. The crushed stone layer 20 is capable of passing water through gaps between crushed stones, and also functions as a support material against concrete side pressure.

【0023】次いで、2次スライム処理後、上記仕切り
板11,11の外側の掘削孔にコンクリートを打設して
後行エレメント5を構築し、最後に、上記矢板鋼管2
2,22を掘削孔から引き抜く。
Next, after the secondary slime treatment, concrete is poured into the excavation holes outside the partition plates 11 and 11 to construct the following element 5, and finally, the sheet pile steel pipe 2
Withdraw 2,22 from the borehole.

【0024】上記のように矢板として、鋼管22,22
を用いれば、上記の地中連続壁1が奏する効果に加えて
次のような効果を得ることができる。すなわち、鋼管2
2は矢板15より剛性が高いので、通常の地中連続壁と
同程度の強度・変位を期待でき、特に大規模な地中構造
物を構築する際に有効である。また、鋼管22にストレ
ナー加工を施せば、図9に示すように該鋼管22から地
下水を揚水して地下水面や地下水位を低下させ、湧水の
防止、水圧の減少などを図ることができる、すなわちデ
ィープウエル工法を実施することもできる。
As described above, the steel pipes 22, 22 are used as sheet piles.
Is used, the following effects can be obtained in addition to the effects of the underground continuous wall 1 described above . That is, the steel pipe 2
2 is higher in rigidity than the sheet pile 15, so that it can be expected to have the same strength and displacement as ordinary underground continuous walls, and is particularly effective when constructing a large-scale underground structure. Further, if the steel pipe 22 is subjected to the strainer processing, as shown in FIG. 9, the groundwater is pumped from the steel pipe 22 to lower the groundwater level and the groundwater level, thereby preventing spring water and reducing water pressure. That is, the deep well method can be performed.

【0025】[0025]

【発明の効果】以上説明したように、この発明の地中連
続壁の地下水復水化工法によれば、地中連続壁を構築す
るための掘削孔に、該掘削孔をその長さ方向に仕切る一
対の仕切り板と、これら仕切り板間の掘削孔をその幅方
向に仕切る矢板とを挿入し、次に、仕切り板間の掘削孔
に多数の砕石を充填した後、上記一対の仕切り板の外側
に位置する上記掘削孔にコンクリートを打設し、次い
で、上記矢板を掘削孔から引き抜くようにしたので、砕
石が充填された砕石層が地中連続壁の厚さ方向において
通水可能になる。したがって、地下水が地中連続壁で遮
断されてしまうことがなく、砕石層を通水するので、上
流側における地下水位上昇、地盤軟弱化、下流側におけ
る地下水位低下、圧密沈下、井戸枯れ、水の腐れ等の公
害を防止することができる。
As described above, according to the groundwater condensing method of the underground continuous wall according to the present invention, the excavation hole for constructing the underground continuous wall is provided with the excavation hole in the length direction thereof. After inserting a pair of partition plates and a sheet pile that partitions the excavation holes between these partition plates in the width direction thereof, and then filling the excavation holes between the partition plates with a large number of crushed stones, Concrete was poured into the excavation hole located on the outside, and then the sheet pile was pulled out from the excavation hole, so that the crushed stone layer filled with crushed stone could flow water in the thickness direction of the underground continuous wall. . Therefore, groundwater is not interrupted by the underground continuous wall, and the crushed stone layer flows through it, so the groundwater level rises on the upstream side, the ground softens, the groundwater level drops on the downstream side, consolidation sinking, well withering, water Pollution such as decay can be prevented.

【0026】また、この発明の地中連続壁の地下水復水
化工法によれば、矢板として鋼管を用いたことにより、
上述した公害を防止することができるのは勿論のこと、
鋼管が通常の板状の矢板より剛性が高いので、通常の地
中連続壁と同程度の強度・変位を期待でき、特に大規模
な地中構造物を構築する際に有効である。さらに、鋼管
にストレナー加工を施せば、該鋼管から地下水を揚水し
て地下水面や地下水位を低下させ、湧水の防止、水圧の
減少などを図ることができる。
According to the groundwater condensing method for the underground continuous wall of the present invention, the steel pipe is used as the sheet pile,
Not only can the above-mentioned pollution be prevented,
Since the steel pipe has higher rigidity than ordinary sheet piles, it can be expected to have the same strength and displacement as ordinary underground continuous walls, and is particularly effective when constructing large-scale underground structures. Further, if the steel pipe is subjected to the strainer processing, groundwater is pumped from the steel pipe to lower the groundwater level and the groundwater level, thereby preventing spring water and reducing water pressure.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の基礎技術である地中連続壁の地下水
復水化工法を説明するためのもので、地中連続壁の水平
断面図である。
FIG. 1 is a horizontal sectional view of an underground continuous wall for explaining a method of condensing groundwater in an underground continuous wall which is a basic technique of the present invention.

【図2】図1におけるX円部の拡大図である。FIG. 2 is an enlarged view of an X circle portion in FIG.

【図3】図1における通水部の斜視図である。FIG. 3 is a perspective view of a water passage section in FIG. 1;

【図4】図1におけるB矢視図である。FIG. 4 is a view as seen from the arrow B in FIG. 1;

【図5】図1におけるC矢視図である。FIG. 5 is a view taken in the direction of arrow C in FIG. 1;

【図6】図1におけるAーA線視断面図である。FIG. 6 is a sectional view taken along line AA in FIG. 1;

【図7】この発明の基礎技術である地中連続壁の地下水
復水化工法を説明するためのもので、地中連続壁を含む
地盤の断面図である。
FIG. 7 is a cross-sectional view of the ground including the underground continuous wall, for describing a method of condensing groundwater in the underground continuous wall which is a basic technique of the present invention.

【図8】この発明の実施例の地中連続壁の地下水復水化
工法を説明するためのもので、地中連続壁の要部の水平
断面図である。
FIG. 8 is a horizontal sectional view of an essential part of the underground continuous wall for explaining the method of condensing groundwater in the underground continuous wall according to the embodiment of the present invention.

【図9】図8におけるDーD線視断面図である。9 is a sectional view taken along line DD in FIG.

【符号の説明】[Explanation of symbols]

G 地盤 1 地中連続壁 6 掘削孔 10 通水部 11 仕切り板 15 矢板 20 砕石層 22 鋼管 G ground 1 underground continuous wall 6 excavation hole 10 water passage section 11 partition plate 15 sheet pile 20 crushed stone layer 22 steel pipe

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 地盤に地中連続壁を構築するための掘削
孔を穿孔し、次いで、この掘削孔に、該掘削孔をその長
さ方向に仕切る一対の仕切り板と、この仕切り板間に配
設されて、これら仕切り板間の掘削孔をその幅方向に仕
切る鋼管からなる矢板とを挿入し、次に、上記仕切り板
間の掘削孔に多数の透水砕石を充填した後、上記一対の
仕切り板の外側に位置する上記掘削孔にコンクリートを
打設し、次いで、上記矢板を掘削孔から引き抜くことを
特徴とする地中連続壁の地下水復水化工法。
An excavation hole for constructing an underground continuous wall is formed in the ground, and a pair of partition plates for partitioning the excavation hole in a length direction thereof is formed between the excavation hole and the partition plate. Arranged, insert a sheet pile made of steel pipe to partition the excavation hole between these partition plates in the width direction, and then, after filling the excavation hole between the partition plates with a large number of permeable crushed stones, A method of condensing groundwater into a ground wall, wherein concrete is poured into the excavation hole located outside the partition plate, and then the sheet pile is pulled out of the excavation hole.
JP4050039A 1992-03-06 1992-03-06 Groundwater condensing method for underground diaphragm wall Expired - Fee Related JP3066672B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4050039A JP3066672B2 (en) 1992-03-06 1992-03-06 Groundwater condensing method for underground diaphragm wall

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4050039A JP3066672B2 (en) 1992-03-06 1992-03-06 Groundwater condensing method for underground diaphragm wall

Publications (2)

Publication Number Publication Date
JPH05247929A JPH05247929A (en) 1993-09-24
JP3066672B2 true JP3066672B2 (en) 2000-07-17

Family

ID=12847864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4050039A Expired - Fee Related JP3066672B2 (en) 1992-03-06 1992-03-06 Groundwater condensing method for underground diaphragm wall

Country Status (1)

Country Link
JP (1) JP3066672B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6374736B2 (en) * 2014-09-17 2018-08-15 大成建設株式会社 Underground structure and construction method of underground structure

Also Published As

Publication number Publication date
JPH05247929A (en) 1993-09-24

Similar Documents

Publication Publication Date Title
US4005582A (en) Method of constructing underground concrete walls and reinforcement cage therefor
KR101216716B1 (en) Diaphragm wall and this construction technique
KR101041274B1 (en) Retaining wall grouting structure and method for constructing thereof
CN108532586A (en) A kind of construction method of garage parking diaphram wall
CN113216213B (en) Basement waterproof foundation pit structure and construction method
US10669687B1 (en) Systems and methods for constructing retaining wall structure and well point in granular soils under groundwater level
JP3066672B2 (en) Groundwater condensing method for underground diaphragm wall
US4056154A (en) Squaring off and reaming tool for deep elongated trench excavations
CN110258526A (en) The method of prefabricated diaphram wall and construct outer wall of basement and floor
KR102617795B1 (en) Retaining wall system combine H-piles with steel reinforcement structure
KR101151052B1 (en) The deepened sheet plate made of an iron reinforcing rod and the method of installation
KR100477357B1 (en) Construction method for retaining of earth
KR100654973B1 (en) Earth Retaining Wall Structure Using Precast Concrete Pile and Construction Method Thereof
KR102426192B1 (en) File fof retaining wall and construction method using file
JP2900842B2 (en) Earth retaining wall structure with water permeability
JP3728659B2 (en) Basement extension method
JP4274898B2 (en) Groundwater flow conservation method
JP3407066B2 (en) Method of forming drainage wall continuously in the ground and casing for placing plate-like drainage material
JP2565452B2 (en) Construction method of self-supporting retaining wall
KR102625776B1 (en) Construction method of CIP retaining wall with improved water protection and ground subsidence prevention function
JP2000328561A (en) Underground water flowing construction method in soil cement column row earth retaining wall
JP2000220137A (en) Steel pipe column array earth retaining wall and its water passing method
JPH10317367A (en) Water-returning structure using steel-pipe-column-line earth-retaining wall and method for constructing the same
JP2002201634A (en) Structure of continuous underground wall and its construction method
JP2556415B2 (en) Construction method of self-supporting retaining wall

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000321

LAPS Cancellation because of no payment of annual fees