JP3064722B2 - Nitrogen-containing sintered hard alloy - Google Patents

Nitrogen-containing sintered hard alloy

Info

Publication number
JP3064722B2
JP3064722B2 JP5018283A JP1828393A JP3064722B2 JP 3064722 B2 JP3064722 B2 JP 3064722B2 JP 5018283 A JP5018283 A JP 5018283A JP 1828393 A JP1828393 A JP 1828393A JP 3064722 B2 JP3064722 B2 JP 3064722B2
Authority
JP
Japan
Prior art keywords
amount
phase
alloy
average
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP5018283A
Other languages
Japanese (ja)
Other versions
JPH06228702A (en
Inventor
和孝 磯部
信行 北川
俊雄 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP5018283A priority Critical patent/JP3064722B2/en
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to EP98102547A priority patent/EP0864661B1/en
Priority to US08/313,222 priority patent/US5577424A/en
Priority to DE69433214T priority patent/DE69433214T2/en
Priority to PCT/JP1994/000158 priority patent/WO1994018351A1/en
Priority to EP94905840A priority patent/EP0635580A4/en
Priority to KR1019940703517A priority patent/KR0143508B1/en
Priority to TW083101466A priority patent/TW291499B/zh
Publication of JPH06228702A publication Critical patent/JPH06228702A/en
Priority to KR1019940703517A priority patent/KR950701006A/en
Application granted granted Critical
Publication of JP3064722B2 publication Critical patent/JP3064722B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、切削加工用工具の材質
として極めて強度に富む高品質な窒素含有焼結硬質合金
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high quality nitrogen-containing sintered hard alloy having extremely high strength as a material for a cutting tool.

【0002】[0002]

【従来の技術】Tiを主成分とする炭窒化物などを硬質
層とし、これをNiとCoからなる金属で結合した窒素
を含有する焼結硬質合金が切削工具としてすでに実用化
されている。この窒素含有焼結硬質合金は、従来の窒素
を含有しない焼結硬質合金に比べ硬質相が著しく微粒に
なるため耐高温クリープ特性が大幅に改善されるためW
Cを主成分としたいわゆる超硬合金と並んで切削工具と
して広く使用されてきている。
2. Description of the Related Art A sintered hard alloy containing nitrogen in which a carbon nitride or the like containing Ti as a main component is used as a hard layer and bonded with a metal composed of Ni and Co has already been put into practical use as a cutting tool. This nitrogen-containing sintered hard alloy has a remarkably fine hard phase compared to a conventional sintered hard alloy not containing nitrogen.
It has been widely used as a cutting tool along with a so-called cemented carbide containing C as a main component.

【0003】しかしながら、この窒素含有焼結硬質合金
は、主成分であるTiの炭窒化物の熱伝導度が超硬合
金の主成分であるWCのそれに比べ著しく小さいことに
より、合金としての熱伝導度は約1/2である、熱膨
張係数も、同様に主成分の特性値に依存して窒素含有焼
結硬質合金のそれは超硬合金に比べ1.3倍になる、な
どの理由により熱衝撃に対する抵抗が低くなる。このた
め、特に熱衝撃の厳しくなる条件下での切削、例えばフ
ライス切削や角材の旋盤による切削加工、また、切込み
の大きく変動する湿式での倣い切削などには、充分な信
頼性をもって使用されてはいないのが現状だった。
However, in this nitrogen-containing sintered hard alloy, the thermal conductivity of the carbonitride of Ti, which is the main component, is significantly smaller than that of WC, which is the main component of the cemented carbide. The degree of thermal expansion is about 1/2, and the coefficient of thermal expansion is 1.3 times higher than that of cemented carbide, which is similar to that of sintered hard alloy containing nitrogen, depending on the characteristic value of the main component. Low resistance to impact. For this reason, it is used with sufficient reliability especially for cutting under severe thermal shock conditions, such as milling and cutting of square bars with a lathe, and wet cutting where the depth of cut fluctuates greatly. There was no current situation.

【0004】[0004]

【発明が解決しようとする問題点】発明者らは、種々の
切削における工具内での温度分布や応力分布などの切削
現象の解析と、工具内の材料成分の配置との詳細な研究
をしてきた結果、以下の知見を得た。超硬合金は熱伝導
度が高いため切削中に工具表面に発生する高熱が工具内
部を通って速やかに拡散し、このため表面が高温になり
にくく、かつ、急に切削空転したり水溶性切削油がかか
るところに急にこの高温部が露出し急冷されたとして
も、熱膨張係数が小さいことも影響し、表層部に引っ張
り応力が発生、残留しにくい。
Problems to be Solved by the Invention The inventors have been conducting detailed studies on the analysis of cutting phenomena such as temperature distribution and stress distribution in a tool in various types of cutting and the arrangement of material components in the tool. As a result, the following findings were obtained. Due to the high thermal conductivity of cemented carbide, high heat generated on the tool surface during cutting is quickly diffused through the inside of the tool, so that the surface does not easily become hot, and the cutting slips suddenly or water-soluble cutting Even if the high-temperature portion is suddenly exposed to the location where the oil is applied and is rapidly cooled, the small thermal expansion coefficient also has an effect, and a tensile stress is generated on the surface layer portion and hardly remains.

【0005】ところが、Tiを主成分とする窒素含有焼
結硬質合金は、熱伝導度が低いため最も高温となる刃先
先端やすくい面の切り粉の当たる部位から熱が拡散しに
くく、表面は高温でありながら内部は急激に温度が低く
なるといった、急な温度勾配を有する状態になってい
る。従って、一度亀裂が入ってしまったら内部の温度が
低いこの合金は著しく欠損し易くなる。さらにこのよう
な材料の場合、切削油がかかり急冷されたりすると、極
表面のみ冷やされその直下は高温になったままというい
わゆる温度勾配の逆転現象が発生し、熱膨張係数が大き
いことも影響し表層部に引っ張り応力が発生し、熱亀裂
が非常に発生し易くなる状況にある。即ち、窒素含有焼
結硬質合金において、切削仕上げ面を良好にするのに必
要なTiを含有したままこの熱伝導度と熱膨張係数の改
善を図ることはおのずと限界があった。そこで発明者ら
は、この問題を解決するために種々の研究を行った結
果、本発明に到達した。
However, since a nitrogen-containing sintered hard alloy containing Ti as a main component has a low thermal conductivity, heat hardly diffuses from a portion where the cutting edge on the surface of the cutting edge, which is the hottest, tends to reach the highest temperature, and the surface has a high temperature. However, the inside has a steep temperature gradient such that the temperature drops rapidly. Therefore, once a crack has been formed, the alloy having a low internal temperature tends to be remarkably chipped. Furthermore, in the case of such a material, when the cutting oil is applied and it is rapidly cooled, a so-called temperature gradient reversal phenomenon occurs in which only the pole surface is cooled and the area immediately below the pole is kept at a high temperature, which also has a large thermal expansion coefficient. A tensile stress is generated in the surface layer, and thermal cracks are very likely to occur. That is, in a nitrogen-containing sintered hard alloy, it is naturally limited to improve the thermal conductivity and the thermal expansion coefficient while containing Ti necessary for improving the cut surface. Therefore, the inventors have conducted various studies in order to solve this problem, and as a result, have reached the present invention.

【0006】[0006]

【問題点を解決するための手段】即ち、本発明の窒素含
有焼結硬質合金は、工具の切削仕上げ面の性状を決定す
る極表層部分にTi成分を多く配置し、その直下から特
定の距離の厚みに靱性の高いNiやCoなどの結合金属
を多く配置し刃先直下の強度を高める。このNi/Co
富化層は熱膨張係数が高いので焼結後の冷却時や切削工
具離脱時に表層部に圧縮応力を発生し得るという効果も
持つ。加えて、硬質層の必須成分であるWを表面から内
部にかけて富化する。これは窒素含有焼結硬質合金の主
たる熱伝導媒体は結合相と考えられるが硬質相もWを富
化させることにより特に内部での熱伝導に寄与させるの
である。この結合相富化層の内部で、結合相を減少させ
硬質相を増加させるのは、この熱伝導向上効果をより効
果的に発揮させるためである。
Means for Solving the Problems That is, the nitrogen-containing sintered hard alloy of the present invention arranges a large amount of Ti component in an extremely surface layer portion which determines the properties of a cutting surface of a tool, and a specific distance from immediately below. A large number of bonding metals such as Ni and Co with high toughness are arranged in the thickness of the steel sheet to increase the strength immediately below the cutting edge. This Ni / Co
Since the enriched layer has a high coefficient of thermal expansion, it also has the effect of generating a compressive stress in the surface layer when cooling after sintering or when the cutting tool is detached. In addition, W, which is an essential component of the hard layer, is enriched from the surface to the inside. This is because the main heat conduction medium of the nitrogen-containing sintered hard alloy is considered to be the binder phase, but the hard phase also contributes to the internal heat conduction by enriching W. The reason why the binder phase is reduced and the hard phase is increased inside the binder phase-enriched layer is to more effectively exhibit the heat conduction improving effect.

【0007】このために、該窒素含有焼結硬質合金は、
結合金属相量が表面から3μm以上500μm以下の深
さ範囲に結合相量の最高部が存在しその値が合金平均結
合相量の1.1倍以上4倍以下で、深さ800μmまで
に合金全体の平均結合相量に戻り、かつ、表面部の結合
相量が結合相量最高部に対し0.9倍以下とする。深さ
800μmとするのは、熱伝導率の低下防止と切削時の
工具の耐塑性変形向上のためである。硬質相について
は、Ti及びこれと同様の鋼切削に対する耐摩耗性向上
効果を有するTa,Nb,Zrを表面部に富化させ、か
わりにその効果の少ないW及びMoを減らし特に表面に
はWをWC粒子としては存在しないかまたは存在しても
0.1体積%以下であればよいことを見いだした。
For this reason, the nitrogen-containing sintered hard alloy is
The highest part of the amount of the binder phase exists in the depth range of 3 μm to 500 μm from the surface where the amount of the binder metal phase is 1.1 to 4 times the average amount of the average binder phase, and the value of the alloy reaches a depth of 800 μm or less. The amount is returned to the average amount of the entire bonded phase, and the amount of the bonded phase on the surface is set to 0.9 times or less of the highest amount of the bonded phase. The depth of 800 μm is to prevent a decrease in thermal conductivity and to improve the plastic deformation resistance of the tool during cutting. As for the hard phase, Ti and Ta, Nb, and Zr, which have the same effect of improving wear resistance to steel cutting, are enriched in the surface portion. Was not present as WC particles, or even if present, it was found that the content was not more than 0.1% by volume.

【0008】以下、本発明における制限理由などについ
て詳細に述べる。 結合相量の最高部の存在深さ範囲とその結合相量 結合相富化領域は工具強度を高めるためと、焼結後の冷
却時や切削工具離脱時に表層部に圧縮応力を発生し得る
という効果も持つために必要で、その最高部の深さが3
μm未満では工具としての耐摩耗性が劣り、500μm
を越えると表面への圧縮応力印加の作用が十分発揮され
ない。その最高部の結合相量の平均結合相量に対する比
は1.1倍以下では所望の強度向上効果が得られず、4
倍を越えると切削時に塑性変形をするか内部が余りに硬
質になり強度が不足してしまうので好ましくない。
Hereinafter, the reasons for limitation in the present invention will be described in detail. The existence depth range of the highest part of the amount of the binder phase and the amount of the binder phase The binder phase enriched region can generate compressive stress on the surface layer when cooling after sintering or when the cutting tool comes off to increase tool strength. It is necessary to have an effect, and the maximum depth is 3
If it is less than μm, the wear resistance as a tool is inferior and 500 μm
If it exceeds, the effect of applying compressive stress to the surface is not sufficiently exhibited. If the ratio of the highest binder phase amount to the average binder phase amount is 1.1 times or less, the desired strength improving effect cannot be obtained, and
Exceeding the number of times is not preferable because plastic deformation occurs during cutting or the inside becomes too hard and the strength becomes insufficient.

【0009】表面部結合相量 表面部は耐摩耗性を有しかつ内部より熱膨張係数が小さ
くなることによる圧縮応力を受けている必要があり、従
って最高結合相量比0.9倍を越えてしまうとこれらの
所望の効果が得られない。 表面部での硬質相中のTi及びTa,Nb,Zr量 表面は高い耐摩耗性を有する必要がありTi及びこれと
同様の耐摩耗性向上効果を有するTa,Nb,Zrを表
面部に富化させる必要があるが、合金としての平均比
1.01倍未満では所望の耐摩耗性が得られない。特に
Ta,Nbは高温耐酸化性も高くし得るため好ましい。
さらにこの富化により切削仕上げ面の性状も極めて優れ
るという効果がある。 表面部での硬質相中のW及びMo量
The amount of the binder phase at the surface The surface must have abrasion resistance and undergo compressive stress due to a smaller thermal expansion coefficient than the interior, so that the maximum binder phase ratio exceeds 0.9. If they do, these desired effects cannot be obtained. Amount of Ti and Ta, Nb, and Zr in Hard Phase on Surface Surface must have high wear resistance, and Ti and Ta, Nb, and Zr, which have the same effect of improving wear resistance, are rich in the surface. However, if the average ratio of the alloy is less than 1.01, the desired wear resistance cannot be obtained. Particularly, Ta and Nb are preferable because they can also enhance high-temperature oxidation resistance.
Further, this enrichment has an effect that the properties of the cut surface are also extremely excellent. W and Mo contents in the hard phase at the surface

【0010】硬質相中のWおよびMo量は、(Tixy
c)および(TixyMobc)で表したとき、yおよび
bで表示される。表面部には耐摩耗性に劣るWCおよび
またはMo2Cを減らし、結果的に内部にかけて硬質相
中のWおよびまたはMoを富化させる。この量を合金と
しての平均比0.1未満は実質的に作成が不可能であ
り、0.9を越えると耐摩耗性に劣り好ましくない。M
oは、硬質相中ではWCとほぼ同様の挙動を示す。
The amounts of W and Mo in the hard phase are (Ti x W y
When expressed in M c) and (Ti x W y Mo b M c), it is displayed in y and b. The surface portion reduces WC and / or Mo 2 C, which are inferior in wear resistance, and consequently enriches W and / or Mo in the hard phase toward the inside. If the average ratio of the alloy is less than 0.1, it is practically impossible to prepare the alloy, and if it exceeds 0.9, the wear resistance is poor, which is not preferable. M
o shows almost the same behavior as WC in the hard phase.

【0011】ここでWCのみについて説明する。合金の
表面から内部にかけての硬質相中のW富化の形態は、W
C粒子として存在しているのも良いし、複合炭窒化物固
溶体の周辺組織がWーrich になっていても良い。また、
硬質相の存在形態としてW-richの固溶体が部分的に存
在し出してきたり、表面組織より多くなっていても良
く、走査型電子顕微鏡において中心が白く周辺が濃く観
察される硬質粒子(白芯粒子と呼ぶ。白いところがTi
-rich部分で灰色のところがWーrich部分)の比率が増え
ても、所望の熱伝導特性向上と強度向上の効果が得られ
る。尚、0.5<x≦0.95, 0.05<y≦0.5 の範囲とす
るのは、耐摩耗性と耐熱性を維持するためである。これ
らの範囲を逸脱すると耐摩耗性と耐熱性が低下するので
本願発明の目的が達成できない。以下、実施例にて詳し
く説明する。
Here, only WC will be described. The form of W enrichment in the hard phase from the surface to the interior of the alloy is W
It may be present as C particles or the structure around the composite carbonitride solid solution may be W-rich. Also,
Hard particles (white core) whose center is white and whose periphery is densely observed in a scanning electron microscope may be a W-rich solid solution partially existing as a form of the hard phase or may be larger than the surface texture. The white area is Ti
Even if the ratio of the gray portion in the -rich portion is a W-rich portion), the desired effect of improving the heat conduction characteristics and the strength can be obtained. Note that the ranges of 0.5 <x ≦ 0.95 and 0.05 <y ≦ 0.5 are set to maintain wear resistance and heat resistance. If the content is outside these ranges, the wear resistance and heat resistance decrease, so that the object of the present invention cannot be achieved. Hereinafter, the embodiment will be described in detail.

【0012】[0012]

【実施例】【Example】

(実施例1) 原料粉末として、平均粒径2μmの(T
0.80.2)(C0.70.3)粉末を48重量%、同1.5
μmの(TaNb)C粉末(TaC:NbC=2:1
(重量比))を24重量%、同4μmのWC粉末を19重
量%、同1.5μmのNi粉末とCo粉末をそれぞれ3
重量%、6重量%を湿式混合後、型押し成形し、10-2
Torrの真空中で1200℃で脱ガス後、窒素ガス分圧5
Torr、水素ガス分圧0.5Torrで1400℃に昇温、一
度10-2Torrの真空とした後再びガス雰囲気を戻し1時
間焼結した。窒素で急冷の後1330℃からCO2を1
00Torr流しながら2℃/分で徐冷し、試料1を作成し
た。この試料の構造を第1表に示す。
(Example 1) As a raw material powder, (T
i 0.8 W 0.2 ) (C 0.7 N 0.3 ) powder was 48% by weight,
μm (TaNb) C powder (TaC: NbC = 2: 1)
(Weight ratio)) was 24% by weight, the 4 μm WC powder was 19% by weight, and the 1.5 μm Ni powder and Co powder were 3% each.
Wt%, after the wet mixing 6 wt%, embossing molding, 10-2
After degassing at 1200 ° C in vacuum of Torr, nitrogen gas partial pressure 5
The temperature was raised to 1400 ° C. at a hydrogen pressure of 0.5 Torr and a partial pressure of hydrogen gas of 0.5 Torr, the pressure was once reduced to 10 −2 Torr, the gas atmosphere was returned again, and sintering was performed for 1 hour. CO 2 from 1330 ° C. After quenching with nitrogen 1
The sample was slowly cooled at 2 ° C./min while flowing at 00 Torr to prepare Sample 1. Table 1 shows the structure of this sample.

【0013】[0013]

【表1】 [Table 1]

【0014】比較のために、いくつかの従来の製法によ
るサンプルとして、同一の型押し成形体を窒素分圧5To
rrで1400℃で焼結した試料2と、試料2と同一の焼
結後CO分圧200Torrで冷却した試料3、試料2と同
一の焼結後窒素分圧180Torrで冷却した試料4を作成
した。これらの構造を第2表に示す。
[0014] For comparison, the same embossed body was subjected to a nitrogen partial pressure of 5
Sample 2 was sintered at 1400 ° C. at rr, sample 3 was sintered at the same pressure as sample 2 and cooled at a CO partial pressure of 200 Torr, and sample 4 was sintered at the same temperature as sample 2 and cooled at a nitrogen partial pressure of 180 Torr. . Table 2 shows these structures.

【0015】[0015]

【表2】 [Table 2]

【0016】各試料1〜4の窒素含有焼結硬質合金を第
3表の切削条件1〜3で実施し併記した判定による結果
を第4表に示す。
The nitrogen-containing sintered hard alloys of Samples 1 to 4 were subjected to cutting conditions 1 to 3 shown in Table 3 and the results of the judgments shown in Table 4 are shown in Table 4.

【0017】[0017]

【表3】 [Table 3]

【0018】[0018]

【表4】 [Table 4]

【0019】(実施例2) 原料粉末として、平均粒径
2μmの(Ti0.80.2)(C0.70.3)粉末を51重量
%、同1.2μmの(TaNb)C粉末(TaC:Nb
C=2:1(重量比))を27重量%、同5μmのWC粉
末を11重量%、同1.5μmのNi粉末とCo粉末を
それぞれ3重量%、8重量%を湿式混合後、型押し成形
し、10-2Torrの真空中で1200℃で脱ガス後、窒素
ガス分圧10Torrで1450℃にて1時間焼結後、10
-5Torrの高真空下で冷却し試料5を,CO2冷却し試料
6を作成した。比較のために同一の成形体から第5表に
示す構造の試料7,8も作成した。これらを第6表の切
削条件で評価しその結果を第7表に記した。
Example 2 As raw material powder, 51 wt% of (Ti 0.8 W 0.2 ) (C 0.7 N 0.3 ) powder having an average particle size of 2 μm, and 1.2 μm of (TaNb) C powder (TaC: Nb)
C = 2: 1 (weight ratio)), 27% by weight, 11% by weight of 5 μm WC powder, 3% by weight of Ni powder and 1.5% by weight of Co powder, and 8% by weight of 8% by weight after wet mixing. After demolding at 1200 ° C. in a vacuum of 10 −2 Torr, sintering at 1450 ° C. for 1 hour at a partial pressure of nitrogen gas of 10 Torr,
Sample 5 was cooled by cooling under a high vacuum of -5 Torr, and Sample 6 was cooled by CO 2 . For comparison, samples 7 and 8 having the structure shown in Table 5 were prepared from the same molded body. These were evaluated under the cutting conditions in Table 6 and the results are shown in Table 7.

【0020】[0020]

【表5】 [Table 5]

【0021】[0021]

【表6】 [Table 6]

【0022】[0022]

【表7】 [Table 7]

【0023】(実施例3) 原料粉末として、平均粒径
2.5μmの(Ti0.80.2)(C0.70.3)粉末を42
重量%、同1.5μmの(TaNb)C粉末(TaC:
NbC=2:1(重量比))を23重量%、同4μmのW
C粉末を25重量%、同1.5μmのNi粉末とCo粉
末をそれぞれ2.5重量%、6.5重量%を湿式混合
後、型押し成形し、窒素ガス分圧15Torrで1430℃
にて1時間焼結後、CO2冷却し試料9を、露点−40
℃の水素ガスで冷却し試料10を作成した。比較のため
に同一原料粉末から第8表の結合相平均量と内部の硬質
相組成(Ti+Nb、W)になるように配合した試料1
1〜13も作成した。試料14〜19は試料9、10と
同一の成形体を使用した比較用の別構造合金である。第
9表にこれらの切削試験の条件とその結果を併記した。
Example 3 As a raw material powder, (Ti 0.8 W 0.2 ) (C 0.7 N 0.3 ) powder having an average particle diameter of 2.5 μm was used.
1.5% by weight (TaNb) C powder (TaC:
NbC = 2: 1 (weight ratio): 23% by weight, 4 μm W
25 wt% of C powder, 2.5 wt% and 6.5 wt% of Ni powder and Co powder of 1.5 μm, respectively, were wet-mixed, and then subjected to embossing, and 1430 ° C. at a nitrogen gas partial pressure of 15 Torr.
After sintering for 1 hour at room temperature, CO 2 was cooled and sample 9 was cooled to a dew point of -40.
A sample 10 was prepared by cooling with a hydrogen gas at a temperature of ° C. For comparison, Sample 1 was blended from the same raw material powder so that the average amount of the binder phase and the internal hard phase composition (Ti + Nb, W) shown in Table 8 were obtained.
1 to 13 were also prepared. Samples 14 to 19 are comparative alloys of different structures using the same compacts as Samples 9 and 10. Table 9 also shows the conditions of these cutting tests and the results.

【0024】[0024]

【表8】 [Table 8]

【0025】[0025]

【表9】 [Table 9]

【0026】(実施例4) 平均粒径2μmで、有芯構
造の外郭部分が反射電子顕微鏡像で白に、芯部分が黒に
見える(Ti0.75Ta0.04Nb0.040.17)(C0.56
0.44)粉末と、同1.5μmのNi粉末とCo粉末をそ
れぞれ85重量%、8重量%、7重量%を湿式混合後、
型押し成形し、10-2Torrの真空中で1200℃で脱ガ
ス後、窒素ガス分圧10Torrで1450℃にて1時間焼
結後、CO2冷却した合金を試料20、Ti(CN)、T
aC、WC、NbC、Co、Niを試料20と同一組成
となるように配合、混合し焼結した試料21を作成し
た。比較のために試料20と同一の成形体から第10表
に示す構造の試料22,23を、試料21と同一の成形
体から第10表に示す構造の試料24も作成した。第1
1表にこれらの切削テスト条件と評価結果を記した。
Example 4 With a mean particle size of 2 μm, the outer part of the cored structure looks white and the core part looks black in a reflection electron microscope image (Ti 0.75 Ta 0.04 Nb 0.04 W 0.17 ) (C 0.56 N)
0.44 ) After wet mixing 85%, 8%, and 7% by weight of the powder and the same 1.5 μm Ni powder and Co powder,
After embossing, degassing at 1200 ° C. in a vacuum of 10 −2 Torr, sintering at 1450 ° C. for 1 hour at a partial pressure of nitrogen gas of 10 Torr, and CO 2 cooled alloy, sample 20, Ti (CN), T
Sample 21 was prepared by mixing, mixing, and sintering aC, WC, NbC, Co, and Ni so as to have the same composition as Sample 20. For comparison, Samples 22 and 23 having the structure shown in Table 10 were prepared from the same compact as Sample 20, and Sample 24 having the structure shown in Table 10 was prepared from the same compact as Sample 21. First
Table 1 shows these cutting test conditions and evaluation results.

【0027】[0027]

【表10】 [Table 10]

【0028】[0028]

【表11】 [Table 11]

【0029】(実施例5) 平均粒径2μmの(Ti
0.80.2)(C0.70.3)粉末、同1.5μmのTaC粉
末、同4μmのWC粉末、同2μmのZrC粉末、同
1.5μmのNi粉末とCo粉末を用い第12表の平均
組成及び構造の合金を作成した。第13表にそれぞれの
合金試料の特性を示す。
Example 5 (Ti) having an average particle size of 2 μm
Average composition in Table 12 using 0.8 W 0.2 ) (C 0.7 N 0.3 ) powder, 1.5 μm TaC powder, 4 μm WC powder, 2 μm ZrC powder, 1.5 μm Ni powder and Co powder. And an alloy of the structure was made. Table 13 shows the characteristics of each alloy sample.

【0030】[0030]

【表12】 [Table 12]

【0031】[0031]

【表13】 [Table 13]

【0032】(実施例6) 平均粒径2μmの(Ti
0.80.2)(C0.70.3)粉末、同1.5μmのTaC粉
末、同3μmのNbC粉末、同4μmのWC粉末、同3
μmのMo2C粉末、同1.5μmのNi粉末とCo粉
末を用い第14表の平均組成及び構造の合金を作成し
た。第15表にそれぞれの合金試料の特性を示す。
Example 6 (Ti) having an average particle size of 2 μm
0.8 W 0.2 ) (C 0.7 N 0.3 ) powder, 1.5 μm TaC powder, 3 μm NbC powder, 4 μm WC powder, 3
An alloy having an average composition and structure shown in Table 14 was prepared using Mo 2 C powder of μm, Ni powder and Co powder of 1.5 μm. Table 15 shows the characteristics of each alloy sample.

【0033】[0033]

【表14】 [Table 14]

【0034】[0034]

【表15】 [Table 15]

【0035】[0035]

【発明の効果】上述のように本発明によれば、切削工具
として特に熱衝撃の厳しい条件での切削、例えばフライ
ス切削や角材の旋盤による切削加工、また、切込みの大
きく変動する湿式での倣い切削加工などに対し、極めて
信頼性の高い窒素含有焼結硬質合金を提供できるという
効果を有する。
As described above, according to the present invention, as a cutting tool, cutting under particularly severe conditions of thermal shock, for example, milling or cutting of a square bar by a lathe, or wet copying in which the cutting depth greatly varies. This has the effect of providing a highly reliable nitrogen-containing sintered hard alloy for cutting and the like.

【図面の簡単な説明】[Brief description of the drawings]

第1図から第4図は、実施例1における試料1〜4の表
面からの深さ方向の、組成分布を模式的に示す図であ
る。 〔図面の簡単な説明〕
1 to 4 are diagrams schematically showing the composition distribution in the depth direction from the surface of samples 1 to 4 in Example 1. [Brief description of drawings]

【図1】本実施例1における試料1の表面深さの組成分
布図
FIG. 1 is a composition distribution diagram of a surface depth of a sample 1 in Example 1.

【図2】本実施例1における試料2の表面深さの組成分
布図
FIG. 2 is a composition distribution diagram of a surface depth of a sample 2 in Example 1.

【図3】本実施例1における試料3の表面深さの組成分
布図
FIG. 3 is a composition distribution diagram of the surface depth of Sample 3 in Example 1.

【図4】本実施例1における試料4の表面深さの組成分
布図
FIG. 4 is a composition distribution diagram of a surface depth of a sample 4 in the first embodiment.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平4−120274(JP,A) 特開 平5−9646(JP,A) 特開 平2−131803(JP,A) 特開 昭63−169356(JP,A) (58)調査した分野(Int.Cl.7,DB名) C22C 29/00 - 29/16 C22C 1/05 B22F 1/00 - 7/08 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-4-120274 (JP, A) JP-A-5-9646 (JP, A) JP-A-2-131803 (JP, A) JP-A-63- 169356 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C22C 29/00-29/16 C22C 1/05 B22F 1/00-7/08

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 周期律表の4a,5a,6a族から選ば
れた少なくとも2種の遷移金属の炭化物、窒化物、炭窒
化物あるいはこれらの複合炭窒化物の少なくとも1種以
上からなる硬質相と、Ni及びCo並びに不可避不純物
を含む結合相とからなる窒素含有焼結硬質合金におい
て、結合金属相量が表面から3μm以上500μm以下
の深さ範囲に結合相量の最高部が存在しその値が合金平
均結合相量の1.1倍以上4倍以下で、深さ800μm
までに合金全体の平均結合相量に戻り、かつ、表面部の
結合相量が結合相量最高部に対し0.9倍以下であっ
て、かつ、硬質相については、硬質相を形成する金属成
分組成を(Tixyc)(但し、MはTi,W以外の硬
質相形成遷移金属成分で,x,y,cは原子比率でx+
y+c=1(0.5<x≦0.95, 0.05<y≦0.5)を満た
す)と表したとき、表面部のxが合金平均のxに対し
1.01倍以上、yが合金平均のyに対し0.1以上
0.9以下で、深さ800μmまでにそれぞれ合金全体
の平均のx,yに戻り、かつ、表面部にWC粒子が存在
しないかまたは存在しても0.1体積%以下であること
を特徴とする窒素含有焼結硬質合金。
1. A hard phase comprising at least one of carbides, nitrides, carbonitrides, or composite carbonitrides of at least two transition metals selected from groups 4a, 5a, and 6a of the periodic table. And a nitrogen-containing sintered hard alloy comprising Ni and Co and a binder phase containing unavoidable impurities, the highest part of the amount of the binder phase exists in a depth range from 3 μm to 500 μm from the surface where the amount of the binder metal phase is Is not less than 1.1 times and not more than 4 times the average amount of the bonded phase, and has a depth of 800 μm.
By the time, the amount of the binder phase returns to the average amount of the entire alloy, and the amount of the binder phase on the surface is 0.9 times or less of the highest amount of the binder phase. the component composition (Ti x W y M c) ( where, M is Ti, a hard phase forming transition metal component other than W, x, y, c is the atomic ratio x +
When y + c = 1 (satisfies 0.5 <x ≦ 0.95, 0.05 <y ≦ 0.5), x in the surface portion is 1.01 times or more of x in the alloy average, and y is 0 in y of the average alloy. 0.1 or more and 0.9 or less, each of which returns to the average x and y of the entire alloy by 800 μm in depth, and WC particles are absent or 0.1% by volume or less even if present on the surface. A sintered hard alloy containing nitrogen, characterized in that:
【請求項2】 周期律表の4a,5a,6a族から選ば
れた少なくとも2種の遷移金属の炭化物、窒化物、炭窒
化物あるいはこれらの複合炭窒化物の少なくとも1種以
上からなる硬質相と、Ni及びCo並びに不可避不純物
を含む結合相とからなる窒素含有焼結硬質合金におい
て、結合金属相量が表面から3μm以上500μm以下
の深さ範囲に結合相量の最高部が存在しその値が合金平
均結合相量の1.1倍以上4倍以下で、深さ800μm
までに合金全体の平均結合相量に戻り、かつ、表面部の
結合相量が結合相量最高部に対し0.9倍以下であっ
て、かつ、硬質相については、硬質相を形成する金属成
分組成を(TixyM'bc)(但し、MはTi,W,T
a,Nb以外の硬質相形成遷移金属成分で、M'はT
a,またはNbから選ばれてなり、x,y,b,cは原
子比率でx+y+b+c=1(0.5<x≦0.95, 0.05
<y≦0.5, 0.01<b≦0.4)を満たす)と表したと
き、表面部のx+bが合金平均のx+bに対し1.01
倍以上、yが合金平均のyに対し0.1以上0.9以下
で、深さ800μmまでにそれぞれ合金全体の平均のx
+b,yに戻り、かつ、表面部にWC粒子が存在しない
かまたは存在しても0.1体積%以下であることを特徴
とする窒素含有焼結硬質合金。
2. A hard phase comprising at least one of carbides, nitrides, carbonitrides or composite carbonitrides of at least two transition metals selected from groups 4a, 5a and 6a of the periodic table. And a nitrogen-containing sintered hard alloy comprising Ni and Co and a binder phase containing unavoidable impurities, the highest part of the amount of the binder phase exists in a depth range from 3 μm to 500 μm from the surface where the amount of the binder metal phase is Is not less than 1.1 times and not more than 4 times the average amount of the bonded phase, and has a depth of 800 μm.
By the time, the amount of the binder phase returns to the average amount of the entire alloy, and the amount of the binder phase on the surface is 0.9 times or less of the highest amount of the binder phase. the component composition (Ti x W y M 'b M c) ( where, M is Ti, W, T
a, Nb is a transition metal component forming a hard phase other than Nb.
a, or Nb, where x, y, b, and c are atomic ratios of x + y + b + c = 1 (0.5 <x ≦ 0.95, 0.05
<Y ≦ 0.5, 0.01 <b ≦ 0.4), the ratio of x + b on the surface to the alloy average x + b is 1.01.
X or more, y is 0.1 or more and 0.9 or less with respect to the average y of the alloy, and the average x of the entire alloy is increased up to a depth of 800 μm.
A nitrogen-containing sintered hard alloy which returns to + b, y and has no or no WC particles on its surface at 0.1% by volume or less.
【請求項3】 周期律表の4a,5a,6a族から選ば
れた少なくとも2種の遷移金属の炭化物、窒化物、炭窒
化物あるいはこれらの複合炭窒化物の少なくとも1種以
上からなる硬質相と、Ni及びCo並びに不可避不純物
を含む結合相とからなる窒素含有焼結硬質合金におい
て、結合金属相量が表面から3μm以上500μm以下
の深さ範囲に結合相量の最高部が存在しその値が合金平
均結合相量の1.1倍以上4倍以下で、深さ800μm
までに合金全体の平均結合相量に戻り、かつ、表面部の
結合相量が結合相量最高部に対し0.9倍以下であっ
て、かつ、硬質相については、硬質相を形成する金属成
分組成を(TixyTaaNbbc)(但し、MはTi,
W,Ta,Nb以外の硬質相形成遷移金属成分で、x,
y,a,b,cは原子比率でx+y+a+b+c=1
(0.5<x≦0.95, 0.05<y≦0.5, 0.01<a≦0.
4, 0.01<b≦0.4)を満たす)と表したとき、表面部
のx+a+bが合金平均のx+a+bに対し1.01倍
以上、yが合金平均のyに対し0.1以上0.9以下
で、深さ800μmまでにそれぞれ合金全体の平均のx
+a+b,yに戻り、かつ、表面部にWC粒子が存在し
ないかまたは存在しても0.1体積%以下であることを
特徴とする窒素含有焼結硬質合金。
3. A hard phase comprising at least one of carbides, nitrides, carbonitrides, or composite carbonitrides of at least two transition metals selected from groups 4a, 5a, and 6a of the periodic table. And a nitrogen-containing sintered hard alloy comprising Ni and Co and a binder phase containing unavoidable impurities, the highest part of the amount of the binder phase exists in a depth range from 3 μm to 500 μm from the surface where the amount of the binder metal phase is Is not less than 1.1 times and not more than 4 times the average amount of the bonded phase, and has a depth of 800 μm.
By the time, the amount of the binder phase returns to the average amount of the entire alloy, and the amount of the binder phase on the surface is 0.9 times or less of the highest amount of the binder phase. the component composition (Ti x W y Ta a Nb b M c) ( where, M is Ti,
Hard phase forming transition metal components other than W, Ta, Nb, x,
y, a, b, c are atomic ratios x + y + a + b + c = 1
(0.5 <x ≦ 0.95, 0.05 <y ≦ 0.5, 0.01 <a ≦ 0.
4, 0.01 <b ≦ 0.4) when x + a + b of the surface portion is 1.01 times or more of x + a + b of the alloy average, and y is 0.1 or more and 0.9 or less of y of the alloy average. , The average x of the entire alloy up to a depth of 800 μm
+ A + b, y, and no or no WC particles are present on the surface at 0.1% by volume or less.
【請求項4】 周期律表の4a,5a,6a族から選ば
れた少なくとも2種の遷移金属の炭化物、窒化物、炭窒
化物あるいはこれらの複合炭窒化物の少なくとも1種以
上からなる硬質相と、Ni及びCo並びに不可避不純物
を含む結合相とからなる窒素含有焼結硬質合金におい
て、結合金属相量が表面から3μm以上500μm以下
の深さ範囲に結合相量の最高部が存在しその値が合金平
均結合相量の1.1倍以上4倍以下で、深さ800μm
までに合金全体の平均結合相量に戻り、かつ、表面部の
結合相量が結合相量最高部に対し0.9倍以下であっ
て、かつ、硬質相については、硬質相を形成する金属成
分組成を(TixyZrbc)(但し、MはTi,W,Z
r以外の硬質相形成遷移金属成分で、x,y,b,cは
原子比率でx+y+b+c=1(0.5<x≦0.95, 0.0
5<y≦0.5, 0.01<b≦0.4)を満たす)と表したと
き、表面部のx+bが合金平均のx+bに対し1.01
倍以上、yが合金平均のyに対し0.1以上0.9以下
で、深さ800μmまでにそれぞれ合金全体の平均のx
+b,yに戻り、かつ、表面部にWC粒子が存在しない
かまたは存在しても0.1体積%以下であることを特徴
とする窒素含有焼結硬質合金。
4. A hard phase comprising at least one of carbides, nitrides, carbonitrides, or composite carbonitrides of at least two transition metals selected from groups 4a, 5a, and 6a of the periodic table. And a nitrogen-containing sintered hard alloy comprising Ni and Co and a binder phase containing unavoidable impurities, the highest part of the amount of the binder phase exists in a depth range from 3 μm to 500 μm from the surface where the amount of the binder metal phase is Is not less than 1.1 times and not more than 4 times the average amount of the bonded phase, and has a depth of 800 μm.
By the time, the amount of the binder phase returns to the average amount of the entire alloy, and the amount of the binder phase on the surface is 0.9 times or less of the highest amount of the binder phase. the component composition (Ti x W y Zr b M c) ( where, M is Ti, W, Z
x, y, b, c are atomic ratios of x + y + b + c = 1 (0.5 <x ≦ 0.95, 0.0).
5 <y ≦ 0.5, 0.01 <b ≦ 0.4), the ratio of x + b on the surface to the alloy average x + b is 1.01.
X or more, y is 0.1 or more and 0.9 or less with respect to the average y of the alloy, and the average x of the entire alloy is increased up to a depth of 800 μm.
A nitrogen-containing sintered hard alloy which returns to + b, y and has no or no WC particles on its surface at 0.1% by volume or less.
【請求項5】 周期律表の4a,5a,6a族から選ば
れた少なくとも2種の遷移金属の炭化物、窒化物、炭窒
化物あるいはこれらの複合炭窒化物の少なくとも1種以
上からなる硬質相と、Ni及びCo並びに不可避不純物
を含む結合相とからなる窒素含有焼結硬質合金におい
て、結合金属相量が表面から3μm以上500μm以下
の深さ範囲に結合相量の最高部が存在しその値が合金平
均結合相量の1.1倍以上4倍以下で、深さ800μm
までに合金全体の平均結合相量に戻り、かつ、表面部の
結合相量が結合相量最高部に対し0.9倍以下であっ
て、かつ、硬質相については、硬質相を形成する金属成
分組成を(TixyMobc)(但し、MはTi,W,M
o以外の硬質相形成遷移金属成分で、x,y,b,cは
原子比率でx+y+b+c=1(0.5<x≦0.95, 0.0
5<y≦0.5, 0.01<b≦0.4)を満たす)と表したと
き、表面部のxが合金平均のxに対し1.01倍以上、
y+bが合金平均のy+bに対し0.1以上0.9以下
で、深さ800μmまでにそれぞれ合金全体の平均の
x,y+bに戻り、かつ、表面部にWC粒子が存在しな
いかまたは存在しても0.1体積%以下であることを特
徴とする窒素含有焼結硬質合金。
5. A hard phase comprising at least one of carbides, nitrides, carbonitrides, or composite carbonitrides of at least two transition metals selected from groups 4a, 5a, and 6a of the periodic table. And a nitrogen-containing sintered hard alloy comprising Ni and Co and a binder phase containing unavoidable impurities, the highest part of the amount of the binder phase exists in a depth range from 3 μm to 500 μm from the surface where the amount of the binder metal phase is Is not less than 1.1 times and not more than 4 times the average amount of the bonded phase, and has a depth of 800 μm.
By the time, the amount of the binder phase returns to the average amount of the entire alloy, and the amount of the binder phase on the surface is 0.9 times or less of the highest amount of the binder phase. the component composition (Ti x W y Mo b M c) ( where, M is Ti, W, M
x, y, b, and c are atomic ratios of x + y + b + c = 1 (0.5 <x ≦ 0.95, 0.0).
5 <y ≦ 0.5, 0.01 <b ≦ 0.4) when the surface portion x is at least 1.01 times the alloy average x,
y + b is not less than 0.1 and not more than 0.9 with respect to the average y + b of the alloy, and returns to the average x, y + b of the whole alloy by 800 μm in depth, and WC particles do not exist or exist on the surface. Is 0.1% by volume or less.
JP5018283A 1993-02-05 1993-02-05 Nitrogen-containing sintered hard alloy Expired - Fee Related JP3064722B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP5018283A JP3064722B2 (en) 1993-02-05 1993-02-05 Nitrogen-containing sintered hard alloy
US08/313,222 US5577424A (en) 1993-02-05 1994-02-03 Nitrogen-containing sintered hard alloy
DE69433214T DE69433214T2 (en) 1993-02-05 1994-02-03 Hard sintered alloy containing nitrogen
PCT/JP1994/000158 WO1994018351A1 (en) 1993-02-05 1994-02-03 Nitrogen-containing hard sintered alloy
EP98102547A EP0864661B1 (en) 1993-02-05 1994-02-03 Nitrogen-containing sintered hard alloy
EP94905840A EP0635580A4 (en) 1993-02-05 1994-02-03 Nitrogen-containing hard sintered alloy.
KR1019940703517A KR0143508B1 (en) 1993-02-05 1994-02-03 Nitrogen containing sintered hard alloy
TW083101466A TW291499B (en) 1993-02-05 1994-02-19
KR1019940703517A KR950701006A (en) 1993-02-05 1994-10-05 NITROGEN-CONTAINING HARD SINTERED ALLOY

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5018283A JP3064722B2 (en) 1993-02-05 1993-02-05 Nitrogen-containing sintered hard alloy

Publications (2)

Publication Number Publication Date
JPH06228702A JPH06228702A (en) 1994-08-16
JP3064722B2 true JP3064722B2 (en) 2000-07-12

Family

ID=11967311

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5018283A Expired - Fee Related JP3064722B2 (en) 1993-02-05 1993-02-05 Nitrogen-containing sintered hard alloy

Country Status (1)

Country Link
JP (1) JP3064722B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6278232B2 (en) * 2013-11-01 2018-02-14 住友電気工業株式会社 cermet

Also Published As

Publication number Publication date
JPH06228702A (en) 1994-08-16

Similar Documents

Publication Publication Date Title
US5577424A (en) Nitrogen-containing sintered hard alloy
JPH01502680A (en) Creep-resistant alloy made of high-melting point metal and its manufacturing method
US5149595A (en) Cermet alloy and process for its production
JPH055152A (en) Hard heat resisting sintered alloy
JP2004076049A (en) Hard metal of ultra-fine particles
EP0815274B1 (en) Method of powder metallurgical manufacturing of a composite material
JP5217417B2 (en) Titanium carbonitride-based cermet cutting tool with excellent wear resistance
JP3064722B2 (en) Nitrogen-containing sintered hard alloy
JPH01261270A (en) Metal-containing titanium carbonitride-chromium carbide ceramic
JP3803694B2 (en) Nitrogen-containing sintered hard alloy
JP3303186B2 (en) Method for producing heat-resistant tungsten carbide-based cemented carbide having high strength
JP2737676B2 (en) Nitrogen-containing sintered hard alloy
JP2775298B2 (en) Cermet tool
JP3648758B2 (en) Nitrogen-containing sintered hard alloy
JP2004515650A (en) Metal strip for epitaxy coating and method of making same
US4069043A (en) Wear-resistant shaped magnetic article and process for making the same
JP3605838B2 (en) cermet
JP2737677B2 (en) Nitrogen-containing sintered hard alloy
JPH05230588A (en) Hard alloy
JPS6059195B2 (en) Manufacturing method of hard sintered material with excellent wear resistance and toughness
JPH09104943A (en) Sintered hard alloy
JP3374653B2 (en) Carbonitride cermet cutting tool with excellent wear resistance
JP7008249B2 (en) TiN-based sintered body and cutting tool made of TiN-based sintered body
JPH0813077A (en) Nitrogen-containing sintered hard alloy
JP2578677B2 (en) TiCN-based cermet

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090512

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090512

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100512

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees