JP3063310B2 - Manufacturing method of tungsten carbide based cemented carbide with high strength and high hardness - Google Patents

Manufacturing method of tungsten carbide based cemented carbide with high strength and high hardness

Info

Publication number
JP3063310B2
JP3063310B2 JP3289189A JP28918991A JP3063310B2 JP 3063310 B2 JP3063310 B2 JP 3063310B2 JP 3289189 A JP3289189 A JP 3289189A JP 28918991 A JP28918991 A JP 28918991A JP 3063310 B2 JP3063310 B2 JP 3063310B2
Authority
JP
Japan
Prior art keywords
powder
tungsten carbide
carbide
average particle
based cemented
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3289189A
Other languages
Japanese (ja)
Other versions
JPH06264158A (en
Inventor
耕治 篠原
文洋 植田
照義 棚瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP3289189A priority Critical patent/JP3063310B2/en
Publication of JPH06264158A publication Critical patent/JPH06264158A/en
Application granted granted Critical
Publication of JP3063310B2 publication Critical patent/JP3063310B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、高強度および高硬度
を有する炭化タングステン(以下、WCで示す)基超硬
合金の製造法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a tungsten carbide (hereinafter referred to as WC) -based cemented carbide having high strength and high hardness.

【0002】[0002]

【従来の技術】従来、例えば特開昭61−12847号
公報に記載される通り、重量%で(以下%は重量%を示
す)、Coおよび/またはNi:5〜40%,V:0.
1〜2%,Cr:0.1〜2%,WCおよび不可避不純
物:残り、からなる組成、並びに、WCの平均粒径:
0.7μm以下、の組織を有するWC基超硬合金が、各
種の剪断刃や、プリント基板用ドリル、エンドミル、お
よびリーマなどの切削工具などの製造に用いられ、かつ
これらのWC基超硬合金が、原料粉末として、1μm以
下の平均粒径を有するWC粉末、さらに1〜3μmの範
囲内の所定の平均粒径を有するCo粉末、Ni粉末、V
C粉末、およびCr3 2 粉末を用い、これら原料粉末
を所定の配合組成に配合し、いずれも通常の条件で、混
合し、圧粉体に成形し、この圧粉体を真空焼結すること
により製造されることは良く知られるところである。
2. Description of the Related Art Conventionally, as described in, for example, JP-A-61-12847, Co and / or Ni: 5 to 40%, V: 0.
1 to 2%, Cr: 0.1 to 2%, WC and unavoidable impurities: composition consisting of the remainder, and average particle size of WC:
A WC-based cemented carbide having a structure of 0.7 μm or less is used for manufacturing cutting tools such as various shearing blades, drills for printed circuit boards, end mills, and reamers. However, as raw material powders, WC powder having an average particle diameter of 1 μm or less, Co powder, Ni powder having a predetermined average particle diameter in the range of 1 to 3 μm, V powder
Using C powder and Cr 3 C 2 powder, these raw material powders are blended in a prescribed composition, mixed under normal conditions, molded into a green compact, and this green compact is vacuum-sintered. It is well known that they are manufactured by

【0003】[0003]

【発明が解決しようとする課題】しかし、近年の切断お
よび切削加工の省力化に対する要求は厳しく、これに伴
ない、これらの加工に用いられる各種工具は苛酷な条件
下での使用を余儀なくされる傾向にあるが、これら工具
を構成する上記従来WC基超硬合金は、いずれも結合相
が相対的に大寸の結合相プールとして存在することが原
因で、十分な強度を具備するものでないため、これらの
現状に満足に対応することができないものである。
However, recent demands for labor saving in cutting and cutting work are severe, and accordingly, various tools used for these working have to be used under severe conditions. Although there is a tendency, none of the above conventional WC-base cemented carbides constituting these tools have sufficient strength due to the fact that the binder phase exists as a relatively large pool of binder phases. However, it is impossible to satisfactorily cope with these current situations.

【0004】[0004]

【課題を解決するための手段】そこで、本発明者等は、
上述のような観点から、高強度を有するWC基超硬合金
を製造すべく研究を行なった結果、原料粉末として、い
ずれも1μm以下の平均粒径を有するWC粉末、Coお
よびNiの酸化物粉末、V,Cr,Ta、およびTiの
金属粉末、これら金属の炭化物粉末および酸化物粉末、
炭素粉末を用い、これら原料粉末を配合し、混合し、圧
粉体に成形し、ついで前記圧粉体を真空焼結するに際し
て、その昇温過程で、炭素粉末または炭素粉末と炭化物
粉末によって、結合相に占める割合で50〜500ppm
の酸素が残留する割合に配合した酸化物粉末の還元を行
なうことにより結合相中に上記含有量の酸素を含有する
WC基超硬合金を製造すると(一般に従来WC基超硬合
金の結合相中の酸素含有量は10ppm 以下)、この酸素
の作用で、分散相を構成するWCの粒成長が抑制される
と共に、結合相の大きさが最大径で2μm以下と微細に
なり、さらに結合相中に合金成分としてV,Cr,T
a、およびTiのうちの1種または2種以上を、同じく
結合相に占める割合で0.1〜20%含有した場合に
は、分散相のWCの微細化が一段と進行し、この結果高
強度と高硬度を具備するようになるという研究結果を得
たのである。
Means for Solving the Problems Accordingly, the present inventors have
From the above-mentioned viewpoints, as a result of conducting research to produce a WC-based cemented carbide having high strength, WC powder and Co and Ni oxide powders each having an average particle diameter of 1 μm or less were used as raw material powders. , V, Cr, Ta, and Ti metal powders, carbide powders and oxide powders of these metals,
Using carbon powder, these raw material powders are blended, mixed, molded into a green compact, and then, when the green compact is vacuum-sintered, in the process of raising the temperature, by carbon powder or carbon powder and carbide powder, 50 to 500 ppm in the binder phase
When a WC-based cemented carbide containing the above content of oxygen in the binder phase is produced by reducing the oxide powder blended in such a proportion that the remaining amount of oxygen remains (generally, in the binder phase of the conventional WC-based cemented carbide, The oxygen content of the WC constituting the dispersed phase is suppressed by the action of the oxygen, and the size of the binder phase is reduced to a maximum diameter of 2 μm or less. V, Cr, T as alloy components
When one or two or more of a and Ti are contained in the binder phase in a proportion of 0.1 to 20%, the WC of the dispersed phase is further refined, resulting in high strength. And the research result that it comes to have high hardness was obtained.

【0005】この発明は、上記の研究結果にもとづいて
なされたものであって、原料粉末として、いずれも1μ
m以下の平均粒径を有するWC粉末、CoおよびNiの
酸化物粉末、V,Cr,Ta、およびTiの金属粉末、
これら金属の炭化物粉末および酸化物粉末、炭素粉末を
用い、これら原料粉末を配合し、混合し、圧粉体に成形
し、ついで前記圧粉体を真空焼結するに際して、その昇
温過程で、炭素粉末または炭素粉末と炭化物粉末によっ
て、結合相に占める割合で50〜500ppm の酸素が残
留する割合に配合した酸化物粉末の還元を行ない、酸
素:50〜500ppm 、を含有し、さらに必要に応じ
て、V,Cr,Ta、およびTiのうちの1種または2
種以上:0.1〜20重量%、を含有し、残りがCoま
たはCo+Niと不可避不純物からなる結合相:3〜2
0重量%、を含有し、残りが分散相としての炭化タング
ステンからなる組成、並びに、炭化タングステンの平均
粒径:1μm以下、結合相の大きさ:最大径で2μm以
下、の微細構造を有するWC基超硬合金を製造する方法
に特徴を有するものである。
[0005] The present invention has been made based on the above research results, and each of the raw material powders is 1 μm.
m, a WC powder having an average particle diameter of not more than m, an oxide powder of Co and Ni, a metal powder of V, Cr, Ta, and Ti;
Using these metal carbide powders, oxide powders, and carbon powders, blending and mixing these raw material powders, forming a green compact, and then vacuum sintering the green compact, The carbon powder or the carbon powder and the carbide powder are used to reduce the oxide powder blended in such a proportion that 50 to 500 ppm of oxygen remains in the binder phase, containing 50 to 500 ppm of oxygen, and further, if necessary. And one or two of V, Cr, Ta, and Ti
Species or more: 0.1 to 20% by weight, the balance being Co or Co + Ni and inevitable impurities: 3 to 2
0% by weight, the balance being tungsten carbide as a dispersed phase, and a WC having a fine structure in which the average particle size of the tungsten carbide is 1 μm or less, and the size of the binder phase is 2 μm or less in the maximum diameter. The present invention is characterized by a method for producing a base cemented carbide.

【0006】つぎに、この発明の方法において、製造条
件を上記の通りに限定した理由を説明する。 (a) 原料粉末の平均粒径 原料粉末の平均粒径が1μmを越えると、均一混合に長
時間を要するようになるばかりでなく、焼結後のWCお
よび結合相の粗大化の原因ともなることから、その平均
粒径は1μm以下としなければならない。
Next, the reason why the manufacturing conditions are limited as described above in the method of the present invention will be described. (A) Average particle size of raw material powder When the average particle size of raw material powder exceeds 1 μm, not only does it take a long time for uniform mixing, but it also causes coarsening of WC and binder phase after sintering. Therefore, the average particle size must be 1 μm or less.

【0007】(b) 結合相含有量 結合相形成成分には、焼結性を向上させて、これを緻密
化し、かつ靱性および耐欠損性を向上させる作用がある
が、その含有量が3%未満では前記作用に所望の効果が
得られず、一方その含有量が20%を越えると耐摩耗性
および耐塑性変形性が低下するようになることから、そ
の含有量を3〜20%と定めた。
(B) Binder phase content The binder phase forming component has the effect of improving sinterability, densifying it, and improving toughness and fracture resistance, but its content is 3%. If the content is less than the desired effect, the desired effect cannot be obtained. On the other hand, if the content exceeds 20%, the wear resistance and the plastic deformation resistance decrease, so the content is determined to be 3 to 20%. Was.

【0008】(c) 結合相中のV,Cr,Ta、およ
びTiの含有量 これらの成分には、WC粒を微細化する作用があるの
で、必要に応じて結合相中に含有させるが、その含有量
が0.1%未満では所定の微細化効果が得られず、一方
その含有量が20%を越えると、結合相中への固溶限界
を越え、金属間化合物が析出して、靱性が低下するよう
になることから、その含有量を結合相に占める割合で
0.1〜20%と定めた。
(C) Content of V, Cr, Ta, and Ti in the binder phase These components have an effect of refining WC grains, so they are contained in the binder phase as necessary. If the content is less than 0.1%, the desired refining effect cannot be obtained, while if the content exceeds 20%, the solid solution limit in the binder phase is exceeded, and the intermetallic compound precipitates, Since the toughness is reduced, the content is determined to be 0.1 to 20% in the binder phase.

【0009】(d) 結合相中の酸素含有量 酸素には、上記の通り結合相を微細化すると共に、WC
の粒成長を抑制する作用があるが、その含有割合が、結
合相に占める割合で50ppm 未満では、結合相について
は、その大きさを最大径で2μm以下に、またWCにつ
いては、平均粒径で1μm以下にすることができず、一
方その含有量が、同500ppm を越えると、焼結時のW
Cに対する結合相のぬれ性が低下し、著しい強度低下を
きたすようになることから、その含有割合を50〜50
0ppm と定めた。
(D) Oxygen content in the binder phase As described above, the binder phase is refined and the WC
However, when the content of the binder phase is less than 50 ppm in the binder phase, the maximum size of the binder phase is 2 μm or less, and the average particle diameter of the WC is 2 μm or less. Cannot be reduced to 1 μm or less, while if the content exceeds 500 ppm, the W
Since the wettability of the binder phase to C is reduced and the strength is remarkably reduced, the content ratio is set to 50 to 50.
It was determined to be 0 ppm.

【0010】[0010]

【実施例】つぎに、この発明のWC基超硬合金を実施例
により具体的に説明する。原料粉末として、表1に示さ
れる平均粒径のWC粉末、平均粒径:0.8μmのCo
およびNiの酸化物粉末、同1μmのV,Cr,Ta、
およびTi粉末、同1μmのV,Cr,Ta、およびT
iの炭化物粉末および酸化物粉末、同1μmの炭素粉末
を用い、これら原料粉末を表1に示される配合組成に配
合し、72時間ボールミルで湿式混合し、乾燥した後、
1ton/cm2 の圧力で圧粉体にプレス成形し、この圧粉体
を真空加熱炉に装入し、炉内雰囲気を1torr以下に維持
しながら、450〜950℃の昇温過程を2時間以上か
けて昇温して、酸化物粉末の炭素粉末あるいは炭素粉末
と炭化物粉末による還元を行ない、1280〜1390
℃の範囲内の所定温度に昇温し、この温度に3時間保持
後炉冷の条件で真空焼結を行なうことにより本発明法1
〜12を実施し、それぞれ表2に示される成分組成をも
ったWC基超硬合金を製造した。
Next, the WC-base cemented carbide of the present invention will be described in detail with reference to examples. As the raw material powder, WC powder having an average particle size shown in Table 1 and Co having an average particle size of 0.8 μm were used.
And Ni oxide powder, 1 μm of V, Cr, Ta,
And Ti powder, 1 μm of V, Cr, Ta and T
Using a carbide powder, an oxide powder, and a 1 μm carbon powder of i, these raw material powders were blended in the blending composition shown in Table 1, wet-mixed in a ball mill for 72 hours, and dried.
The green compact is press-molded at a pressure of 1 ton / cm 2 , and the green compact is charged into a vacuum heating furnace, and the temperature is raised from 450 to 950 ° C. for 2 hours while maintaining the furnace atmosphere at 1 torr or less. The temperature was raised over the above, and the oxide powder was reduced with carbon powder or carbon powder and carbide powder, and 1280-1390
The temperature was raised to a predetermined temperature in the range of ℃, held at this temperature for 3 hours, and then vacuum-sintered under the condition of furnace cooling.
-12 were carried out to produce WC-based cemented carbides having the component compositions shown in Table 2, respectively.

【0011】[0011]

【表1】 [Table 1]

【0012】[0012]

【表2】 [Table 2]

【0013】また、比較の目的で、原料粉末として、表
3に示される平均粒径のWC粉末、平均粒径:1μmの
CoおよびNi粉末、同1μmのVC粉末およびCr3
2粉末を用意し、これら原料粉末を同じく表3に示さ
れる配合組成に配合し、72時間ボールミルにて湿式混
合し、乾燥した後、1ton/cm2 の圧力で圧粉体にプレス
成形し、この圧粉体を0.1torrの真空中、1280〜
1390℃の範囲内の所定温度で焼結することにより従
来法1〜3を行ない、実質的に配合組成と同じ成分組成
(ただし酸素含有量はいずれも10ppm 以下)をもった
WC基超硬合金をそれぞれ製造した。
For the purpose of comparison, WC powder having an average particle diameter shown in Table 3, Co and Ni powder having an average particle diameter of 1 μm, VC powder having an average particle diameter of 1 μm, and Cr 3
C 2 powder was prepared, and the raw material powders were mixed in the same composition as shown in Table 3, wet-mixed in a ball mill for 72 hours, dried, and then pressed into a green compact at a pressure of 1 ton / cm 2. This green compact was placed in a vacuum of 0.1 torr,
Conventional methods 1 to 3 are carried out by sintering at a predetermined temperature in the range of 1390 ° C., and the WC-based cemented carbide having substantially the same composition as the composition (however, the oxygen content is 10 ppm or less). Was manufactured respectively.

【0014】[0014]

【表3】 [Table 3]

【0015】ついで、この結果得られた各種のWC基超
硬合金について、WCの平均粒径を測定すると共に、走
査型電子顕微鏡を用い、倍率:5000倍で、8×10
cmの視野で任意に選んだ5ヶ所の組織観察を行ない、結
合相の最も大きいものの径を測定した。また、強度を評
価する目的で抗析力を測定し、かつロックウェル硬さ
(Aスケール)も測定した。これらの測定結果を表4に
示した。
Next, the average particle size of WC was measured for each of the various WC-based cemented carbides obtained as a result.
Tissue observation was performed at five locations arbitrarily selected in a field of view of cm, and the diameter of the largest binder phase was measured. Further, for the purpose of evaluating the strength, the cohesive strength was measured, and the Rockwell hardness (A scale) was also measured. Table 4 shows the results of these measurements.

【0016】[0016]

【表4】 [Table 4]

【0017】表4に示される結果から、本発明法1〜1
2によれば、いずれも結合相中の酸素含有によってWC
の粒成長が抑制され、かつV,Cr,Ta,およびTi
の含有によって、一段とWC粒が微細化されて、1μm
以下の平均粒径を有し、さらに酸素含有による結合相の
微細化も著しく、その大きさが最大径で2μm以下にな
っており、この結果高強度および高硬度を具備するWC
基超硬合金を製造することができるのに対して、従来法
1〜3においては、VおよびCrの含有によってWC粒
は平均粒径で1μm以下の細粒となっているため高硬度
を示すが、一方で結合相の粗大化が著しいために、相対
的に強度の低いWC基超硬合金しか製造することができ
ないことが明らかである。
From the results shown in Table 4, the methods of the present invention 1-1
According to No. 2, WC and WC are all caused by oxygen content in the binder phase.
Grain growth is suppressed, and V, Cr, Ta, and Ti
WC grains are further refined by the inclusion of 1 μm
WC having high strength and high hardness, having an average particle size of
While the base cemented carbide can be manufactured, in the conventional methods 1 to 3, the WC grains exhibit high hardness because of the average grain size of 1 μm or less due to the inclusion of V and Cr. However, on the other hand, it is clear that only the WC-based cemented carbide having a relatively low strength can be produced due to remarkable coarsening of the binder phase.

【0018】上述のように、この発明の方法によれば、
高強度および高硬度を有するWC基超硬合金を製造する
ことができ、したがって、これを各種の剪断刃や切削工
具などの製造に用いた場合、苛酷な条件下での実用に際
してもすぐれた性能を発揮するなどの工業上有用な効果
がもたらされるのである。
As described above, according to the method of the present invention,
WC-based cemented carbide with high strength and high hardness can be manufactured. Therefore, when it is used for manufacturing various shearing blades and cutting tools, it has excellent performance even in practical use under severe conditions. And industrially useful effects such as exerting the same.

フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C22C 1/05 B22F 3/10 C22C 29/08 Continuation of the front page (58) Field surveyed (Int. Cl. 7 , DB name) C22C 1/05 B22F 3/10 C22C 29/08

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 料粉末として、いずれも1μm以下の
平均粒径を有する炭化タングステン粉末、CoおよびN
iの酸化物粉末、および炭素粉末を用い、これら原料粉
末を配合し、混合し、圧粉体に成形し、ついで前記圧粉
体を真空焼結するに際して、その昇温過程で、炭素粉末
によって、結合相に占める割合で50〜500ppm の酸
素が残留する割合に配合した酸化物粉末の還元を行な
い、 酸素:50〜500ppm 、 を含有し、残りがCoまたはCo+Niと不可避不純物
からなる結合相:3〜20重量%、 を含有し、残りが分散としての炭化タングステンから
なる組成、並びに炭化タングステンの平均粒径:1μm
以下、 結合相の大きさ:最大径で2μm以下、 の微細構造を有する炭化タングステン基超硬合金を製造
すること、 を特徴とする高強度および高硬度を有する炭化タングス
テン基超硬合金の製造法。
As claimed in claim 1] raw material powder, both tungsten carbide powder having an average particle size of less than or equal to 1 [mu] m, Co and N
Using the oxide powder of i and the carbon powder, these raw material powders are blended, mixed and formed into a green compact, and then, when the green compact is vacuum-sintered, the carbon powder is used during the heating process. performs reduction of oxide powder blended in proportion to the residual oxygen 50-500 ppm is in which accounts proportion binding phase, oxygen: 50-500 ppm, containing, balance being Co or Co + Ni and incidental impurities bond Phase: 3 to 20% by weight, and the balance being tungsten carbide as a dispersed phase , and the average particle size of tungsten carbide: 1 μm
The method for producing a tungsten carbide-based cemented carbide having a high strength and a high hardness, comprising: producing a tungsten carbide-based cemented carbide having a microstructure of the following: .
【請求項2】 原料粉末として、いずれも1μm以下の
平均粒径を有する炭化タングステン粉末、CoおよびN
iの酸化物粉末、V,Cr,Ta、およびTiの金属粉
末、これら金属の炭化物粉末および酸化物粉末、炭素粉
末を用い、これら原料粉末を配合し、混合し、圧粉体に
成形し、ついで前記圧粉体を真空焼結するに際して、そ
の昇温過程で、炭素粉末または炭素粉末と炭化物粉末に
よって、結合相に占める割合で50〜500ppm の酸素
が残留する割合に配合した酸化物粉末の還元を行ない、 酸素:50〜500ppm 、 を含有し、さらに、 V,Cr,Ta、およびTiのうちの1種または2種以
上:0.1〜20重量%、 を含有し、残りがCoまたはCo+Niと不可避不純物
からなる結合相:3〜20重量%、 を含有し、残りが分散相としての炭化タングステンから
なる組成、並びに、 炭化タングステンの平均粒径:1μm以下、 結合相の大きさ:最大径で2μm以下、 の微細構造を有する炭化タングステン基超硬合金を製造
すること、を特徴とする高強度および高硬度を有する炭
化タングステン基超硬合金の製造法。
2. As raw material powders, tungsten carbide powders each having an average particle size of 1 μm or less, Co and N
Using i oxide powder, V, Cr, Ta, and Ti metal powder, carbide powder and oxide powder of these metals, and carbon powder, these raw material powders are blended, mixed, and formed into a green compact; Then, when the green compact is vacuum-sintered, during the heating process, the carbon powder or the carbon powder and the carbide powder are mixed with the oxide powder mixed in such a proportion that 50 to 500 ppm of oxygen remains in the binder phase. Reduction is carried out, oxygen: 50 to 500 ppm, and one or more of V, Cr, Ta, and Ti: 0.1 to 20% by weight, the balance being Co or A composition comprising Co + Ni and an unavoidable impurity: 3 to 20% by weight, the balance being tungsten carbide as a dispersed phase, and an average particle diameter of tungsten carbide: 1 μm or less. Can of: 2 [mu] m in maximum diameter less high strength and method of producing tungsten carbide-based cemented carbide having a high hardness to produce a tungsten carbide based cemented carbide, and wherein having a microstructure of.
JP3289189A 1991-10-08 1991-10-08 Manufacturing method of tungsten carbide based cemented carbide with high strength and high hardness Expired - Fee Related JP3063310B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3289189A JP3063310B2 (en) 1991-10-08 1991-10-08 Manufacturing method of tungsten carbide based cemented carbide with high strength and high hardness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3289189A JP3063310B2 (en) 1991-10-08 1991-10-08 Manufacturing method of tungsten carbide based cemented carbide with high strength and high hardness

Publications (2)

Publication Number Publication Date
JPH06264158A JPH06264158A (en) 1994-09-20
JP3063310B2 true JP3063310B2 (en) 2000-07-12

Family

ID=17739930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3289189A Expired - Fee Related JP3063310B2 (en) 1991-10-08 1991-10-08 Manufacturing method of tungsten carbide based cemented carbide with high strength and high hardness

Country Status (1)

Country Link
JP (1) JP3063310B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL110663A (en) * 1994-08-15 1997-09-30 Iscar Ltd Tungsten-based cemented carbide powder mix and cemented carbide products made therefrom
JP5702021B1 (en) * 2014-11-25 2015-04-15 冨士ダイス株式会社 A container for ultra-high pressure generation using cemented carbide that does not cause delayed fracture
KR102205475B1 (en) * 2018-09-27 2021-01-20 주식회사 티엠시 Thin layer tappet including WC-Ni based hard metals and manufacturing thereof

Also Published As

Publication number Publication date
JPH06264158A (en) 1994-09-20

Similar Documents

Publication Publication Date Title
DE69734515T2 (en) SINTERED HARD ALLOY
JP2668955B2 (en) Double boride-based sintered body and method for producing the same
JPS6256224B2 (en)
JP3063310B2 (en) Manufacturing method of tungsten carbide based cemented carbide with high strength and high hardness
JPH0598384A (en) Tungsten carbide base sintered hard alloy having high strength and high hardness
JPH0681072A (en) Tungsten carbide base sintered hard alloy
JP4282298B2 (en) Super fine cemented carbide
JP3063340B2 (en) Production method of fine tungsten carbide powder
JP3318887B2 (en) Fine-grained cemented carbide and method for producing the same
JP3102167B2 (en) Production method of fine composite carbide powder for production of tungsten carbide based cemented carbide
JPS6256943B2 (en)
JP2663474B2 (en) Square cutting tip made of cemented carbide for cutting Ti alloy
JP3954845B2 (en) Tungsten carbide-based cemented carbide and method for producing the same
JPH08118123A (en) High strength tungsten carbide group superhard alloy-made miniature drill
JP3111709B2 (en) Production method of fine composite carbide powder for production of tungsten carbide based cemented carbide
JP2000237903A (en) Cutting tool made of ti base carbon nitride cermet excellent in abration resistance
JP3605740B2 (en) Carbide alloy for end mill
JPS6256944B2 (en)
JP3227774B2 (en) Cutting tool made of cermet based on Ti-based carbonitride with excellent wear resistance
JPH0726172B2 (en) Toughness cermet and method for producing the same
JP2003193171A (en) Cemented carbide and production method therefor
JP2003193170A (en) Tungsten carbide-cemented carbide
JP2578678B2 (en) TiCN-based cermet
JPH08253836A (en) Wear resistant tungsten carbide-base cemented carbide having excellent toughness
JPH0768600B2 (en) Compound boride sintered body

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000404

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080512

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees