JP3060635B2 - Manufacturing method of steel for high strength rebar - Google Patents

Manufacturing method of steel for high strength rebar

Info

Publication number
JP3060635B2
JP3060635B2 JP3223237A JP22323791A JP3060635B2 JP 3060635 B2 JP3060635 B2 JP 3060635B2 JP 3223237 A JP3223237 A JP 3223237A JP 22323791 A JP22323791 A JP 22323791A JP 3060635 B2 JP3060635 B2 JP 3060635B2
Authority
JP
Japan
Prior art keywords
yield
strength
steel
elongation
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3223237A
Other languages
Japanese (ja)
Other versions
JPH0551636A (en
Inventor
哲夫 白神
哲也 三瓶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP3223237A priority Critical patent/JP3060635B2/en
Publication of JPH0551636A publication Critical patent/JPH0551636A/en
Application granted granted Critical
Publication of JP3060635B2 publication Critical patent/JP3060635B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、高強度、とくに下降
伏点が780MPa以上の高強度を有し、かつ、降伏伸
びが大きい鉄筋用鋼の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing steel for reinforcing steel having high strength, in particular, high strength having a yield point of not less than 780 MPa and high yield elongation.

【0002】[0002]

【従来の技術】鉄筋コンクリ−ト用棒鋼は、JIS G
3112に規定されているように、最大強度のものでも
降伏点が490〜630MPa(SD490)である。
このような棒鋼は、C−Mn鋼を熱間圧延して製造され
る。
2. Description of the Related Art Steel bars for reinforced concrete are JIS G
As specified in 3112, the yield point is 490 to 630 MPa (SD490) even with the highest strength.
Such a steel bar is manufactured by hot rolling C-Mn steel.

【0003】近時、鉄筋コンクリ−トを用いて造られた
建築物はますます高層化する傾向にあり、鉄筋をさらに
高強度化する要望が高い。ところが、一般に、棒鋼を高
強度化すると、図1に示すように、降伏伸び(εP /ε
Y)が逆に低下するという不都合を生じる。因みに、建
設省のNewRC総合プロジェクトの指針によれば、降
伏点が690MPa以上の等級の棒鋼では降伏伸び値が
4%以上であることが好ましいとされているのに対し
て、降伏点が780MPa以上の等級の棒鋼では、特に
降伏伸びは規定されていない。しかしながら、将来、降
伏点が780MPa以上の等級の棒鋼においても、大き
な降伏伸びを要求されることが予想される。
[0003] In recent years, buildings made using reinforced concrete tend to be even higher in height, and there is a high demand for further strengthening of reinforcing bars. However, in general, when the strength of a steel bar is increased, as shown in FIG. 1, the yield elongation (ε P / ε
Y ) is disadvantageously reduced. Incidentally, according to the guidelines of the NewRC Comprehensive Project of the Ministry of Construction, it is preferable that the yield elongation value is 4% or more in the bar having a yield point of 690 MPa or more, whereas the yield point is 780 MPa or more. No specific elongation is specified for steel bars of grade No. However, in the future, it is expected that a large yield elongation will be required even for a bar having a yield point of 780 MPa or more.

【0004】特公昭63−64494号公報には、棒鋼
を高強度化するためにNb含有鋼あるいはNb−V含有
鋼を素材に用い、降伏伸びの低下を抑制するためにこれ
を所定の圧延条件下で制御圧延する製造技術が記載され
ている。また、特公昭64−11705号公報には、N
b,V,Caを添加することにより高強度の鉄筋用鋼と
する技術が記載されている。
Japanese Patent Publication No. 63-64494 discloses that an Nb-containing steel or an Nb-V-containing steel is used as a material for enhancing the strength of a steel bar, and to reduce the yield elongation under a predetermined rolling condition. The production technique for controlled rolling below is described. Japanese Patent Publication No. 64-11705 discloses N
A technique is described in which b, V, and Ca are added to make high-strength steel for reinforcing steel.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、これら
の従来の製造方法は、降伏点が490〜590MPaク
ラスの比較的低強度の棒鋼を対象としており、降伏点が
これらを超える高強度の棒鋼を対象とするものではな
い。すなわち、これらの製造技術においても、棒鋼の降
伏伸びを大きくしようとすると、降伏点が低下する。こ
のため、780MPa以上の降伏点を示す高強度かつ高
降伏伸びの棒鋼を製造することができないでいた。
However, these conventional manufacturing methods are intended for relatively low-strength steel bars having a yield point of 490-590 MPa class, and for high-strength steel bars having a yield point exceeding these. It does not mean that. That is, even in these manufacturing techniques, if the yield elongation of the steel bar is to be increased, the yield point decreases. For this reason, it was not possible to produce a high-strength and high-yield elongation steel bar exhibiting a yield point of 780 MPa or more.

【0006】また、素材を熱処理すれば、このような高
強度・高降伏伸びの特性を得ることはできるが、熱処理
工程を経るために製造コストが上昇するという不都合が
ある。本発明は、かかる事情に鑑みてなされたものであ
って、高強度かつ降伏伸びが大きい鉄筋用鋼の製造方法
を提供することを目的とする。
Further, if the material is heat-treated, such high strength and high yield elongation characteristics can be obtained, but there is a disadvantage that the production cost increases due to the heat treatment step. The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a method for manufacturing a steel for reinforcing steel having high strength and large yield elongation.

【0007】[0007]

【課題を解決するための手段および作用】本発明者ら
は、高強度鉄筋用鋼を得るために、鋭意研究した結果、
バナジウムを多量添加すると強度の増大化がみられるこ
と、および、圧延終了温度の低下による降伏点の出現に
加えて、チタンを有効利用することにより降伏伸びが増
加することを見出した。
The present inventors have conducted intensive studies to obtain high-strength steel for reinforcing steel.
It was found that when a large amount of vanadium was added, the strength was increased, and in addition to the appearance of a yield point due to a decrease in the rolling end temperature, the yield elongation was increased by effectively utilizing titanium.

【0008】[0008]

【0009】この発明に係る高強度鉄筋用鋼の製造方法
は、Cを0.35〜0.50質量%,Siを1.5質量
%以下,Mnを1.7質量%以下,Vを0.4〜0.7
質量%,Tiを0.01〜0.10質量%,Nを0.0
04〜0.01質量%それぞれ含有し、残部がFe及び
不可避的不純物からなる素材を、圧延終了温度が650
〜900℃となるように圧延することを特徴とする。素
材の組成をこのような成分範囲とした理由について、各
成分元素ごとに説明する。
The method for producing high-strength rebar steel according to the present invention is characterized in that C is 0.35 to 0.50% by mass , Si is 1.5% by mass or less, Mn is 1.7% by mass or less, and V is 0%. 0.4-0.7
% By mass , 0.01 to 0.10% by mass of Ti, and 0.0
A raw material containing 0.4 to 0.01% by mass and the balance consisting of Fe and inevitable impurities having a rolling end temperature of 650.
It is rolled so as to reach 900 ° C. The reason for setting the composition of the material to such a component range will be described for each component element.

【0010】Cは、高強度化に必要な元素であり、所望
の強度レベルを得るには含有量を0.35重量%以上と
する必要がある。しかし、C含有量が0.50重量%を
超えると、降伏点が出現しにくくなるか、または、降伏
点が出現したとしても降伏伸びが小さくなるので、上限
値を0.50重量%とする。
[0010] C is an element necessary for increasing the strength, and its content must be 0.35% by weight or more in order to obtain a desired strength level. However, when the C content exceeds 0.50% by weight, the yield point becomes difficult to appear, or even if the yield point appears, the yield elongation becomes small. Therefore, the upper limit is set to 0.50% by weight. .

【0011】Siは、脱酸に必要な元素であり、マトリ
ックスに固溶して強度を増大するのに有効である。しか
し、Si含有量が1.5重量%を超えると、靭性が低下
するので、上限値を1.5重量%とする。
Si is an element necessary for deoxidation, and is effective for forming a solid solution in a matrix to increase the strength. However, if the Si content exceeds 1.5% by weight, the toughness decreases, so the upper limit is set to 1.5% by weight.

【0012】Mnは、高強度化に必要な元素である。し
かし、Mn含有量が1.7重量%を超えると、ベイナイ
ト組織を生じて降伏点が出現しなくなるので、上限値を
1.7重量%とする。
Mn is an element necessary for increasing the strength. However, if the Mn content exceeds 1.7% by weight, a bainite structure is generated and no yield point appears, so the upper limit is set to 1.7% by weight.

【0013】Vは、析出強化元素であり、とくに少量の
添加でマトリックスの高強度化を図ることができるた
め、有効である。また、Vの添加は結晶粒の微細化にも
有効である。通常、高強度化に有効なV含有量は0.4
重量%以上である。しかし、VをTiとともに複合添加
した場合には、V含有量が0.7重量%を超えると、バ
ナジウム析出物およびチタン析出物の共存により、降伏
伸びが小さくなるので、Vの上限値を0.7重量%とす
る。
V is a precipitation strengthening element, and is effective because it can increase the strength of the matrix by adding a small amount thereof. Further, the addition of V is also effective for making the crystal grains fine. Usually, the effective V content for strengthening is 0.4
% By weight or more. However, when V is added in combination with Ti, when the V content exceeds 0.7% by weight, the yield elongation becomes small due to the coexistence of vanadium precipitates and titanium precipitates. 0.7% by weight.

【0014】Tiは、本発明に用いる素材において必須
の元素である。Tiは、高強度材料の降伏伸びを大きく
するのに有効であり、そのためにはTi含有量を0.0
1重量%以上とする必要がある。Ti含有量が0.10
重量%を超えると、降伏伸びの増大効果が飽和するの
で、上限値を0.10重量%とする。
[0014] Ti is an essential element in the material used in the present invention. Ti is effective in increasing the yield elongation of a high-strength material.
It must be at least 1% by weight. Ti content 0.10
If the amount exceeds 10% by weight, the effect of increasing the yield elongation is saturated, so the upper limit is set to 0.10% by weight.

【0015】Nは、組織中ではTiNまたはVNの形態
で存在し、組織の微細化に有効な元素である。N含有量
が0.004重量%を下回ると、組織微細化の効果がみ
られない。一方、N含有量が0.01重量%を超える
と、組織微細化の効果が飽和するので、上限値を0.0
1重量%とする。次に、圧延終了温度について説明す
る。
N exists in the structure in the form of TiN or VN, and is an element effective for making the structure finer. If the N content is less than 0.004% by weight, the effect of refining the structure is not obtained. On the other hand, if the N content exceeds 0.01% by weight, the effect of refining the structure saturates.
1% by weight. Next, the rolling end temperature will be described.

【0016】圧延終了温度を650〜900℃の範囲と
する理由は、圧延終了温度が650℃を下回る条件で上
記組成の素材を熱間圧延すると、過冷組織を生じて降伏
伸びが小さくなること、および、圧延機の負担が大きく
なることによる。このため、圧延終了温度の下限値を6
50℃とすることが望ましい。
The reason for setting the rolling end temperature in the range of 650 to 900 ° C. is that when a material having the above composition is hot-rolled under the condition that the rolling end temperature is lower than 650 ° C., a supercooled structure is formed and the yield elongation is reduced. And that the load on the rolling mill increases. For this reason, the lower limit of the rolling end temperature is set to 6
It is desirable that the temperature be 50 ° C.

【0017】一方、圧延終了温度の上限値を900℃と
する理由は、圧延終了温度が900℃を上回る条件で上
記組成の素材を熱間圧延すると、組織が粗大化して降伏
点が出現しにくくなり、所望の降伏伸びを得ることがで
きなくなるからである。これに対して、900℃以下の
圧延終了温度となるように上記組成の素材を熱間圧延す
ると、組織が微細化し、降伏点が出現すると共に、降伏
伸びも大きくなる。この場合に、微細化組織はフェライ
トおよびパーライトの混合組織となる。従って、上記の
下限温度値との組合せにより圧延終了温度を650〜9
00℃の範囲に選ぶことが最も望ましい。
On the other hand, the reason for setting the upper limit of the rolling end temperature to 900 ° C. is that when the material having the above composition is hot-rolled under the condition that the rolling end temperature is higher than 900 ° C., the structure becomes coarse and the yield point hardly appears. This is because the desired yield elongation cannot be obtained. On the other hand, when a material having the above composition is hot-rolled so as to have a rolling end temperature of 900 ° C. or lower, the structure becomes finer, a yield point appears, and the yield elongation increases. In this case, the microstructure becomes a mixed structure of ferrite and pearlite. Therefore, the above
The rolling end temperature is set to 650 to 9 in combination with the lower limit temperature value.
Most preferably, it is selected in the range of 00 ° C.

【0018】[0018]

【実施例】以下、この発明の実施例について具体的に説
明する。
Embodiments of the present invention will be specifically described below.

【0019】表1は、各種組成の素材を示す成分表示で
ある。組成番号1乃至3は、本発明の実施例として挙げ
たものであり、本発明の素材の成分範囲に含まれる。組
成番号4乃至6は、比較例として挙げたものである。
Table 1 is a component display showing materials of various compositions. Composition Nos. 1 to 3 are listed as examples of the present invention, and are included in the component range of the material of the present invention. Composition numbers 4 to 6 are listed as comparative examples.

【0020】表2は、上記組成番号1乃至6の素材を種
々の圧延終了温度となるように所定の圧下率で圧延し、
それぞれの降伏強さ、引張強さ、並びに降伏伸びについ
て調べた試験結果を示す表である。
Table 2 shows that the raw materials having composition numbers 1 to 6 were rolled at predetermined rolling reductions so as to have various rolling end temperatures.
It is a table | surface which shows the test result investigated about each yield strength, tensile strength, and yield elongation.

【0021】図1に示すように、降伏伸びとは、降伏が
終了するまでの伸び量εP を上降伏点までの伸び量εY
で割った比率(εP /εY )をいう。なお、引張試験に
はJIS4号試験片を用い、標点間距離を50mmとし
た。ここで、降伏強さは、実施例1,2,3及び比較例
1,2,8においては降伏点の表示強度を用いたが、比
較例3,4,5,6,7,9においては降伏点が明瞭に
認められないので0.2%耐力を採用した。表2から明
らかなように、実施例1,2,3は、いずれも降伏強さ
が780MPa以上となり、かつ、降伏伸びが4を超え
ている。
As shown in FIG. 1, the yield elongation is defined as the elongation ε P up to the end of the yield, and the elongation ε Y up to the upper yield point.
Divided by (ε P / ε Y ). In the tensile test, a JIS No. 4 test piece was used, and the distance between gauge points was set to 50 mm. Here, as the yield strength, the display strength of the yield point was used in Examples 1, 2, and 3 and Comparative Examples 1, 2, and 8, but in Comparative Examples 3, 4, 5, 6, 7, and 9, Since the yield point was not clearly recognized, a 0.2% proof stress was adopted. As is clear from Table 2, in Examples 1, 2, and 3, the yield strength is 780 MPa or more, and the yield elongation exceeds 4.

【0022】これに対して、圧延終了温度が650℃を
下回る条件の比較例1,3,5では、降伏伸びが得られ
ないか又は得られたとしても0.8程度の小さな降伏伸
びしか得られなかった。
On the other hand, in Comparative Examples 1, 3, and 5 where the rolling end temperature is lower than 650 ° C., no yield elongation is obtained, or even if it is obtained, only a small yield elongation of about 0.8 is obtained. I couldn't.

【0023】また、圧延終了温度が900℃を超える条
件の比較例2,4,6では、降伏伸びが得られないか又
は得られたとしても2.0程度の小さな降伏伸びしか得
られなかった。なお、比較例3,4,5,6では、明瞭
な降伏点が出現せず、降伏伸びを測定することができな
かった。
In Comparative Examples 2, 4, and 6 where the rolling end temperature exceeded 900 ° C., no yield elongation was obtained, or even if it was obtained, only a small yield elongation of about 2.0 was obtained. . In Comparative Examples 3, 4, 5, and 6, no clear yield point appeared, and the yield elongation could not be measured.

【0024】さらに、比較例7,8,9の結果から明ら
かなように、圧延終了温度が650〜900℃の範囲内
の条件であっても、所定の組成範囲から外れる組成(組
成番号4,5,6)のものでは、降伏伸びが小さくな
る。すなわち、比較例7及び9では降伏点が明瞭に出現
せず、また、比較例8では降伏点は現れるものの降伏伸
びは2.3程度と小さい。
Further, as is apparent from the results of Comparative Examples 7, 8, and 9, even if the rolling end temperature is in the range of 650 to 900 ° C., the composition (composition number 4, In the case of (5, 6), the yield elongation becomes small. That is, in Comparative Examples 7 and 9, the yield point does not clearly appear, and in Comparative Example 8, the yield point appears but the yield elongation is as small as about 2.3.

【0025】上記実施例によれば、素材の組成、とくに
チタン含有量およびバナジウム含有量を所定範囲とし、
650〜900℃の範囲に圧延終了温度を選ぶことによ
り、組織の微細化を図り、降伏強さを低下させることな
く、降伏伸びを増大することができた。
According to the above embodiment, the composition of the raw material, in particular, the content of titanium and the content of vanadium are set to predetermined ranges,
By selecting the rolling end temperature in the range of 650 to 900 ° C., it was possible to refine the structure and increase the yield elongation without lowering the yield strength.

【0026】[0026]

【表1】 [Table 1]

【0027】[0027]

【表2】 [Table 2]

【0028】[0028]

【発明の効果】この発明によれば、鉄筋用棒鋼の降伏強
さを780MPa以上に向上させることができ、かつ、
降伏伸びを4以上にすることができる。従って、この発
明により製造した棒鋼は、超高層ビルの鉄筋コンクリ−
トに用いるのに最適である。
According to the present invention, the yield strength of steel bars for reinforcing steel can be improved to 780 MPa or more, and
The yield elongation can be 4 or more. Accordingly, the steel bars manufactured according to the present invention are used for reinforcing concrete in skyscrapers.
Ideal for use in

【図面の簡単な説明】[Brief description of the drawings]

【図1】降伏伸びを説明するための応力−歪線図。FIG. 1 is a stress-strain diagram for explaining yield elongation.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平4−56727(JP,A) 特開 平4−193908(JP,A) 特開 平5−9577(JP,A) 永井義規”高強度鉄筋SD50の機械的 性質”,材料とプロセス,Vol.3, (1990),1398 (58)調査した分野(Int.Cl.7,DB名) C21D 8/08 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-4-56727 (JP, A) JP-A-4-193908 (JP, A) JP-A-5-9577 (JP, A) Nagai Yoshinori "High strength" Mechanical Properties of Reinforcing Bar SD50 ", Materials and Processes, Vol. 3, (1990), 1398 (58) Fields investigated (Int. Cl. 7 , DB name) C21D 8/08

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 Cを0.35〜0.50質量%,Siを
1.5質量%以下,Mnを1.7質量%以下,Vを0.
4〜0.7質量%,Tiを0.01〜0.10質量%,
Nを0.004〜0.01質量%それぞれ含有し、残部
がFe及び不可避的不純物からなる素材を、圧延終了温
度が650〜900℃となるように圧延することを特徴
とする高強度鉄筋用鋼の製造方法。
C. 0.35 to 0.50 mass% of C and Si
1.5 mass% or less, Mn 1.7 mass% or less, V
4 to 0.7% by mass, 0.01 to 0.10% by mass of Ti,
N in an amount of 0.004 to 0.01% by mass, and the balance
Is a material consisting of Fe and unavoidable impurities,
Rolled to a degree of 650-900 ° C
Method for producing high-strength steel for reinforcing steel.
JP3223237A 1990-09-04 1991-09-04 Manufacturing method of steel for high strength rebar Expired - Fee Related JP3060635B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3223237A JP3060635B2 (en) 1990-09-04 1991-09-04 Manufacturing method of steel for high strength rebar

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2-232475 1990-09-04
JP23247590 1990-09-04
JP3223237A JP3060635B2 (en) 1990-09-04 1991-09-04 Manufacturing method of steel for high strength rebar

Publications (2)

Publication Number Publication Date
JPH0551636A JPH0551636A (en) 1993-03-02
JP3060635B2 true JP3060635B2 (en) 2000-07-10

Family

ID=26525345

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3223237A Expired - Fee Related JP3060635B2 (en) 1990-09-04 1991-09-04 Manufacturing method of steel for high strength rebar

Country Status (1)

Country Link
JP (1) JP3060635B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112080682A (en) * 2020-09-23 2020-12-15 宁夏建龙龙祥钢铁有限公司 Method for increasing vanadium content of molten deformed steel bar by using vanadium-containing titanium-containing pig iron block
CN116275914A (en) * 2022-06-29 2023-06-23 张家港荣盛特钢有限公司 Production method of fireproof steel bar mechanical connecting sleeve

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
永井義規"高強度鉄筋SD50の機械的性質",材料とプロセス,Vol.3,(1990),1398

Also Published As

Publication number Publication date
JPH0551636A (en) 1993-03-02

Similar Documents

Publication Publication Date Title
JP5363922B2 (en) High-strength cold-rolled steel sheet with an excellent balance between elongation and stretch flangeability
KR101243002B1 (en) High strength steel sheet having excellent elongation and method for manufacturing the same
JP5612982B2 (en) High-strength rebar and manufacturing method thereof
KR100431851B1 (en) structural steel having High strength and method for menufactreing it
JP2973909B2 (en) Non-heat treated steel for high strength rebar and method for producing high strength rebar
JP3060635B2 (en) Manufacturing method of steel for high strength rebar
JPH09111340A (en) High strength and low yield ratio steel for reinforcing bar and its production
JP3060636B2 (en) Manufacturing method of steel for high strength rebar
JP2526718B2 (en) Method for manufacturing high-strength steel
JPH0525543A (en) Production of reinforcing steel having high strength and high yield elongation
KR100358939B1 (en) Method for manufacturing steel for construction with tensile strength of 58 kgf/mm¬2 class
JPH0551637A (en) Production of high strength steel for reinforcing bar
JPS59129725A (en) Production of hot rolled high tension steel sheet having excellent cold workability
JPH05125481A (en) High tensile strength steel material having high toughness and low yield ratio and its production
JP3081197B1 (en) High strength steel sheet with excellent workability and fatigue properties
JP3304823B2 (en) Manufacturing method of low yield point structural steel sheet
JP3031485B2 (en) Method for manufacturing high-strength rebar with excellent yield elongation
JP7476312B2 (en) Steel material for vibration dampers with excellent impact toughness and its manufacturing method
KR100370580B1 (en) Manufacturing method of steel sheet for constructing having high temperature strenth
KR102181788B1 (en) High strength medium carbon steel for earthquake-proof and its manufacturing method
JPS5887222A (en) Production of steel having high yield point elongation ratio for high strength reinforcing bar
KR940008057B1 (en) Making method of high tension steel
KR100311786B1 (en) Method for manufacturing steel strip(50kg) with superior strength and yield ratio
JPH10317100A (en) Reinforcing bar with high strength and high toughness
JP3319303B2 (en) Steel for high-strength bolts without annealing and excellent in fire resistance and method of manufacturing the same

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080428

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090428

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100428

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100428

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110428

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees