JP3058766B2 - Sample measuring method and sample measuring device - Google Patents

Sample measuring method and sample measuring device

Info

Publication number
JP3058766B2
JP3058766B2 JP4190063A JP19006392A JP3058766B2 JP 3058766 B2 JP3058766 B2 JP 3058766B2 JP 4190063 A JP4190063 A JP 4190063A JP 19006392 A JP19006392 A JP 19006392A JP 3058766 B2 JP3058766 B2 JP 3058766B2
Authority
JP
Japan
Prior art keywords
carrier particles
gap
sample
substance
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4190063A
Other languages
Japanese (ja)
Other versions
JPH0611508A (en
Inventor
松臣 西村
敏一 大西
秀人 高山
和實 田中
健 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP4190063A priority Critical patent/JP3058766B2/en
Publication of JPH0611508A publication Critical patent/JPH0611508A/en
Application granted granted Critical
Publication of JP3058766B2 publication Critical patent/JP3058766B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、検体中の複数免疫学的
活性物質を定性的又は定量的に検出する検体測定方法及
び検体測定装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sample measuring method and a sample measuring device for qualitatively or quantitatively detecting a plurality of immunologically active substances in a sample.

【0002】[0002]

【従来の技術】検体中の抗原、抗体等の免疫学的活性物
質を検出する方法としては、ラテックス粒子、ガラス粒
子、セラミック球、カオリン、カーボンブラック、赤血
球等の動物血液成分等のコロイド粒子等の担体粒子に免
疫学的活性物質を感作させ、その担体粒子を液体媒体中
で検体と反応させて、反応液の凝集状態を検者が肉眼で
観察、確認して、免疫学的活性物質を定性的に検出する
方法がよく知られている。
2. Description of the Related Art Methods for detecting immunologically active substances such as antigens and antibodies in a specimen include colloid particles such as latex particles, glass particles, ceramic spheres, animal blood components such as kaolin, carbon black, and red blood cells. The carrier particles are sensitized with an immunologically active substance, the carrier particles are allowed to react with a sample in a liquid medium, and the examiner visually observes and confirms the aggregation state of the reaction solution. Methods for qualitatively detecting are well known.

【0003】[0003]

【発明が解決しようとする課題】しかしながら上述の従
来例においては、凝集状態を肉眼で判断する場合には、
定量性に乏しい検出しかできず、検出結果の精度、信頼
性を欠いている。また、検出対象について1項目の測定
しかできず、検査項目が拡大するにつれ、同時に多項目
検出が可能な技術が求められている。
However, in the above-mentioned conventional example, when the state of aggregation is visually determined,
It can only perform detection with poor quantitativeness, and lacks the accuracy and reliability of detection results. In addition, only one item can be measured for a detection target, and as the number of inspection items increases, a technique capable of simultaneously detecting multiple items is required.

【0004】本発明の目的は、検体中の複数種の免疫学
的活性物質を同時に検出するための、簡便で精度の高い
検体測定方法及び検体測定装置を提供することにある。
An object of the present invention is to provide a simple and accurate sample measuring method and a sample measuring apparatus for simultaneously detecting a plurality of types of immunologically active substances in a sample.

【0005】[0005]

【課題を解決するための手段】上述の目的を達成するた
めの第1発明に係る検体測定方法は、特定物質と結合す
る物質を担持させた担体粒子と検体との反応液中におけ
る前記担体粒子の凝集の程度により、検体中の前記特定
物質の測定を行う検体測定方法において、第1の特定物
質と結合する第1の物質を担持させた第1の担体粒子、
第2の特定物質と結合する第2の物質を担持させ前記第
1の担体粒子とは異なる種類の第2の担体粒子、検体を
液体媒体中で反応させて反応液を得る第1の工程と、該
反応液中の担体粒子がその凝集径に応じた間隔を持った
間隙位置に挟まれてトラップされるように最大間隔から
間隔が徐々に減少する間隙部に前記第1の工程で得られ
る反応液を注入する第2の工程と、前記第1及び第2の
担体粒子が前記間隙部中で挟まれてトラップされる位置
を基に検体中の前記第1及び第2の特定物質をそれぞれ
区別して測定する第3の工程とを有することを特徴とす
る。
According to a first aspect of the present invention, there is provided a method for measuring a specimen, the method comprising the steps of: In the sample measurement method for measuring the specific substance in the sample depending on the degree of aggregation, the first carrier particles carrying the first substance that binds to the first specific substance,
A first step of supporting a second substance that binds to a second specific substance and reacting a second carrier particle of a type different from the first carrier particle and a sample in a liquid medium to obtain a reaction solution; In the first step, the carrier particles in the reaction solution are obtained in the gap portion where the interval gradually decreases from the maximum interval so as to be trapped by being interposed between the gap positions having an interval corresponding to the aggregation diameter. A second step of injecting the reaction solution, and the first and second specific substances in the sample are respectively based on the positions where the first and second carrier particles are trapped by being sandwiched in the gap. And a third step of measuring separately.

【0006】また、第2発明に係る検体測定装置は、特
定物質と結合する物質を担持させた担体粒子と検体との
反応液中における前記担体粒子の凝集の程度により、検
体中の前記特定物質の測定を行う検体測定装置におい
て、複数の扇型セクタに分割した円板形状を有し、これ
らの各セクタでは中心から外側に向かって一様に又は段
階的に減少した間隙部を有し、少なくとも前記間隙部の
最大間隔部及び最小間隔部の2端を開口し、前記間隙部
を囲む少なくとも1面が透明であり、最大間隔が担体粒
子の径よりも十分大きく、最小間隔が担体粒子の径より
も小さいことを特徴とするものである。
Further, the sample measuring apparatus according to the second invention is characterized in that the specific substance in the sample is determined by the degree of aggregation of the carrier particles in the reaction solution between the sample and the carrier particles carrying the substance that binds to the specific substance. In the sample measurement device that performs the measurement, has a disk shape divided into a plurality of sector-shaped sectors, in each of these sectors has a gap that decreases uniformly or stepwise from the center to the outside, At least two ends of the maximum interval and the minimum interval of the gap are opened, at least one surface surrounding the gap is transparent, the maximum interval is sufficiently larger than the diameter of the carrier particles, and the minimum interval is the length of the carrier particles. It is characterized by being smaller than the diameter.

【0007】[0007]

【作用】上述の構成を有する第1発明に係る検体測定方
法は、最大間隔部の開口から間隙に反応液を注入する
と、間隔差によって大きさが異なる担体粒子、凝集体、
液体媒体等が分離され、凝集程度を判別識別できる。
In the sample measuring method according to the first aspect of the present invention having the above-described structure, when the reaction solution is injected into the gap from the opening of the maximum interval, the size of the carrier particles, aggregates,
The liquid medium or the like is separated, and the degree of aggregation can be determined and identified.

【0008】[0008]

【実施例】本発明を図示の実施例に基づいて詳細に説明
する。図1は第1の実施例の試料台1の外観斜視図であ
り、図2は図1のA−B方向の縦断面図である。透明部
材によって形成される平板状の基板2の上には、透明部
材によって形成され、中央内側に凹部3aを設けた楔状
のカバー部材3が密着され、基板2と凹部3aにより間
隙が形成されている。この凹部3aは図2に示すよう
に、間隙の高さがA方向からB方向へ一様に減少するよ
うにされ、B方向の端部の開口の垂直間隔DBは使用する
担体粒子の最小径Rよりも小さくされており、A方向の
端部の開口の垂直間隔DAは単体粒子が凝集した凝集体G
も通過できるように、垂直間隔DBの数倍〜数100倍程
度とされている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail with reference to the illustrated embodiments. FIG. 1 is an external perspective view of a sample stage 1 according to the first embodiment, and FIG. 2 is a longitudinal sectional view in the AB direction of FIG. A wedge-shaped cover member 3 formed of a transparent member and provided with a recess 3a at the center inside is in close contact with the flat substrate 2 formed of the transparent member, and a gap is formed by the substrate 2 and the recess 3a. I have. As shown in FIG. 2, the height of the gap is uniformly reduced from the direction A to the direction B, and the vertical interval DB of the opening at the end in the direction B is the minimum diameter of the carrier particles used. R is smaller than R, and the vertical interval DA of the opening at the end in the A direction is the aggregate G in which the single particles are aggregated.
Is set to several times to several hundred times the vertical interval DB so that the vertical distance DB can pass through.

【0009】担体粒子F1、F2にそれぞれ異なる免疫学的
活性物質を感作させ、これらの担体粒子F1、F2を水を主
体とする液体媒体中に分散させた試薬と検体とを混合す
ると反応が起こり、複数個の免疫学的活性物質と担体粒
子F1、F2とがそれぞれ凝集体G1、G2を形成する。十分に
反応させた後に、図3に示すようにこの反応液Lを基板
2と凹部3aとの間隙にA方向から注入すると、表面張
力によって反応液Lは垂直間隔の狭いB方向へ侵入して
ゆく。未凝集の担体粒子F1、F2は径が小さいのでB方向
の奥まで移動できるが、凝集体G1、G2はその大きさに依
存して途中でトラップされて移動できなくなり、大きい
径を持つ凝集体G1、G2から順にA−B方向に分散する。
When the carrier particles F1 and F2 are sensitized to different immunologically active substances, and a reagent and a sample in which the carrier particles F1 and F2 are dispersed in a liquid medium mainly composed of water are mixed with a sample, the reaction is carried out. As a result, the plurality of immunologically active substances and the carrier particles F1, F2 form aggregates G1, G2, respectively. After sufficient reaction, the reaction liquid L is injected into the gap between the substrate 2 and the concave portion 3a from the direction A as shown in FIG. go. The unaggregated carrier particles F1 and F2 can move to the back in the B direction because of their small diameter, but the aggregates G1 and G2 are trapped along the way depending on their size and cannot move, and aggregates having a large diameter Disperse in the AB direction in order from G1 and G2.

【0010】凝集体G1、G2の径は1個の凝集体G1、G2を
構成する担体粒子F1、F2の個数によって定まる。反応に
よって生成した凝集体G1、G2の凝集状態、つまり凝集体
G1、G2を形成する担体粒子F1、F2の個数及び反応液中の
凝集体G1、G2の数は、反応液L中に含有される2種類の
免疫学的活性物質のそれぞれの性質及び濃度に依存して
いる。従って、間隙に反応液Lを流入すると、担体粒子
F1、F2と、凝集体G1、G2がトラップされている位置及び
その数を判別、識別することによって、2種類の免疫学
的活性物質の定性的又は定量的検出を簡単に行うことが
できる。実際には、既知の免疫学的活性物質を含有する
検出量用検体と反応させた反応液Lによって予め検量線
を作成しておき、それと比較することによって定量を行
う。
The diameter of the aggregates G1 and G2 is determined by the number of carrier particles F1 and F2 constituting one aggregate G1 and G2. Aggregation state of aggregates G1 and G2 generated by reaction, that is, aggregates
The number of carrier particles F1 and F2 forming G1 and G2 and the number of aggregates G1 and G2 in the reaction solution depend on the respective properties and concentrations of the two immunologically active substances contained in the reaction solution L. Depends. Therefore, when the reaction liquid L flows into the gap, the carrier particles
Qualitative or quantitative detection of two types of immunologically active substances can be easily performed by determining and discriminating the positions where F1 and F2 and the aggregates G1 and G2 are trapped and the number thereof. In practice, a calibration curve is prepared in advance by using a reaction solution L reacted with a detection amount sample containing a known immunologically active substance, and quantification is performed by comparing the curve.

【0011】良好な測定結果を得る工夫として、基板
2、カバー部材3は、何れか一方を担体粒子Fの色調と
対照的に着色した不透明部材としてもよく、また例えば
担体粒子Fが白色系統の場合には、明度の低い黒色又は
灰色系統の部材によって形成する工夫をして識別を容易
にすることもできる。
In order to obtain good measurement results, either the substrate 2 or the cover member 3 may be an opaque member in which one of the substrates 2 and the cover member 3 is colored in contrast to the color tone of the carrier particles F. In such a case, it is also possible to facilitate the identification by devising a black or gray system member having low brightness.

【0012】また、反応液Lが間隙に侵入し易いよう
に、反応液Lの液体媒体と親和性の良い物質を間隙の表
面にコートすると、更に良好な測定結果が得られる。コ
ート材としては、液体媒体が水である場合には、親水性
の物質、例えば界面活性剤、メチルセルロース、カルボ
キシメチルセルロース、ポリビニルアルコール、ポリア
クリルアミド等の水溶性高分子が好ましい。
Further, when a substance having a good affinity for the liquid medium of the reaction liquid L is coated on the surface of the gap so that the reaction liquid L can easily enter the gap, a better measurement result can be obtained. When the liquid medium is water, the coating material is preferably a hydrophilic substance, for example, a water-soluble polymer such as a surfactant, methylcellulose, carboxymethylcellulose, polyvinyl alcohol, and polyacrylamide.

【0013】更に、この実施例においては、基板2を水
平に設置して水平方向に反応液Lを注入するが、別の使
用例として図1でA方向を上にして、基板2を垂直方向
に立てた状態で測定を行ってもよく、重力の効果によっ
て反応液Lの侵入が促進され、良好な測定結果が得られ
る。
Further, in this embodiment, the substrate 2 is set horizontally and the reaction liquid L is injected in the horizontal direction. As another example of use, the substrate 2 is placed in the vertical direction with the direction A in FIG. The measurement may be performed in a state of standing, and the effect of gravity promotes the penetration of the reaction solution L, and a good measurement result is obtained.

【0014】図4は重力の効果を利用した試料台1の構
成図を示し、図1の装置を垂直にしたものに対応してお
り、一部を透明とした基台4の内部に下方向に一様に径
が減少する円錐状の間隙部4aが垂直方向に設けられて
いる。
FIG. 4 is a diagram showing the structure of a sample stage 1 utilizing the effect of gravity. The sample stage 1 corresponds to a vertical one of the apparatus shown in FIG. A conical gap portion 4a whose diameter uniformly decreases is provided in the vertical direction.

【0015】以上の実施例において、粒子径が異なる2
種の担体粒子F1、F2を用いたが、粒子径及び光学特性が
異なる第1、第2の担体粒子F1、F2を用いてもよい。例
えば、光学特性として色調を利用する場合、図5に示す
ように径だけでなく色調が異なっているので、第1、第
2の担体粒子F1、F2の区別がより明瞭になる。
In the above examples, particles 2 having different particle diameters were used.
Although the seed carrier particles F1 and F2 are used, first and second carrier particles F1 and F2 having different particle diameters and optical characteristics may be used. For example, when the color tone is used as the optical characteristic, since the color tone is different from the diameter as shown in FIG. 5, the distinction between the first and second carrier particles F1 and F2 becomes clearer.

【0016】また、光学的特性として蛍光を利用しても
よく、2種の担体粒子F1、F2に異なる波長を持つ蛍光色
素で標識して、蛍光の波長により担体粒子F1、F2を区別
するようにすることもできる。
Fluorescence may be used as an optical property. Two kinds of carrier particles F1 and F2 may be labeled with fluorescent dyes having different wavelengths so that carrier particles F1 and F2 are distinguished by the wavelength of fluorescence. You can also

【0017】更に、担体粒子の粒子径は同一で光学特性
のみを異ならせてもよい。この際に、検体中に第1、第
2の免疫的活性物質が同時に反応液L中に存在した場合
は、第1、第2の担体粒子F1、F2は間隙中の同一位置に
混在してトラップされるため、定量的な測定にはあまり
向かないが、定性的な測定は十分に可能である。なお、
光学特性以外の識別標識によっても第1、第2の担体粒
子F1、F2を区別でき、例えば磁化粒子、放射性粒子等が
考えられる。
Further, the carrier particles may have the same particle diameter and differ only in the optical characteristics. At this time, when the first and second immunologically active substances are simultaneously present in the reaction solution L in the sample, the first and second carrier particles F1 and F2 are mixed at the same position in the gap. Because it is trapped, it is not very suitable for quantitative measurement, but qualitative measurement is sufficiently possible. In addition,
The first and second carrier particles F1 and F2 can also be distinguished by an identification marker other than the optical characteristics, such as magnetized particles and radioactive particles.

【0018】図6〜図8は第2の実施例であり、図6は
試料台1の斜視図、図7は縦断面図である。基板2と透
明材料から成るカバー部材3の凹部3bとの間隙の垂直
間隔がA方向からB方向に一様に減少し、使用する担体
粒子Fの径よりも小さい垂直間隔DBの位置から間隙の幅
が一定とされ、垂直間隔DBの間隙部SBの容積が、垂直間
隔DBよりも垂直間隔の大きい間隙部SAの容積とほぼ等し
いか、それよりも大きくなるようにされている。
FIGS. 6 to 8 show a second embodiment. FIG. 6 is a perspective view of the sample stage 1, and FIG. 7 is a longitudinal sectional view. The vertical interval of the gap between the substrate 2 and the concave portion 3b of the cover member 3 made of a transparent material uniformly decreases from the direction A to the direction B, and the gap from the position of the vertical interval DB smaller than the diameter of the carrier particles F to be used. The width is constant, and the volume of the gap SB at the vertical interval DB is set to be approximately equal to or larger than the volume of the gap SA having the vertical interval larger than the vertical interval DB.

【0019】この実施例においても、第1の実施例とほ
ぼ同様の作用効果が得られ、間隙部SBの容積が大きいた
めに、検出に不必要な混合液の大部分がこの間隙部SBへ
流入し、垂直間隔の大きい間隙部SAではトラップされた
担体粒子F、凝集体Gのみを検出でき、良好な測定結果
を得ることができる。なお、間隔部SBは容積の条件を満
足してれば任意の形状でよい。
In this embodiment, substantially the same operation and effect as those of the first embodiment can be obtained, and since the volume of the gap SB is large, most of the mixed liquid unnecessary for detection is supplied to the gap SB. Only the trapped carrier particles F and the aggregates G can be detected in the gap SA having a large vertical interval, and a good measurement result can be obtained. The space SB may have any shape as long as the space condition is satisfied.

【0020】この場合においても、図8に示すようにA
方向を上にして基板2を垂直方向に立てた状態として、
基台4の上側から垂直方向に一様に径が減少し、担体粒
子Fの径よりも小さい径DBの位置から断面で直交する2
方向に間隔DBで延在した間隙部SBが設けられ、径DBより
上の位置で担体粒子Fをトラップして、不必要な混合液
をその下側の間隙SBに流すことにより良好な測定結果を
得ることができる。この場合に、間隙部SBの形状は容積
が間隙部SAの容積よりも大きければ任意の形状にでき
る。
In this case, as shown in FIG.
With the substrate 2 standing upright with the direction up,
The diameter is uniformly reduced in the vertical direction from the upper side of the base 4 and is orthogonal to the cross section from the position of the diameter DB smaller than the diameter of the carrier particles F 2.
A gap SB extending at an interval DB in the direction is provided, and the carrier particles F are trapped at a position above the diameter DB, and an unnecessary mixed solution is caused to flow through the gap SB below the gap SB. Can be obtained. In this case, the shape of the gap SB can be any shape as long as the volume is larger than the volume of the gap SA.

【0021】図9〜図15は第3の実施例であり、図9
は円板状の試料台1の平面図である。中心部に開口部を
有し、図10に示すような扇型から成る4つの領域5
a、5b、5c、5dに分割されている。図11は各セ
クタ5の半径方向の断面図であり、図2と同様に透明部
材によって形成される平板状の基板2の上には、透明部
材によって形成され、中央内側に凹部3aを設けた楔状
のカバー部材3が密着され、凹部3aにより間隙が形成
されている。垂直間隔DAは円の中心にあり、垂直間隔DB
は弧の部分である。
FIGS. 9 to 15 show a third embodiment.
1 is a plan view of a disk-shaped sample stage 1. FIG. Four regions 5 each having an opening in the center and having a fan shape as shown in FIG.
a, 5b, 5c, and 5d. FIG. 11 is a sectional view of each sector 5 in the radial direction. As shown in FIG. 2, on the flat substrate 2 formed by a transparent member, the sector 5 is formed by a transparent member, and a concave portion 3a is provided inside the center. The wedge-shaped cover member 3 is closely attached, and a gap is formed by the concave portion 3a. Vertical spacing DA is at the center of the circle and vertical spacing DB
Is an arc part.

【0022】図12は図9のBa-Bc に沿った縦断面図で
ある。セクタ5a、5cの最大間隔はそれぞれDAa 及び
DAc であり、最小間隔はDBa 、DBc であり、DAc >DBc
>DAa >DBa となっている。
FIG. 12 is a longitudinal sectional view taken along the line Ba-Bc of FIG. The maximum intervals between sectors 5a and 5c are DAa and
DAc, minimum interval is DBa, DBc, DAc> DBc
>DAa> DBa.

【0023】開口部から反応液Lを注入すると凝集体G
のうち、DAa 〜DBa の大きさの凝集体Gはセクタ5aで
検出され、DAc 〜DBc の大きさの凝集体Gはセクタ5c
で検出されるため、円板の直径の距離で検出範囲が2通
りとなり、検出感度が向上する。更に、DAa 以上の径を
持つ凝集体Gはセクタ5aに入ることはないので目詰ま
りが生ずることはない。
When the reaction liquid L is injected from the opening, the aggregate G
Among them, the aggregate G of the size of DAa to DBa is detected in the sector 5a, and the aggregate G of the size of DAc to DBc is detected in the sector 5c.
, The detection range becomes two in accordance with the distance of the diameter of the disk, and the detection sensitivity is improved. Furthermore, since the aggregate G having a diameter equal to or larger than DAa does not enter the sector 5a, clogging does not occur.

【0024】図13は扇型セクタ5の間隙部の形状の第
1の変形例であり、半径方向の断面図である。この間隙
部は凹部3aと基板2との間隙の高さがA方向からB方
向に4段階に減少するようにされている。この場合に
は、図14に示すように凝集体Gは段階的に分離され
る。
FIG. 13 shows a first modification of the shape of the gap of the sector 5 and is a sectional view in the radial direction. In this gap portion, the height of the gap between the concave portion 3a and the substrate 2 is reduced in four steps from the direction A to the direction B. In this case, the aggregate G is separated stepwise as shown in FIG.

【0025】図15は扇型セクタ5の第2の変形例であ
り、最大間隔DAから最小間隔DBまで一様に垂直間隔が減
少する間隙部SAと、垂直間隔がDBと一定な間隙部SBを設
けられている。間隙部SAにおいて凝集体Gが分離され、
反応液L中の検出に不要な液体媒体が間隙部SBに流れ
る。
FIG. 15 shows a second modification of the sector sector 5, in which a gap SA in which the vertical interval is uniformly reduced from the maximum interval DA to the minimum interval DB, and a gap SB in which the vertical interval is fixed to DB. Is provided. Aggregate G is separated in gap SA,
A liquid medium unnecessary for detection in the reaction liquid L flows to the gap SB.

【0026】[0026]

【発明の効果】以上説明したように本発明に係る検体測
定方法及び検体測定装置は、複数種の免疫学的活性物質
をそれぞれ担持させた粒子径又は及び光学的特性の異な
る担体粒子を用い、担体粒子の最大径よりも十分に大き
い最大間隔から担体粒子の最小径よりも小さい最小間隔
まで、徐々に減少した間隙を設けた簡素な試料台におい
て、この間隙の最大間隔の開口から反応液を注入する
と、間隔差によって大きさが異なる担体粒子、凝集体、
液体媒体等が分離できるので、反応液の凝集程度が明瞭
に判別、識別でき、予め作成した検量線と比較する等に
よって、検体中の複数種の免疫学的活性物質の定性的又
は定量的検出を1回の操作で高精度に行うことができ
る。
As described above, the sample measuring method and the sample measuring apparatus according to the present invention use carrier particles having different particle diameters and optical characteristics each carrying a plurality of types of immunologically active substances, On a simple sample stage provided with a gradually reduced gap from a maximum interval sufficiently larger than the maximum diameter of the carrier particles to a minimum interval smaller than the minimum diameter of the carrier particles, the reaction solution is supplied from the opening at the maximum interval of the gap. When injected, carrier particles, agglomerates,
Since liquid medium can be separated, the degree of aggregation of the reaction solution can be clearly identified and identified, and qualitative or quantitative detection of multiple types of immunologically active substances in a sample can be performed by comparing with a previously prepared calibration curve. Can be performed with a single operation with high accuracy.

【図面の簡単な説明】[Brief description of the drawings]

【図1】第1の実施例による試料台の斜視図である。FIG. 1 is a perspective view of a sample stage according to a first embodiment.

【図2】縦断面図である。FIG. 2 is a longitudinal sectional view.

【図3】凝集体の分離状態の説明図である。FIG. 3 is an explanatory diagram of a state of separation of aggregates.

【図4】A−B方向を鉛直方向とした試料台の斜視図で
ある。
FIG. 4 is a perspective view of a sample stage in which the AB direction is a vertical direction.

【図5】色調と粒子径の異なる担体粒子を用いたときの
凝集体の分離状態の説明図である。
FIG. 5 is an explanatory diagram of a separated state of an aggregate when carrier particles having different color tones and particle diameters are used.

【図6】第2の実施例による試料台の斜視図である。FIG. 6 is a perspective view of a sample stage according to a second embodiment.

【図7】縦面図である。FIG. 7 is a vertical view.

【図8】A−B方向を鉛直方向とした試料台の斜視図で
ある。
FIG. 8 is a perspective view of a sample stage in which the AB direction is a vertical direction.

【図9】第3の実施例による試料台の平面図である。FIG. 9 is a plan view of a sample stage according to a third embodiment.

【図10】セクタの斜視図である。FIG. 10 is a perspective view of a sector.

【図11】セクタの半径方向の断面図である。FIG. 11 is a sectional view in the radial direction of a sector.

【図12】試料台の断面図である。FIG. 12 is a sectional view of a sample stage.

【図13】セクタの第1の変形例の断面図である。FIG. 13 is a sectional view of a first modification of the sector.

【図14】凝集体の分離状態の説明図である。FIG. 14 is an explanatory diagram of a separated state of an aggregate.

【図15】セクタの第2の変形例の断面図である。FIG. 15 is a sectional view of a second modification of the sector.

【符号の説明】[Explanation of symbols]

1 試料台 2 基板 3 カバー部材 3a、3b 凹部 4 基台 4a、4b 間隙部 5 セクタ DESCRIPTION OF SYMBOLS 1 Sample stand 2 Substrate 3 Cover member 3a, 3b Depression 4 Base 4a, 4b Gap part 5 sector

フロントページの続き (72)発明者 田中 和實 東京都大田区下丸子三丁目30番2号 キ ヤノン株式会社内 (72)発明者 宮崎 健 東京都大田区下丸子三丁目30番2号 キ ヤノン株式会社内 (56)参考文献 特開 昭62−81567(JP,A) 実開 昭58−84565(JP,U) (58)調査した分野(Int.Cl.7,DB名) G01N 33/543 G01B 5/08 Continued on front page (72) Inventor Kazumi Tanaka 3-30-2 Shimomaruko, Ota-ku, Tokyo Canon Inc. (72) Inventor Ken Miyazaki 3-2-2 Shimomaruko, Ota-ku, Tokyo Canon Inc. (56) References JP-A-62-81567 (JP, A) JP-A-58-84565 (JP, U) (58) Fields investigated (Int. Cl. 7 , DB name) G01N 33/543 G01B 5 / 08

Claims (7)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 特定物質と結合する物質を担持させた担
体粒子と検体との反応液中における前記担体粒子の凝集
の程度により、検体中の前記特定物質の測定を行う検体
測定方法において、第1の特定物質と結合する第1の物
質を担持させた第1の担体粒子第2の特定物質と結合
する第2の物質を担持させ前記第1の担体粒子とは異な
る種類の第2の担体粒子、検体を液体媒体中で反応させ
て反応液を得る第1の工程と、該反応液中の担体粒子が
その凝集径に応じた間隔を持った間隙位置に挟まれてト
ラップされるように最大間隔から間隔が徐々に減少する
間隙部に前記第1の工程で得られる反応液を注入する第
2の工程と、前記第1及び第2の担体粒子が前記間隙部
中で挟まれてトラップされる位置を基に検体中の前記第
及び第2の特定物質をそれぞれ区別して測定する第3
の工程とを有することを特徴とする検体測定方法。
1. A sample measuring method for measuring said specific substance in a sample according to the degree of agglomeration of said carrier particles in a reaction solution between a sample and carrier particles carrying a substance that binds to a specific substance, first carrier particles supporting the first agent that binds to one particular material, different types of second and said to carry a second substance which binds to a second specific substance first support particles Reaction of carrier particles and analyte in liquid medium
The first step of obtaining a reaction solution by the reaction, the carrier particles in the reaction solution
It is sandwiched between gaps with an interval corresponding to the aggregation diameter.
A second step of injecting the reaction solution obtained in the first step into the gap where the gap gradually decreases from the maximum gap so as to be wrapped , and wherein the first and second carrier particles are in the gap. A third method for measuring the first and second specific substances in the specimen separately based on the position where the first and second specific substances are interposed and trapped
And a method for measuring a sample.
【請求項2】 前記第1、第2の担体粒子は粒子径が異
なる請求項1に記載の検体測定方法。
2. The sample measuring method according to claim 1, wherein the first and second carrier particles have different particle diameters.
【請求項3】 前記第1、第2の担体粒子は光学特性が
異なる請求項1に記載の検体測定方法。
3. The sample measuring method according to claim 1, wherein the first and second carrier particles have different optical characteristics.
【請求項4】 前記第1、第2の担体粒子は粒子径及び
光学特性が異なる請求項1に記載の検体測定方法。
4. The sample measuring method according to claim 1, wherein the first and second carrier particles have different particle diameters and optical characteristics.
【請求項5】 特定物質と結合する物質を担持させた担
体粒子と検体との反応液中における前記担体粒子の凝集
の程度により、検体中の前記特定物質の測定を行う検体
測定装置において、複数の扇型セクタに分割した円板形
状を有し、これらの各セクタでは中心から外側に向かっ
て一様に又は段階的に減少した間隙部を有し、少なくと
も前記間隙部の最大間隔部及び最小間隔部の2端を開口
し、前記間隙部を囲む少なくとも1面が透明であり、最
大間隔が担体粒子の径よりも十分大きく、最小間隔が担
体粒子の径よりも小さいことを特徴とする検体測定装
置。
5. A sample measuring apparatus for measuring the specific substance in a sample according to the degree of aggregation of the carrier particles in a reaction liquid between the sample and the carrier particles carrying a substance that binds to the specific substance, Each of these sectors has a gap that decreases uniformly or stepwise from the center to the outside, and at least a maximum gap and a minimum gap of the gap are provided. A specimen characterized in that two ends of the gap are opened, at least one surface surrounding the gap is transparent, the maximum gap is sufficiently larger than the diameter of the carrier particles, and the minimum gap is smaller than the diameter of the carrier particles. measuring device.
【請求項6】 前記各セクタの最大間隔及び最小間隔が
異なるようにした請求項5に記載の検体測定装置。
6. The sample measuring apparatus according to claim 5, wherein a maximum interval and a minimum interval of each sector are different.
【請求項7】 前記各セクタの間隔域をそれぞれ異なる
ようにした請求項5に記載の検体測定装置。
7. The sample measuring apparatus according to claim 5, wherein the intervals between the sectors are different from each other.
JP4190063A 1992-06-24 1992-06-24 Sample measuring method and sample measuring device Expired - Fee Related JP3058766B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4190063A JP3058766B2 (en) 1992-06-24 1992-06-24 Sample measuring method and sample measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4190063A JP3058766B2 (en) 1992-06-24 1992-06-24 Sample measuring method and sample measuring device

Publications (2)

Publication Number Publication Date
JPH0611508A JPH0611508A (en) 1994-01-21
JP3058766B2 true JP3058766B2 (en) 2000-07-04

Family

ID=16251733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4190063A Expired - Fee Related JP3058766B2 (en) 1992-06-24 1992-06-24 Sample measuring method and sample measuring device

Country Status (1)

Country Link
JP (1) JP3058766B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6242029B1 (en) 1998-03-12 2001-06-05 International Flavors & Fragrances Inc. Food and beverage additive composition produced from saccharum officinarum leaves

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5156960B2 (en) * 2008-02-21 2013-03-06 新潟県 Method for separating and analyzing sample components using a microchemical analysis system
JP5189201B2 (en) * 2008-04-02 2013-04-24 アボット ポイント オブ ケア インコーポレイテッド Virtual separation of bound and free labels in ligand assays to perform immunoassays of biological fluids containing whole blood

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6242029B1 (en) 1998-03-12 2001-06-05 International Flavors & Fragrances Inc. Food and beverage additive composition produced from saccharum officinarum leaves
US6245376B1 (en) 1998-03-12 2001-06-12 International Flavors & Fragrances Inc. Cola beverages comprising tastand additives from Saccharum officinarum leaves
US6251193B1 (en) 1998-03-12 2001-06-26 International Flavors & Fragrances Inc. Use of spray-dried and freeze-dried sugarcane leaf essence

Also Published As

Publication number Publication date
JPH0611508A (en) 1994-01-21

Similar Documents

Publication Publication Date Title
JP3391459B2 (en) Binding assay
CA1248873A (en) Particles and procedures for the determination of antigens and/or antibodies using the particles
US7361472B2 (en) Methods for providing extended dynamic range in analyte assays
US7255995B2 (en) Analyte assay using particulate labels
US20030119203A1 (en) Lateral flow assay devices and methods for conducting assays
JP2004524512A (en) Method and apparatus for microcarrier identification operation
JP4274944B2 (en) Particle-based ligand assay with extended dynamic range
WO1998055867A1 (en) Detection of bound analyte by magnetic partitioning and masking
JP2005510706A5 (en)
JP3424831B2 (en) Binding assay
US7361515B2 (en) Method and test kit for detecting analytes in a sample
JP3058766B2 (en) Sample measuring method and sample measuring device
JPS61128168A (en) Immunological analysis
US7829349B2 (en) Base carrier for detecting target substance, element for detecting target substance, method for detecting target substance using the element, and kit for detecting target substance
WO2002073198A2 (en) Non-separation assay and system using opaque particles
JP2691266B2 (en) Sample measurement device
JP2652288B2 (en) Sample measurement method
JPS6281567A (en) Quantification method using particle agglutination reaction
US5429951A (en) Radial immunodiffusion and like techniques
JP3400430B2 (en) Biospecific homogeneous assays using solid-phase, two-photon excitation and confocal fluorescence detection
EP1253427A2 (en) Bio-device and quantitative measurement apparatus and method using the same
JP2652293B2 (en) Sample measurement device
JP3046459B2 (en) Sample measurement device
JPH05288751A (en) Subject measuring apparatus
JPH0619349B2 (en) Body fluid component analysis method and apparatus

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090421

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090421

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100421

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110421

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees