JP3054703B2 - Manufacturing method of iron-chromium alloy with excellent strength - Google Patents

Manufacturing method of iron-chromium alloy with excellent strength

Info

Publication number
JP3054703B2
JP3054703B2 JP10352066A JP35206698A JP3054703B2 JP 3054703 B2 JP3054703 B2 JP 3054703B2 JP 10352066 A JP10352066 A JP 10352066A JP 35206698 A JP35206698 A JP 35206698A JP 3054703 B2 JP3054703 B2 JP 3054703B2
Authority
JP
Japan
Prior art keywords
powder
iron
chromium
weight
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP10352066A
Other languages
Japanese (ja)
Other versions
JP2000160202A (en
Inventor
慶三 小林
明 杉山
敏幸 西尾
公洋 尾崎
Original Assignee
工業技術院長
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 工業技術院長 filed Critical 工業技術院長
Priority to JP10352066A priority Critical patent/JP3054703B2/en
Publication of JP2000160202A publication Critical patent/JP2000160202A/en
Application granted granted Critical
Publication of JP3054703B2 publication Critical patent/JP3054703B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、強度に優れる鉄ク
ロム合金の製造方法に関する。さらに詳しくは、鉄粉末
とクロム粉末を機械的合金化法により合金化し、強度を
改善した鉄クロム合金の製造方法に関する。
[0001] The present invention relates to a method for producing an iron-chromium alloy having excellent strength. More specifically, the present invention relates to a method for producing an iron-chromium alloy having improved strength by alloying iron powder and chromium powder by a mechanical alloying method.

【0002】[0002]

【従来の技術】鉄クロム合金は耐酸化性に優れるが、硬
くて脆いシグマ相が生成するため強度に問題がある。こ
れを解決するために、鉄クロム合金を超高純度化するこ
とが行われているが、製造にコストと時間を要するた
め、実用化には問題があった。
2. Description of the Related Art Iron-chromium alloys have excellent oxidation resistance, but have a problem in strength because a hard and brittle sigma phase is formed. In order to solve this problem, ultra-high-purity iron-chromium alloys have been used. However, since production requires cost and time, there has been a problem in practical use.

【0003】また、鉄クロム合金はクロム量が多くなる
と、熱処理により400℃程度で材料が割れるという問
題がある。
Further, when the amount of chromium is large, the iron-chromium alloy has a problem that the material is cracked at about 400 ° C. by heat treatment.

【0004】[0004]

【発明が解決しようとする課題】本発明は、鉄クロム合
金の強度を改善するとともに、熱処理に伴う割れを防止
するためになされたものである。
SUMMARY OF THE INVENTION The present invention has been made to improve the strength of an iron-chromium alloy and to prevent cracking due to heat treatment.

【0005】[0005]

【課題を解決するための手段】本発明者らは、上記の問
題点を解決するため鋭意研究した結果、純度98重量%
以上の鉄粉末に純度95重量%以上のクロム粉末を機械
的合金化法により強制的に合金化し、1000℃以下の
低温にて加圧固化することにより高強度を有する鉄クロ
ム合金が得られることを見出し、本発明を完成した。本
発明は従来の溶解法では脆化相の生成により強度が低か
った鉄クロム合金を粉末状態で機械的な力により合金化
および粉末化することにより、低温での固化成形を実現
し、高い耐酸化性と高強度の両方を併せ持った合金元素
の少ない環境融合型の材料を得るものである。
Means for Solving the Problems The inventors of the present invention have made intensive studies to solve the above-mentioned problems and found that the purity was 98% by weight.
A chromium powder having a purity of 95% by weight or more is forcibly alloyed with the above iron powder by a mechanical alloying method, and is solidified under pressure at a low temperature of 1000 ° C. or less to obtain an iron chromium alloy having high strength. And completed the present invention. The present invention realizes solidification molding at a low temperature by alloying and powdering iron chromium alloy, which had a low strength due to the generation of an embrittlement phase in the conventional melting method, in a powder state by mechanical force, and realizes high acid resistance. An object of the present invention is to obtain an environment-fused material having both alloyability and high strength and containing few alloying elements.

【0006】[0006]

【発明の実施の形態】本発明に用いる材料には、市販の
純度98重量%以上の鉄粉末と市販の純度95重量%以
上のクロム粉末を利用できる。純度が98重量%より低
い鉄粉末あるいは純度が95重量%より低いクロム粉末
を用いると、機械的合金化処理により脆化相であるシグ
マ相が生成される。粉末の粒度については特に指定しな
いが、一般的には数ミリ〜数ミクロンの粉末が利用でき
る。
BEST MODE FOR CARRYING OUT THE INVENTION As the material used in the present invention, commercially available iron powder having a purity of 98% by weight or more and commercially available chromium powder having a purity of 95% by weight or more can be used. When an iron powder having a purity of less than 98% by weight or a chromium powder having a purity of less than 95% by weight is used, a sigma phase, which is an embrittled phase, is generated by mechanical alloying. The particle size of the powder is not particularly specified, but generally a powder of several millimeters to several microns can be used.

【0007】鉄粉末とクロム粉末の割合は、クロム量が
30原子%から75原子%になるように配合しなければ
ならない。30原子%より少ないクロム量では従来のス
テンレス鋼と同じ程度の強度しか得られず、耐酸化性も
優れない。75原子%より多いクロム量では耐酸化性に
優れるものの強度が低く、1000℃以下での低温では
固化成形することができない。
[0007] The ratio of iron powder to chromium powder must be blended so that the amount of chromium is between 30 atomic% and 75 atomic%. When the amount of chromium is less than 30 atomic%, only the same strength as that of the conventional stainless steel can be obtained, and the oxidation resistance is not excellent. If the amount of chromium is more than 75 atomic%, oxidation resistance is excellent but strength is low, and solidification cannot be performed at a low temperature of 1000 ° C. or lower.

【0008】機械的合金化処理には乾式の粉砕機が利用
でき、振動型ボールミル、遊星型ボールミル、転動型ボ
ールミル、アトライターなどが利用できる。機械的合金
化時の雰囲気は、大気圧以下のアルゴンガス雰囲気にし
なければならない。大気圧より高い圧力では鉄粉末とク
ロム粉末の混合状態が悪く、低温で焼結できる粉末を得
ることができない。
For the mechanical alloying treatment, a dry pulverizer can be used, and a vibrating ball mill, a planetary ball mill, a rolling ball mill, an attritor, and the like can be used. The atmosphere during mechanical alloying must be an argon gas atmosphere at or below atmospheric pressure. At a pressure higher than the atmospheric pressure, the mixing state of the iron powder and the chromium powder is poor, and a powder that can be sintered at a low temperature cannot be obtained.

【0009】機械的合金化に供する時間は特に指定しな
いが、50時間から300時間が一般的である。また、
圧力伝達媒体としては鉄を主成分とする鋼球が利用でき
る。なお、機械的合金化時には一般的に添加されるステ
アリン酸やアルコールなどの潤滑剤は使用してはいけな
い。
The time for mechanical alloying is not specified, but is generally 50 to 300 hours. Also,
Steel balls containing iron as a main component can be used as the pressure transmission medium. Note that lubricants such as stearic acid and alcohol which are generally added during mechanical alloying should not be used.

【0010】機械的合金化法により合成された粉末は、
X線回折的には鉄とクロムが原子レベルで混合された体
心立方構造を有する非平衡状態の粉末となっている。得
られた粉末はいずれの組成においても300Hv以上の
硬度を有するものである。
The powder synthesized by the mechanical alloying method is as follows:
X-ray diffraction shows that the powder is in a non-equilibrium state having a body-centered cubic structure in which iron and chromium are mixed at the atomic level. The obtained powder has a hardness of 300 Hv or more in any composition.

【0011】得られた粉末は、加圧下にて通電加熱で1
000℃以下で保持することにより焼結しなければなら
ない。焼結温度が1000℃を超えると、焼結体に含ま
れる不純物を核としてシグマ相の生成が始まる。このシ
グマ相の生成量は焼結時間が高くなると保持時間に比例
して多くなる。
The obtained powder is heated to 1
It must be sintered by holding it below 000 ° C. When the sintering temperature exceeds 1000 ° C., generation of a sigma phase starts with impurities contained in the sintered body as nuclei. The generation amount of the sigma phase increases in proportion to the holding time as the sintering time increases.

【0012】焼結の雰囲気は、粉末の酸化を防止するた
め10Torr以下の真空もしくは大気圧以下の不活性
ガス雰囲気にする必要がある。また、焼結用の治具には
黒鉛や炭化物セラミックス材料など非酸化物系材料が利
用できる。焼結時の加圧力は特に指定しないが、一般的
には30MPa以上である。
The sintering atmosphere must be a vacuum of 10 Torr or less or an inert gas atmosphere of not more than atmospheric pressure in order to prevent oxidation of the powder. Further, non-oxide-based materials such as graphite and carbide ceramic materials can be used for the sintering jig. The pressure during sintering is not particularly specified, but is generally 30 MPa or more.

【0013】得られた成形体は実用上問題にならない程
度の気孔が残存することがあるが、600℃から100
0℃の温度域で大気圧以上の加圧下で保持する熱処理に
より完全に緻密化することができる。熱処理の方法は特
に指定しないが、熱間等方加圧(HIP)やホットプレ
スなどの方法が利用できる。なお、600℃より低い温
度ではどんなに加圧力を大きくしても緻密化はおこら
ず、1000℃以上の熱処理ではシグマ相の生成が認め
られる。
Although the obtained molded product may have pores remaining to such an extent that it does not cause a problem in practical use,
The densification can be achieved completely by a heat treatment that is maintained under a pressure of at least atmospheric pressure in a temperature range of 0 ° C. The method of heat treatment is not particularly specified, but a method such as hot isostatic pressing (HIP) or hot pressing can be used. At a temperature lower than 600 ° C., no matter how much the pressing force is increased, densification does not occur, and formation of a sigma phase is recognized by a heat treatment at 1000 ° C. or higher.

【0014】成形体にはシグマ相が含まれていないた
め、冷間あるいは温間での圧延が可能である。圧延は8
00℃以下で行う必要があり,800℃を越えると酸化
物の生成が多くなる。圧延は一般的な装置が利用でき、
ロール材質や圧延条件に対する特別な制約はない。
Since the compact does not contain a sigma phase, it can be cold-rolled or warm-rolled. Rolling 8
It must be performed at a temperature of not higher than 00 ° C., and when the temperature exceeds 800 ° C., generation of oxides increases. For rolling, general equipment can be used,
There are no special restrictions on the roll material or rolling conditions.

【0015】以下実施例で本発明をさらに詳細に説明す
る。
Hereinafter, the present invention will be described in more detail with reference to Examples.

【実施例】実施例1 鉄粉末(和光純薬製試薬)21.5gにクロム粉末(和
光純薬製試薬)18.5gを混合して遊星型ボールミル
による50時間の機械的合金化処理を施した。機械的合
金化の雰囲気は500Torrの減圧アルゴンとし、粉
末とボール重量比が約0.1になるようにした。容器と
10mm径の粉砕球にはクロム鋼を用いた。得られた材
料は微細な粉末であり、その硬度は450Hvに達し
た。
EXAMPLES Example 1 18.5 g of chromium powder (reagent made by Wako Pure Chemical) was mixed with 21.5 g of iron powder (reagent made by Wako Pure Chemical) and subjected to mechanical alloying treatment for 50 hours by a planetary ball mill. did. The atmosphere for the mechanical alloying was argon under a reduced pressure of 500 Torr so that the weight ratio between the powder and the ball was about 0.1. Chromium steel was used for the container and the crushing balls having a diameter of 10 mm. The material obtained was a fine powder, the hardness of which reached 450 Hv.

【0016】得られた粉末を5×30×3(mm)の試
験片がとれる黒鉛型に充填し、0.01Torrの真空
中で通電加熱により850℃で5分保持することにより
固化成形した。得られた成形体から引張試験片を作製し
て測定すると、その強度は1000MPaを越えてお
り、伸びも12%以上であった。
The obtained powder was filled in a graphite mold from which a test piece of 5 × 30 × 3 (mm) could be taken, and solidified and formed by heating at 850 ° C. for 5 minutes by heating in a vacuum of 0.01 Torr. When a tensile test piece was prepared from the obtained molded body and measured, the strength was over 1000 MPa and the elongation was 12% or more.

【0017】実施例2 鉄粉末(和光純薬製試薬)17.5gにクロム粉末(和
光純薬製試薬)22.5gを添加して遊星型ボールミル
による100時間の機械的合金化処理を施した。機械的
合金化の雰囲気は100Torrの減圧アルゴンガスと
し、粉末とボールの重量比が約0.1になるようにし
た。容器と10mm径の粉砕球にはクロム鋼を用いた。
得られた粉末は数ミクロン程度の微細な粉末であった。
Example 2 27.5 g of chromium powder (reagent made by Wako Pure Chemical) was added to 17.5 g of iron powder (reagent made by Wako Pure Chemical) and subjected to mechanical alloying treatment by a planetary ball mill for 100 hours. . The atmosphere for the mechanical alloying was argon gas at a reduced pressure of 100 Torr so that the weight ratio between the powder and the ball was about 0.1. Chromium steel was used for the container and the crushing balls having a diameter of 10 mm.
The obtained powder was a fine powder of about several microns.

【0018】得られた粉末を5×30×3(mm)の試
験片がとれる黒鉛型に充填し、0.01Torrの真空
中で通電加熱により800℃で5分保持することにより
固化成形した。得られた成形体を1000℃にてHIP
処理を施し、機械加工により引張試験片を作製した。得
られた強度は1050MPaを越えており、伸びも5%
以上であった。
The obtained powder was filled in a graphite mold from which a test specimen of 5 × 30 × 3 (mm) could be taken and solidified and formed by heating at 800 ° C. for 5 minutes by applying electric current in a vacuum of 0.01 Torr. The obtained molded body is subjected to HIP at 1000 ° C.
After the treatment, a tensile test piece was prepared by machining. The obtained strength exceeds 1050 MPa and the elongation is 5%.
That was all.

【0019】実施例3 鉄粉末(和光純薬製試薬)21.5gにクロム粉末(和
光純薬製試薬)18.5gを添加して遊星型ボールミル
による50時間の機械的合金化処理を施した。機械的合
金化の雰囲気は100Torrの減圧アルゴンガスと
し、粉末とボールの重量比が約0.1になるようにし
た。容器と10mm径の粉砕球にはクロム鋼を用いた。
得られた材料は微細な粉末であった。
Example 3 18.5 g of chromium powder (reagent made by Wako Pure Chemical Industries) was added to 21.5 g of iron powder (reagent made by Wako Pure Chemical Industries) and subjected to mechanical alloying treatment by a planetary ball mill for 50 hours. . The atmosphere for the mechanical alloying was argon gas at a reduced pressure of 100 Torr so that the weight ratio between the powder and the ball was about 0.1. Chromium steel was used for the container and the crushing balls having a diameter of 10 mm.
The resulting material was a fine powder.

【0020】得られた粉末を内径15mmの黒鉛型に入
れ、0.01Torrの真空中で通電加熱を行った。焼
結は800℃で5分間保持し、35MPaの加圧力で成
形した。
The obtained powder was placed in a graphite mold having an inner diameter of 15 mm, and was heated by energization in a vacuum of 0.01 Torr. The sintering was maintained at 800 ° C. for 5 minutes, and molded at a pressure of 35 MPa.

【0021】得られた成形体を700℃に加熱し、外径
70mmのロール間を通すことにより圧延した。圧延量
は約0.1mm/回で行った。厚み5mmの成形体を
0.2mmまで圧延しても割れなどは観察されなかっ
た。
The obtained compact was heated to 700 ° C. and rolled by passing between rolls having an outer diameter of 70 mm. The rolling amount was about 0.1 mm / time. No cracks or the like were observed even when the compact having a thickness of 5 mm was rolled to 0.2 mm.

【発明の効果】【The invention's effect】

【0022】本発明の強度に優れる鉄クロム合金の製造
方法を用いることにより、新たな強化元素を添加するこ
となく耐食性と強度を併せ持った単純成分の合金を作製
することができる。これは材料のリサイクル性を向上さ
せるとともに、環境にやさしい材料として広く応用する
ことができる。また、本発明の合金は強度が優れる上に
伸びを示すことから、線材化や圧延による加工が可能で
あり、従来の鉄鋼材料と同じ加工を実施することができ
るため、既存設備を用いた加工が可能となり、産業分野
への取り込みが容易であろうと考えられる。
By using the method for producing an iron-chromium alloy having excellent strength according to the present invention, it is possible to produce a simple component alloy having both corrosion resistance and strength without adding a new strengthening element. This improves the recyclability of the material and can be widely applied as an environmentally friendly material. Further, since the alloy of the present invention has excellent strength and shows elongation, it can be processed into a wire rod or rolled, and can be processed in the same manner as a conventional steel material. It is thought that it will be easy to incorporate into the industrial field.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI C22C 27/06 C22C 27/06 33/02 33/02 B 38/18 38/18 (72)発明者 尾崎 公洋 愛知県名古屋市名東区平和が丘1丁目70 番地 猪子石住宅6棟503号 (56)参考文献 特開 平3−162545(JP,A) 特開 平2−258947(JP,A) 特開 平10−152701(JP,A) (58)調査した分野(Int.Cl.7,DB名) B22F 1/00 - 9/02 C22C 1/04,27/06 C22C 33/02,38/18 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification code FI C22C 27/06 C22C 27/06 33/02 33/02 B 38/18 38/18 (72) Inventor Kimihiro Ozaki Nagoya, Aichi Prefecture 1-70 Heiwagaoka, Meito-ku, Inokoishi House, No. 503, No. 503 (56) References JP-A-3-162545 (JP, A) JP-A-2-258947 (JP, A) JP-A 10-152701 (JP) , A) (58) Field surveyed (Int. Cl. 7 , DB name) B22F 1/00-9/02 C22C 1 / 04,27 / 06 C22C 33 / 02,38 / 18

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 純度98重量%以上の鉄粉末と純度95
重量%以上のクロム粉末をクロム含有量が30原子%か
ら75原子%になるよう配合し、大気圧より低い圧力雰
囲気にて機械的合金化処理を施して作製したことを特徴
とする、300Hv以上の硬度を有し、鉄とクロムが原
子レベルで混合された体心立方構造を有する非平衡状態
粉末。
An iron powder having a purity of 98% by weight or more and a purity of 95% or more.
It is characterized by being made by blending chromium powder of not less than 30% by weight with a chromium content of 30% by weight or more and 75% by weight and subjecting it to mechanical alloying treatment in a pressure atmosphere lower than atmospheric pressure.
With a hardness of 300Hv or more, and iron and chromium
Nonequilibrium state with mixed body-centered cubic structure at the child level
Of powder.
【請求項2】 請求項1で作製した粉末を1000℃以
下にて加圧下で通電焼結することにより固化成形した材
料。
2. A material obtained by solidifying and molding the powder produced in claim 1 by current sintering under a pressure of 1000 ° C. or lower.
【請求項3】 請求項2で作製した材料を大気圧以上の
加圧下で600℃以上1000℃以下にて熱処理した材
料。
3. A material obtained by heat-treating the material prepared in claim 2 at a temperature of 600 ° C. to 1000 ° C. under a pressure of at least atmospheric pressure.
【請求項4】 請求項2で作製した材料を800℃以下
にて圧延成形した材料。
4. A material obtained by rolling the material prepared in claim 2 at 800 ° C. or lower.
JP10352066A 1998-11-25 1998-11-25 Manufacturing method of iron-chromium alloy with excellent strength Expired - Lifetime JP3054703B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10352066A JP3054703B2 (en) 1998-11-25 1998-11-25 Manufacturing method of iron-chromium alloy with excellent strength

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10352066A JP3054703B2 (en) 1998-11-25 1998-11-25 Manufacturing method of iron-chromium alloy with excellent strength

Publications (2)

Publication Number Publication Date
JP2000160202A JP2000160202A (en) 2000-06-13
JP3054703B2 true JP3054703B2 (en) 2000-06-19

Family

ID=18421555

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10352066A Expired - Lifetime JP3054703B2 (en) 1998-11-25 1998-11-25 Manufacturing method of iron-chromium alloy with excellent strength

Country Status (1)

Country Link
JP (1) JP3054703B2 (en)

Also Published As

Publication number Publication date
JP2000160202A (en) 2000-06-13

Similar Documents

Publication Publication Date Title
JPH0583624B2 (en)
CA1215865A (en) Copper base spinodal alloy strip and process for its preparation
Suryanarayana et al. Mechanical Alloying of Titanium‐Base Alloys
JPH0617524B2 (en) Magnesium-titanium sintered alloy and method for producing the same
US6468468B1 (en) Method for preparation of sintered parts from an aluminum sinter mixture
Lee et al. Direct consolidation of γ-TiAl-Mn-Mo from elemental powder mixtures and control of porosity through a basic study of powder reactions
JP3054703B2 (en) Manufacturing method of iron-chromium alloy with excellent strength
US5350107A (en) Iron aluminide alloy coatings and joints, and methods of forming
JP3113144B2 (en) Method for producing high density sintered titanium alloy
JPH04325648A (en) Production of sintered aluminum alloy
Schurack et al. Al-Mn-Ce quasicrystalline composites: Phase formation and mechanical properties
JP3035615B1 (en) Metal short wire dispersed thermoelectric material and method for producing the same
JP4008597B2 (en) Aluminum-based composite material and manufacturing method thereof
JP4177534B2 (en) Alloy powder for copper-based high strength sintered parts
US4069043A (en) Wear-resistant shaped magnetic article and process for making the same
US11085109B2 (en) Method of manufacturing a crystalline aluminum-iron-silicon alloy
JP3089300B1 (en) Highly efficient method for producing titanium alloy by mechanical alloying
Zhu et al. Microstructure and mechanical properties of mechanically alloyed and HIP-consolidated Fe3Al
WO2003062482A2 (en) Stabilized grain size refractory metal powder metallurgy mill products
JP3032818B2 (en) Titanium boride dispersed hard material
KR100262488B1 (en) Method of manufacturing sintered fe-si type soft magnets
US3990861A (en) Strong, high purity nickel
JP2726140B2 (en) High toughness tungsten sintered alloy
JPS62188735A (en) Manufacture of tini alloy wire or plate
JP2000045025A (en) Production of rolled silicon steel

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term