JP3053070B2 - Anode zinc-based alloy for alkaline batteries - Google Patents

Anode zinc-based alloy for alkaline batteries

Info

Publication number
JP3053070B2
JP3053070B2 JP8063026A JP6302696A JP3053070B2 JP 3053070 B2 JP3053070 B2 JP 3053070B2 JP 8063026 A JP8063026 A JP 8063026A JP 6302696 A JP6302696 A JP 6302696A JP 3053070 B2 JP3053070 B2 JP 3053070B2
Authority
JP
Japan
Prior art keywords
weight
zinc
based alloy
discharge characteristics
improved
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP8063026A
Other languages
Japanese (ja)
Other versions
JPH09259877A (en
Inventor
隆明 安村
吉輝 中川
智久 野末
一雄 松井
清英 筒井
Original Assignee
富士電気化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士電気化学株式会社 filed Critical 富士電気化学株式会社
Priority to JP8063026A priority Critical patent/JP3053070B2/en
Publication of JPH09259877A publication Critical patent/JPH09259877A/en
Application granted granted Critical
Publication of JP3053070B2 publication Critical patent/JP3053070B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、自己放電特性お
よび負荷放電特性の向上に有効な微量元素を含有させた
アルカリ電池用負極亜鉛基合金に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a negative electrode zinc-base alloy for an alkaline battery containing a trace element effective for improving self-discharge characteristics and load discharge characteristics.

【0002】[0002]

【従来の技術】アルカリ電池の負極活物質として粉末状
態で用いられる従来の亜鉛基合金にあっては、環境上有
害とされる鉛、カドミウム、水銀を用いないことによる
耐食性および電池特性の劣化を改善するため盛んに研究
が行われており、これらの改善に効果的で比較的安全な
合金元素がいくつも見いだされている。例えばインジウ
ム、アルミニウム、ガリウム、スズ、カルシウム、マグ
ネシウム、ビスマス、リチウム、ナトリウムなどであ
る。これら合金元素のどれをどの程度添加すると効果的
か、またどの元素とどの元素を複合添加すると大きな相
乗効果が得られるかといった事項について、多くの有意
義なデータが蓄積されてきており、例えば特公平3−7
1737号公報に示されるように、ほぼ実用に耐えるア
ルカリ電池が実現されている。
2. Description of the Related Art Conventional zinc-based alloys used as a negative electrode active material in alkaline batteries in the form of a powder do not suffer from environmentally harmful lead, cadmium, and mercury. There is a lot of research going on to improve, and a number of relatively safe alloying elements have been found to be effective in making these improvements. For example, indium, aluminum, gallium, tin, calcium, magnesium, bismuth, lithium, sodium and the like. A lot of meaningful data has been accumulated about which and how much of these alloying elements are effective to add, and which elements and which elements give a large synergistic effect when combined, for example. 3-7
As disclosed in Japanese Unexamined Patent Publication No. 1737, an alkaline battery that can be practically used has been realized.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、現状の
アルカリ電池については電池特性においていくつかまだ
不十分な点があった。それは、保存中に生じる自己放電
が大きくなるとともに使用時の負荷放電特性が劣化する
といった問題である。この場合、自己放電が大きくなる
のは、亜鉛基合金粉末の表面が電解液中で腐食してしま
うからであり、この腐食によって水素ガスが発生すると
ともに放電特性を低下させる一因ともなる。
However, there are still some insufficient points in the battery characteristics of the current alkaline battery. This is a problem that self-discharge occurring during storage increases and load discharge characteristics during use deteriorate. In this case, the reason why the self-discharge increases is that the surface of the zinc-based alloy powder is corroded in the electrolytic solution, and this corrosion generates hydrogen gas and also reduces the discharge characteristics.

【0004】この発明はこのような従来の問題点に鑑み
なされたもので、その目的は、アルカリ電池の負極活物
質として用いた場合にはその自己放電特性および負荷放
電特性を改善できる、水銀やカドミウムおよび鉛といっ
た有害物質を含まない亜鉛基合金を提供することにあ
る。
The present invention has been made in view of such conventional problems, and has as its object to improve the self-discharge characteristics and the load discharge characteristics of mercury and mercury when used as a negative electrode active material of an alkaline battery. An object of the present invention is to provide a zinc-based alloy free of harmful substances such as cadmium and lead.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するた
め、請求項1に係る本発明のアルカリ電池用負極亜鉛基
合金にあっては、酸素(以下Oとする)を0.001
〜0.08重量%含有するとともにインジウム(以下I
nとする)を0.001〜0.5重量%含有し、さらに
ビスマス(以下Biとする)を0.0002〜0.5重
量%含有し、かつマグネシウム(以下Mgとする)を
0.0002〜0.05重量%含有して他に不可避的な
不純物以外は含有していない。
To achieve the above object, according to an aspect of, in the anode zinc base alloy for an alkaline battery of the present invention according to claim 1, oxygen (hereinafter referred to as O 2) 0.001
-0.08% by weight and indium (hereinafter I)
n), 0.0002 to 0.5% by weight of bismuth (hereinafter referred to as Bi), and 0.0002 of magnesium (hereinafter referred to as Mg). other unavoidable containing 0.05 wt%
It does not contain anything other than impurities .

【0006】[0006]

【0007】請求項のアルカリ電池用負極亜鉛基合金
に係る本発明にあっては、Oを0.001〜0.08
重量%含有するとともにInを0.001〜0.5重量
%含有し、かつニッケル(以下Niとする)を0.00
05〜0.25重量%含有して他に不可避的な不純物以
外は含有していない。
[0007] In the present invention according to the anode zinc base alloy for an alkaline battery according to claim 2, the O 2 0.001 to 0.08
% Of In, 0.001 to 0.5% by weight of In, and 0.00% of nickel (hereinafter referred to as Ni).
05 to 0.25 unavoidable impurities than the other containing wt%
Outside does not contain.

【0008】上記構成の本発明にあっては、後述する多
数の試験結果から解るように、純亜鉛に水素過電圧の高
いInおよびBiを微量に添加することで耐食性が向上
し、これを用いたアルカリ電池の負荷放電特性も向上す
る。またこれらに加えてMgあるいはNiを前記の割合
で微量に添加するとInおよびBiの奏する前記作用を
より向上できる。
In the present invention having the above structure, as can be seen from the results of a number of tests described later, the corrosion resistance is improved by adding a small amount of In and Bi having a high hydrogen overvoltage to pure zinc. The load discharge characteristics of the alkaline battery are also improved. The Mg Oh Rui In addition to these can be further improved the action achieved by the In and Bi is added a small amount of Ni at a ratio of the.

【0009】さらにこれら微量金属に加えてO2 を前記
の割合で含有させることにより、InおよびBiの奏す
る前記作用をさらに向上できる。このO2 を含有させる
ことによる作用効果の機構については、現状では明確に
解明できていないが発明者らは次のように推定してい
る。
Further, by adding O 2 in the above-described ratio in addition to these trace metals, the above-mentioned action of In and Bi can be further improved. At present, the mechanism of the effect by containing O 2 has not been clearly elucidated, but the present inventors presume as follows.

【0010】前記の微量金属とO2 とが何らかの反応を
起こして耐食性を向上させるような結合状態となる。ま
た耐食性が向上することでこれを用いたアルカリ電池の
負荷放電特性も向上するが、この他の要因として、O2
は未含有で微量金属の添加された溶湯状態の亜鉛基合金
に対して、後述するガスアトマイズ法によりO2 雰囲気
中で粉体状態(粉末)にしてO2 を含有させるようにす
ると、この粉体は負荷放電特性を向上させるような形状
となる。
[0010] The above-mentioned trace metal and O 2 undergo a certain reaction to form a bonding state that improves corrosion resistance. The improvement in corrosion resistance also improves the load discharge characteristics of an alkaline battery using the same, but other factors include O 2
When a zinc-based alloy in a molten state to which a trace metal has been added without being contained is made into a powder state (powder) in an O 2 atmosphere by a gas atomizing method to be described later, O 2 is contained. Has a shape that improves load discharge characteristics.

【0011】[0011]

【発明の実施の形態】本発明の実施の第1〜形態を以
下に説明する。先ず、第1形態を説明すると、先ず亜鉛
純度が99.9986重量%以上の純亜鉛地金を原料と
する。このとき不可避の不純物は考慮しない。この純亜
鉛に対して後述する割合で微量金属を添加して溶湯状態
とする。このときOはまだ添加しない。そして溶湯状
態の亜鉛基合金を、例えばO雰囲気の調整可能なチャ
ンバー内で周知のガスアトマイズ法により粉末状態にす
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS First and second embodiments of the present invention will be described below. First, a first embodiment will be described. First, a pure zinc base metal having a zinc purity of 99.9986% by weight or more is used as a raw material. At this time, unavoidable impurities are not considered. A trace metal is added to the pure zinc at a ratio described later to obtain a molten metal. At this time, O 2 is not added yet. Then, the zinc-based alloy in a molten metal state is made into a powder state by a well-known gas atomizing method in a chamber in which an O 2 atmosphere can be adjusted, for example.

【0012】このとき、各微量金属が添加された溶湯状
態の亜鉛基合金がチャンバー内でガス噴霧されると、微
粒子化された亜鉛基合金はO2 が溶け込んでいきながら
冷却凝固して粉体となっていくのである。このとき、チ
ャンバー内のO2 濃度を調整することによって亜鉛基合
金に対して後述する割合でO2 が溶存するようにする。
At this time, when the zinc-base alloy in a molten state to which each trace metal is added is gas-sprayed in the chamber, the fine-grained zinc-base alloy is cooled and solidified while O 2 dissolves therein to form a powder. It becomes. At this time, by adjusting the O 2 concentration in the chamber, O 2 is dissolved in the zinc-based alloy at a ratio described later.

【0013】ここで、作製した亜鉛基合金中のO2 含有
量の測定方法について説明すると、本形態では不活性気
体融解法によって測定しており、具体的にはLECO
CORPORATION社(U.S.A.)製の酸素分析装置
(RO−416DR)を用いた。詳しくは装置内の黒鉛
製のルツボに亜鉛基合金の粉末試料を入れ、このルツボ
を不活性ガス雰囲気中のインパルス炉内に装填して瞬間
的に融解させる。すると、粉末試料中のO2 がルツボの
黒鉛と結合して炭素化合物のガスとなり、このガス量を
赤外線吸収法で検出することによってO2 量を定量する
ようにする。
Here, a method of measuring the O 2 content in the produced zinc-based alloy will be described. In the present embodiment, the measurement is performed by an inert gas melting method.
An oxygen analyzer (RO-416DR) manufactured by CORPORATION (USA) was used. Specifically, a zinc-based alloy powder sample is placed in a graphite crucible in the apparatus, and the crucible is charged into an impulse furnace in an inert gas atmosphere and instantaneously melted. Then, O 2 in the powder sample is combined with the graphite in the crucible to form a carbon compound gas, and the amount of O 2 is determined by detecting the amount of this gas by an infrared absorption method.

【0014】このようにして測定された亜鉛基合金中の
2 含有量と前述したチャンバー内のO2 濃度との対応
関係を調べ、この対応関係に基づいてチャンバー内のO
2 濃度を調整することにより所望のO2 含有量の亜鉛基
合金粉末を作製する。
The relationship between the O 2 content in the zinc-based alloy thus measured and the above-described O 2 concentration in the chamber is examined, and based on the relationship, the O 2 in the chamber is determined.
2 By adjusting the concentration, a zinc-based alloy powder having a desired O 2 content is produced.

【0015】以上の作製方法により、純亜鉛に対してI
nを0.04重量%、Mgを0.003重量%、Biを
0.02重量%添加した条件下においてO2 を0.00
05〜0.10重量%の組成範囲で変化させた亜鉛基合
金粉末を作製した。そして、これら亜鉛基合金粉末につ
いてその耐食性及びこれを負極活物質として用いたアル
カリ電池の負荷放電特性の試験を行った。
By the above manufacturing method, I
Under the conditions where 0.04% by weight of n, 0.003% by weight of Mg and 0.02% by weight of Bi are added, 0.002% of O 2 is added.
A zinc-based alloy powder having a composition range of 0.5 to 0.10% by weight was prepared. The zinc-based alloy powder was tested for its corrosion resistance and load discharge characteristics of an alkaline battery using the same as a negative electrode active material.

【0016】具体的には、電池の自己放電特性の試験と
して耐食性を確認するため所定量の亜鉛基合金粉末を6
0℃の雰囲気下で72時間、即ち3日間保存したときの
水素ガスの発生量を測定し、このガス発生量から次式を
用いてガス発生評価指数Kを算出した。
Specifically, as a test of the self-discharge characteristics of the battery, a predetermined amount of zinc-based alloy powder
The amount of hydrogen gas generated during storage at 0 ° C. for 72 hours, that is, three days, was measured, and the gas generation evaluation index K was calculated from the gas generation amount using the following equation.

【0017】K=ガス発生量[μl]/(亜鉛基合金粉
末量[g]×保存日数[day]) また、負荷放電特性の試験としてJIS規格でLR−2
0型のアルカリ電池を用いた。この電池の構成を説明す
ると、有底円筒型の電池ケ―スの内部に発電要素が収納
されてその開口部に封口ガスケットを介して負極端子板
をかしめ付けることにより電池内部を密封しており、そ
の発電要素としては、前記負極端子板に電気的に接続し
た集電棒が前記封口ガスケットの中心を貫通して、前記
集電棒の外周を取巻くようにして負極、セパレ―タ、及
び二酸化マンガンを主体とする正極合剤が同心状に充填
されている。前記負極は本形態の亜鉛基合金粉末とゲル
状アルカリ電解液との混合物からなっている。
K = amount of gas generated [μl] / (amount of zinc-based alloy powder [g] × days of storage [day]) As a test of load discharge characteristics, LR-2 according to JIS standard
A type 0 alkaline battery was used. Explaining the structure of this battery, a power generating element is housed inside a bottomed cylindrical battery case, and the inside of the battery is sealed by caulking a negative electrode terminal plate to the opening through a sealing gasket. As the power generating element, a current collector rod electrically connected to the negative electrode terminal plate passes through the center of the sealing gasket and surrounds the outer periphery of the current collector rod, and a negative electrode, a separator, and manganese dioxide are removed. A positive electrode mixture as a main component is concentrically filled. The negative electrode is made of a mixture of the zinc-based alloy powder of the present embodiment and a gelled alkaline electrolyte.

【0018】このようなアルカリ電池の初期開路電圧を
測定するとともに20℃の雰囲気下で終止電圧0.9V
で1500mAの定電流放電を行ったときの放電時間を
測定した。放電時間としては、O2 の含有量が0.10
重量%の場合の放電時間を100とし、これに対する百
分率%で示した。以上を試験例1として表1に示す。
The initial open circuit voltage of such an alkaline battery was measured, and the cutoff voltage was 0.9 V in an atmosphere of 20 ° C.
The discharge time was measured when a constant current discharge of 1500 mA was performed. As the discharge time, the content of O 2 was 0.10
The discharge time in the case of weight% was set to 100, and the discharge time was shown in percentage%. The above is shown in Table 1 as Test Example 1.

【0019】[0019]

【表1】 上記試験例1において、ガス発生評価指数Kとしては
0.10未満とするともに、初期開路電圧としては1.
600Vより大きく、さらに放電時間としては110%
を上回ることを実用的に望ましい条件とした。その結
果、亜鉛基合金中のO2 含有量が0.001重量%以上
においてガス発生の抑制効果が認められ、特に0.01
重量%の時が最もその抑制効果が大きい。またO2 含有
量が大きくなるとともに負荷放電特性が徐々に低下して
いく。さらにO2 の含有量が0.08重量%を越えると
ガス発生の抑制効果および負荷放電特性が望ましい条件
を逸脱してしまう。したがって、実用的範囲として亜鉛
基合金中にO2 を0.001〜0.08重量%の範囲で
含有させることにより、ガス発生が抑えられ耐食性が向
上してこれをアルカリ電池に用いると自己放電特性を向
上できるとともに、初期開路電圧および放電時間が良好
となって負荷放電特性が向上することが知得できた。
[Table 1] In Test Example 1, the gas generation evaluation index K was set to less than 0.10, and the initial open circuit voltage was set to 1.
Greater than 600V and 110% discharge time
Is set as a practically desirable condition. As a result, when the O 2 content in the zinc-based alloy was 0.001% by weight or more, the effect of suppressing gas generation was observed, and in particular, 0.01% by weight.
The weight percent has the greatest suppression effect. Further, as the O 2 content increases, the load discharge characteristics gradually decrease. Further, when the O 2 content exceeds 0.08% by weight, the effect of suppressing gas generation and the load discharge characteristics deviate from desirable conditions. Therefore, as a practical range, when O 2 is contained in the zinc-based alloy in the range of 0.001 to 0.08% by weight, gas generation is suppressed and corrosion resistance is improved. It has been found that the characteristics can be improved, and the initial open-circuit voltage and the discharge time are improved, and the load discharge characteristics are improved.

【0020】上記の知得に基づき、純亜鉛に対して試験
例1で最良のガス発生抑制効果を示した0.01重量%
のO2 を含有させるとともに、Mgを0.003重量
%、Biを0.02重量%添加した条件下においてIn
を0.0005〜0.6重量%の組成範囲で変化させ、
これら亜鉛基合金粉末の耐食性試験を前記と同様に行っ
た。以上を試験例2として表2に示す。
Based on the above knowledge, 0.01% by weight of pure zinc exhibited the best gas generation suppressing effect in Test Example 1.
In the conjunction with the inclusion of O 2, the Mg 0.003 wt%, under the conditions of adding Bi 0.02 wt%
In the composition range of 0.0005 to 0.6% by weight,
The corrosion resistance test of these zinc-based alloy powders was performed in the same manner as described above. The above is shown in Table 2 as Test Example 2.

【0021】[0021]

【表2】 上記試験例2において、ガス発生評価指数Kとして0.
10未満となったのは、Inを0.001〜0.5重量
%の範囲で含有させた場合であり、この範囲において耐
食性が向上してアルカリ電池に用いると自己放電特性を
向上できることが確認できた。特に最良のガス発生抑制
効果を示したのは、純亜鉛に対してInを0.04重量
%含有させた場合であった。
[Table 2] In the above Test Example 2, the gas generation evaluation index K was set to 0.
It was less than 10 when In was contained in the range of 0.001 to 0.5% by weight, and it was confirmed that in this range, the corrosion resistance was improved and the self-discharge characteristics could be improved when used for an alkaline battery. did it. In particular, the best gas generation suppressing effect was obtained when 0.04% by weight of In was contained in pure zinc.

【0022】また、純亜鉛に対してO2 を0.01重量
%、Inを0.04重量%、Biを0.02重量%添加
した条件下においてMgを0.0001〜0.06重量
%の組成範囲で変化させ、これら亜鉛基合金粉末の耐食
性試験を前記と同様に行った。以上を試験例3として表
3に示す。
Under the condition that 0.01% by weight of O 2 , 0.04% by weight of In, and 0.02% by weight of Bi are added to pure zinc, 0.0001 to 0.06% by weight of Mg is added. And the corrosion resistance test of these zinc-based alloy powders was performed in the same manner as described above. The above is shown in Table 3 as Test Example 3.

【0023】[0023]

【表3】 上記試験例3において、ガス発生評価指数Kとして0.
10未満となったのは、Mgを0.0002〜0.05
重量%の範囲で含有させた場合であり、この範囲におい
て耐食性が向上してアルカリ電池に用いると自己放電特
性を向上できることが確認できた。特に最良のガス発生
抑制効果を示したのは、純亜鉛に対してMgを0.00
3重量%含有させた場合であった。
[Table 3] In Test Example 3 described above, the gas generation evaluation index K was set to 0.
The reason for being less than 10 was that Mg was 0.0002 to 0.05.
In this case, it was confirmed that the corrosion resistance was improved and the self-discharge characteristics could be improved when used in an alkaline battery in this range. Particularly, the best gas generation suppressing effect was obtained when Mg was added to pure zinc at 0.00%.
3% by weight.

【0024】さらに、純亜鉛に対してO2 を0.01重
量%、Inを0.04重量%、Mgを0.003重量%
添加した条件下においてBiを0.0001〜0.6重
量%の組成範囲で変化させ、これら亜鉛基合金粉末の耐
食性試験を前記と同様に行った。以上を試験例4として
表4に示す。
Further, 0.01% by weight of O 2 , 0.04% by weight of In, and 0.003% by weight of Mg based on pure zinc.
Bi was changed in the composition range of 0.0001 to 0.6% by weight under the added conditions, and the corrosion resistance test of these zinc-based alloy powders was performed in the same manner as described above. The above is shown in Table 4 as Test Example 4.

【0025】[0025]

【表4】 上記試験例4において、ガス発生評価指数Kとして0.
10未満となったのは、Biを0.0002〜0.05
重量%の範囲で含有させた場合であり、この範囲におい
て耐食性が向上してアルカリ電池に用いると自己放電特
性を向上できることが確認できた。特に最良のガス発生
抑制効果を示したのは、純亜鉛に対してBiを0.02
重量%含有させた場合であった。
[Table 4] In Test Example 4, the gas generation evaluation index K was set to 0.
The reason why Bi was less than 10 was that Bi was 0.0002 to 0.05.
In this case, it was confirmed that the corrosion resistance was improved and the self-discharge characteristics could be improved when used in an alkaline battery in this range. Particularly, the best gas generation suppressing effect was exhibited when Bi was 0.02% with respect to pure zinc.
% By weight.

【0026】[0026]

【0027】[0027]

【0028】[0028]

【0029】[0029]

【0030】[0030]

【0031】[0031]

【0032】[0032]

【0033】[0033]

【0034】[0034]

【0035】次に本発明の第形態を説明する。Next, a second embodiment of the present invention will be described.

【0036】前記第1形態と同様にして亜鉛基合金の粉
末を作製し、このとき純亜鉛に対してInを0.05重
量%、Niを0.025重量%添加した条件下において
を0.0005〜0.10重量%の組成範囲で変化
させ、これら亜鉛基合金粉末について、前記第1形態と
同様に、その耐食性及びこれを負極活物質として用いた
アルカリ電池の負荷放電特性の試験を行った。その結果
を試験例として表に示す。
A zinc-based alloy powder was prepared in the same manner as in the first embodiment. At this time, O 2 was added under the condition that 0.05% by weight of In and 0.025% by weight of Ni were added to pure zinc. The zinc-based alloy powder was changed in the composition range of 0.0005 to 0.10% by weight, and in the same manner as in the first embodiment, the corrosion resistance and the load discharge characteristics of an alkaline battery using the same as a negative electrode active material were tested. Was done. The results are shown in Table 5 as Test Example 5 .

【0037】[0037]

【表5】 上記試験例において、亜鉛基合金中のO含有量が
0.001重量%以上においてガス発生の抑制効果が認
められた。またO含有量が大きくなるとともに負荷放
電特性が徐々に低下していく。さらにOの含有量が
0.08を越えるとガス発生の抑制効果および負荷放電
特性が望ましい条件を逸脱してしまう。したがって、前
記第1形態と同様に、実用的範囲として亜鉛基合金中に
を0.001〜0.08重量%範囲で含有させるこ
とにより、ガス発生が抑えられ耐食性が向上してアルカ
リ電池に用いると自己放電特性を向上できるとともに、
初期開路電圧および放電時間が良好となって負荷放電特
性が向上することが知得できた。
[Table 5] In Test Example 5 , an effect of suppressing gas generation was observed when the O 2 content in the zinc-based alloy was 0.001% by weight or more. Also, as the O 2 content increases, the load discharge characteristics gradually decrease. Further, when the O 2 content exceeds 0.08, the effect of suppressing gas generation and the load discharge characteristics deviate from desirable conditions. Therefore, as in the first embodiment, as a practical range, when O 2 is contained in the zinc-based alloy in the range of 0.001 to 0.08% by weight, the generation of gas is suppressed, the corrosion resistance is improved, and the alkaline battery is improved. Used to improve the self-discharge characteristics,
It has been found that the initial open circuit voltage and the discharge time are improved and the load discharge characteristics are improved.

【0038】上記の知得に基づき、純亜鉛に対して試験
で良好なガス発生抑制効果を示した0.02重量%
のOを含有させるとともに、Niを0.025重量%
添加した条件下においてInを0.0005〜0.60
重量%の組成範囲で変化させ、これら亜鉛基合金粉末の
耐食性試験を前記と同様に行った。以上を試験例とし
て表示す。
Based on the above knowledge, 0.02% by weight of pure zinc exhibited a good gas generation suppressing effect in Test Example 5.
Of O 2 and 0.025% by weight of Ni
Under the conditions of addition, In is 0.0005 to 0.60.
The zinc-based alloy powder was subjected to a corrosion resistance test in the same manner as described above, with the composition being varied in the range of weight%. Table 6 shows the above as Test Example 6 .

【0039】[0039]

【表6】 上記試験例において、ガス発生評価指数Kとして0.
10未満となったのは、Inを0.001〜0.50重
量%の範囲で含有させた場合であり、この範囲において
耐食性が向上してアルカリ電池に用いると自己放電特性
を向上できることが確認できた。特に最良のガス発生抑
制効果を示したのは、純亜鉛に対してInを0.05重
量%含有させた場合であった。
[Table 6] In Test Example 6 , the gas generation evaluation index K was set to 0.
It was less than 10 when In was contained in the range of 0.001 to 0.50% by weight, and it was confirmed that in this range, the corrosion resistance was improved and the self-discharge characteristics could be improved when used in an alkaline battery. did it. In particular, the best gas generation suppressing effect was exhibited when 0.05% by weight of In was contained with respect to pure zinc.

【0040】また、純亜鉛に対してOを0.02重量
%、Inを0.050重量%添加した条件下においてN
iを0.0003〜0.30重量%の組成範囲で変化さ
せ、これら亜鉛基合金粉末の耐食性試験を前記と同様に
行った。以上を試験例として表に示す。
Further, under the condition that 0.02% by weight of O 2 and 0.050% by weight of In are added to pure zinc,
i was changed in the composition range of 0.0003 to 0.30% by weight, and the corrosion resistance test of these zinc-based alloy powders was performed in the same manner as described above. Above are shown in Table 7. Test Example 7.

【0041】[0041]

【表7】 上記試験例において、ガス発生評価指数Kとして0.
10未満となったのは、Niを0.0005〜0.25
重量%の範囲で含有させた場合であり、この範囲におい
て耐食性が向上してアルカリ電池に用いると自己放電特
性を向上できることが確認できた。
[Table 7] In Test Example 7 , the gas generation evaluation index K was set to 0.
The reason for being less than 10 is that Ni is 0.0005 to 0.25.
In this case, it was confirmed that the corrosion resistance was improved and the self-discharge characteristics could be improved when used in an alkaline battery in this range.

【0042】[0042]

【発明の効果】以上詳細に説明したように、本発明によ
れば、水銀やカドミウムおよび鉛といった有害物質を亜
鉛に添加することなく、In、Bi、MgまたはNiと
いった比較的安全性の高い金属に対してOを前記の組
み合わせ・割合で含有させ、他に不可避な不純物以外は
含有させないことで、耐食性を向上させてこれを負極に
用いたアルカリ電池の自己放電特性および負荷放電特性
を改善することができる。
As described [Effect Invention above in detail, according to the present invention, without the addition of toxic substances such as mercury or cadmium and lead in zinc, an In, Bi, Mg or the relatively safe such as Ni the O 2 is contained in the combination, the ratio of the relative high metal, except other unavoidable impurities
By not including it, it is possible to improve corrosion resistance and improve the self-discharge characteristics and load discharge characteristics of an alkaline battery using the same as a negative electrode.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 松井 一雄 東京都港区新橋5丁目36番11号 富士電 気化学株式会社内 (72)発明者 筒井 清英 東京都港区新橋5丁目36番11号 富士電 気化学株式会社内 (56)参考文献 特開 平8−22822(JP,A) 特開 平5−299083(JP,A) 特開 平6−338314(JP,A) 特開 平7−262985(JP,A) 特開 平8−96808(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 4/06 H01M 4/36 - 4/62 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Kazuo Matsui 5-36-11 Shimbashi, Minato-ku, Tokyo Inside Fuji Electric Chemical Co., Ltd. (72) Inventor Kiyohide Tsutsui 5-36-11 Shimbashi, Minato-ku, Tokyo No. Fuji Electric Chemical Co., Ltd. (56) References JP-A-8-22822 (JP, A) JP-A-5-299083 (JP, A) JP-A-6-338314 (JP, A) JP-A-7 −262985 (JP, A) JP-A-8-96808 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01M 4/06 H01M 4/36-4/62

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 酸素を0.001〜0.08重量%含有
するとともにインジウムを0.001〜0.5重量%含
有し、さらにビスマスを0.0002〜0.5重量%含
有し、かつマグネシウムを0.0002〜0.05重量
%含有して他に不可避的な不純物以外は含有していない
ことを特徴とするアルカリ電池用負極亜鉛基合金。
1. An alloy containing 0.001 to 0.08% by weight of oxygen, 0.001 to 0.5% by weight of indium, 0.0002 to 0.5% by weight of bismuth, and magnesium. Characterized by containing 0.0002 to 0.05% by weight, and containing no other unavoidable impurities .
【請求項2】 酸素を0.001〜0.08重量%含
有するとともにインジウムを0.001〜0.5重量%
含有し、かつニッケルを0.0005〜0.25重量%
含有して他に不可避的な不純物以外は含有していないこ
とを特徴とするアルカリ電池用負極亜鉛基合金。
2. An oxygen content of 0.001 to 0.08% by weight.
0.001 to 0.5% by weight of indium
Containing 0.0005 to 0.25% by weight of nickel
A negative electrode zinc-based alloy for an alkaline battery, characterized in that it does not contain any other than inevitable impurities .
JP8063026A 1996-03-19 1996-03-19 Anode zinc-based alloy for alkaline batteries Expired - Fee Related JP3053070B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8063026A JP3053070B2 (en) 1996-03-19 1996-03-19 Anode zinc-based alloy for alkaline batteries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8063026A JP3053070B2 (en) 1996-03-19 1996-03-19 Anode zinc-based alloy for alkaline batteries

Publications (2)

Publication Number Publication Date
JPH09259877A JPH09259877A (en) 1997-10-03
JP3053070B2 true JP3053070B2 (en) 2000-06-19

Family

ID=13217416

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8063026A Expired - Fee Related JP3053070B2 (en) 1996-03-19 1996-03-19 Anode zinc-based alloy for alkaline batteries

Country Status (1)

Country Link
JP (1) JP3053070B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6652676B1 (en) 1999-10-18 2003-11-25 Big River Zinc Corporation Zinc alloy containing a bismuth-indium intermetallic compound for use in alkaline batteries
JP4852713B2 (en) * 2000-03-29 2012-01-11 Dowaエレクトロニクス株式会社 Zinc alloy powder for alkaline batteries and method for producing the same
WO2004021482A1 (en) * 2002-08-28 2004-03-11 Big River Zinc Corporation Zinc alloy for alkaline batteries

Also Published As

Publication number Publication date
JPH09259877A (en) 1997-10-03

Similar Documents

Publication Publication Date Title
JP3317526B2 (en) Alkaline battery
JP3053070B2 (en) Anode zinc-based alloy for alkaline batteries
US4084963A (en) Aluminum base alloys containing zinc, magnesium, iron and cadmium, tin or lead
JP3163006B2 (en) Negative electrode zinc base alloy powder for alkaline battery and method for producing the same
JP3155201B2 (en) Negative electrode zinc base alloy powder for alkaline battery and method for producing the same
JP3545985B2 (en) Zinc alloy powder and alkaline battery using the same
JPS6164076A (en) Electrochemical battery
JP2003257418A (en) Negative electrode for lithium ion secondary battery
JP3155202B2 (en) Negative electrode zinc base alloy powder for alkaline battery and method for producing the same
JP3155203B2 (en) Negative electrode zinc base alloy powder for alkaline battery and method for producing the same
JP3163005B2 (en) Method for producing negative electrode zinc-based alloy powder for alkaline battery
JP3163007B2 (en) Method for producing negative electrode zinc-based alloy powder for alkaline battery
JP3188651B2 (en) Negative electrode zinc base alloy powder for alkaline batteries
KR100432961B1 (en) Process for manufacturing a primary zinc-alkaline battery and anode mix used therein
JP4327586B2 (en) Aluminum primary battery
JP3188652B2 (en) Negative electrode zinc base alloy powder for alkaline batteries
JP2504730B2 (en) Method for producing zinc alloy powder for alkaline battery
JPH10334908A (en) Negative electrode zinc-base alloy powder for alkaline battery
JPH0369143B2 (en)
JPH10334909A (en) Negative electrode zinc-base alloy powder for alkaline battery
JP2832232B2 (en) Zinc alloy powder for alkaline batteries
JP4733816B2 (en) Negative electrode for alkaline battery and alkaline battery using the same
JPH0794176A (en) Hydrogen storage electrode
JPH0636764A (en) Zinc-alkaline battery
JPH10334905A (en) Negative electrode zinc base alloy powder for alkaline battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080407

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090407

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090407

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100407

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110407

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees