JP3042950B2 - Polyurethane gel fine particles and method for producing the same - Google Patents

Polyurethane gel fine particles and method for producing the same

Info

Publication number
JP3042950B2
JP3042950B2 JP5263102A JP26310293A JP3042950B2 JP 3042950 B2 JP3042950 B2 JP 3042950B2 JP 5263102 A JP5263102 A JP 5263102A JP 26310293 A JP26310293 A JP 26310293A JP 3042950 B2 JP3042950 B2 JP 3042950B2
Authority
JP
Japan
Prior art keywords
fine particles
polyurea colloid
polyurethane gel
particles
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5263102A
Other languages
Japanese (ja)
Other versions
JPH0797426A (en
Inventor
勝美 栗山
隆夫 遠藤
晃男 秋田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dainichiseika Color and Chemicals Mfg Co Ltd
Ukima Chemicals and Color Mfg Co Ltd
Original Assignee
Dainichiseika Color and Chemicals Mfg Co Ltd
Ukima Chemicals and Color Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainichiseika Color and Chemicals Mfg Co Ltd, Ukima Chemicals and Color Mfg Co Ltd filed Critical Dainichiseika Color and Chemicals Mfg Co Ltd
Priority to JP5263102A priority Critical patent/JP3042950B2/en
Priority to EP94115206A priority patent/EP0645409B1/en
Priority to US08/312,839 priority patent/US5571623A/en
Priority to DE69415113T priority patent/DE69415113T2/en
Publication of JPH0797426A publication Critical patent/JPH0797426A/en
Application granted granted Critical
Publication of JP3042950B2 publication Critical patent/JP3042950B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • C08G18/66Compounds of groups C08G18/42, C08G18/48, or C08G18/52
    • C08G18/6633Compounds of group C08G18/42
    • C08G18/6637Compounds of group C08G18/42 with compounds of group C08G18/32 or polyamines of C08G18/38
    • C08G18/664Compounds of group C08G18/42 with compounds of group C08G18/32 or polyamines of C08G18/38 with compounds of group C08G18/3203
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/0838Manufacture of polymers in the presence of non-reactive compounds
    • C08G18/0842Manufacture of polymers in the presence of non-reactive compounds in the presence of liquid diluents
    • C08G18/0861Manufacture of polymers in the presence of non-reactive compounds in the presence of liquid diluents in the presence of a dispersing phase for the polymers or a phase dispersed in the polymers
    • C08G18/0871Manufacture of polymers in the presence of non-reactive compounds in the presence of liquid diluents in the presence of a dispersing phase for the polymers or a phase dispersed in the polymers the dispersing or dispersed phase being organic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/36Hydroxylated esters of higher fatty acids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S524/00Synthetic resins or natural rubbers -- part of the class 520 series
    • Y10S524/904Powder coating compositions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S525/00Synthetic resins or natural rubbers -- part of the class 520 series
    • Y10S525/902Core-shell
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S528/00Synthetic resins or natural rubbers -- part of the class 520 series
    • Y10S528/902Particulate material prepared from an isocyanate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2991Coated
    • Y10T428/2998Coated including synthetic resin or polymer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31551Of polyamidoester [polyurethane, polyisocyanate, polycarbamate, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31551Of polyamidoester [polyurethane, polyisocyanate, polycarbamate, etc.]
    • Y10T428/31554Next to second layer of polyamidoester
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31551Of polyamidoester [polyurethane, polyisocyanate, polycarbamate, etc.]
    • Y10T428/31573Next to addition polymer of ethylenically unsaturated monomer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31678Of metal
    • Y10T428/31692Next to addition polymer from unsaturated monomers
    • Y10T428/31699Ester, halide or nitrile of addition polymer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、塗料、コーティング
剤、樹脂、ゴム、エラストマー等に吸油性、耐熱性、耐
摩耗性等の優れた性能を与える改質剤等として有益なポ
リウレタンゲル微粒子及びその製造方法に関する。
The present invention relates to polyurethane gel fine particles useful as a modifier which gives paints, coatings, resins, rubbers, elastomers and the like excellent properties such as oil absorption, heat resistance and abrasion resistance. It relates to the manufacturing method.

【0002】[0002]

【従来の技術】従来、ポリイソシアネートと活性水素を
有する化合物とを三次元的に反応させた架橋型ポリウレ
タン樹脂は公知であり、優れた耐溶剤性、耐熱性、耐摩
耗性や耐油性を有している。この様な優れた性能を応用
する方法としては、塗料、コーティング剤、樹脂成形
品、ゴム、エラストマー等に架橋前のポリウレタン原料
(ポリイソシアネート)をブレンドし、塗膜や成形品に
した後に架橋を完結させる方法がある。しかしながら、
かかる方法では架橋密度のコントロールが困難であり、
架橋の程度によって架橋物の塗膜や成形品との相溶性が
低下したり、逆に塗膜や成形品の物性を低下させる場合
があり、応用範囲が限定されている。
2. Description of the Related Art Conventionally, a crosslinked polyurethane resin obtained by three-dimensionally reacting a polyisocyanate with a compound having active hydrogen is known, and has excellent solvent resistance, heat resistance, abrasion resistance and oil resistance. doing. As a method of applying such excellent performance, a polyurethane raw material (polyisocyanate) before crosslinking is blended with a paint, a coating agent, a resin molded product, a rubber, an elastomer, etc., and then a crosslinking is performed after forming a coating film or a molded product. There is a way to complete it. However,
In such a method, it is difficult to control the crosslink density,
Depending on the degree of cross-linking, the compatibility of the cross-linked product with the coating film or molded article may be reduced, or conversely, the physical properties of the coating film or molded article may be reduced, and the application range is limited.

【0003】かかる問題を解決する方法として、ポリウ
レタンゲル粒子を製造し、これを塗料原料や成形用樹脂
にブレンドする方法もあるが、ポリウレタンゲル粒子の
従来の製造方法としては、固形状のポリウレタンを低温
で機械的に粉砕する方法、水性エマルジョンからポリウ
レタンゲル粒子を析出及び乾燥させる方法、噴霧乾燥方
法、更に溶液重合ポリウレタンに貧溶剤を添加してポリ
ウレタンを粒状に析出及び濾過し、乾燥させて溶剤を除
去する方法等がある。
As a method for solving such a problem, there is a method of producing polyurethane gel particles and blending the same with a raw material of a coating material or a molding resin. However, a conventional method for producing polyurethane gel particles is to use solid polyurethane. A method of mechanically pulverizing at a low temperature, a method of precipitating and drying polyurethane gel particles from an aqueous emulsion, a spray drying method, further adding a poor solvent to a solution-polymerized polyurethane, precipitating and filtering polyurethane in a granular form, drying and drying the solvent. And the like.

【0004】これらの従来の方法では、得られる粉末の
形状が不定形であると同時に、微細なポリウレタンゲル
微粒子が得られないと云う問題があり、又、製造経費が
著しく高くつくと云う問題がある。他方、不活性溶媒を
使用する方法としては、米国特許第3,787,525
号明細書、特開平2−4860号公報、特開平2−38
453号公報及び特開平4−255755号公報に記載
の方法が知られている。
[0004] In these conventional methods, there is a problem that the shape of the obtained powder is irregular, and at the same time, fine polyurethane gel fine particles cannot be obtained. Further, there is a problem that the production cost is extremely high. is there. On the other hand, a method using an inert solvent is disclosed in US Pat. No. 3,787,525.
JP-A-2-4860, JP-A-2-38
The methods described in JP-A-453-453 and JP-A-4-255755 are known.

【0005】[0005]

【発明が解決しようとしている問題点】上記の前者の方
法は、生産性に劣り実用的な方法とは云えない。又、後
者の方法は全て特殊な分散安定剤を使用している為に、
分散体のポリウレタン組成と分散安定剤の組み合わせが
限定される、合成されるポリウレタン組成の幅が狭い、
ポリウレタン分散体の粒径の制御が困難である、その分
散液から分散粒子を採り出す際に粒子同士の融着が生じ
粒子が粗大化する等の問題がある。従って本発明の目的
は、従来の上記の欠点を解決すると共に、広範囲の用途
に適用可能な各種の組成を有し且つ粒度分布の狭いポリ
ウレタンゲル粒子を容易に提供することである。
The above-mentioned method is inferior in productivity and cannot be said to be a practical method. Also, since the latter method uses a special dispersion stabilizer,
The combination of the polyurethane composition of the dispersion and the dispersion stabilizer is limited, the width of the polyurethane composition to be synthesized is narrow,
There are problems that it is difficult to control the particle size of the polyurethane dispersion, and that when the dispersed particles are taken out of the dispersion, the particles are fused together and the particles are coarsened. Accordingly, an object of the present invention is to solve the above-mentioned conventional drawbacks and to easily provide polyurethane gel particles having various compositions applicable to a wide range of uses and having a narrow particle size distribution.

【0006】[0006]

【問題点を解決する為の手段】上記目的は以下の本発明
によって達成される。即ち、本発明は、少なくともいず
れか一方の化合物が3官能以上であるポリイソシアネ
ート化合物とポリエチレンオキサイド基を有さない活性
水素を有する化合物(以下単に活性水素を有する化合物
という)とからなる三次元架橋したポリウレタンゲル微
粒子であって、該微粒子の表面がポリウレアコロイド非
水溶媒溶液(以下単にポリウレアコロイド溶液という)
から析出したポリウレアコロイド粒子によって被覆され
ていることを特徴とするポリウレタンゲル微粒子、及び
その製造方法である。
The above object is achieved by the present invention described below. That is, the present invention includes at least Izu
One compound or Re is 3 or more functional groups, there a three-dimensionally crosslinked polyurethane gel particles consisting of a compound having an active hydrogen having no polyisocyanate compound and a polyethylene oxide group with (hereinafter referred to simply as a compound having an active hydrogen) The surface of the fine particles is a polyurea colloid non-aqueous solvent solution (hereinafter simply referred to as a polyurea colloid solution)
Polyurethane gel fine particles characterized by being coated with polyurea colloid particles precipitated from, and a method for producing the same.

【0007】[0007]

【作用】本発明者は、ポリウレアコロイド溶液が、ポリ
ウレタンゲルの合成原料であるポリイソシアネート化合
物及び活性水素を有する化合物を、不活性溶媒中に容易
にしかも微粒子に乳化すること、及びこの状態でポリイ
ソシアネート化合物及び活性水素を有する化合物が重合
反応して、ポリウレタンゲル微粒子を生成し、生成した
微粒子の周囲には上記ポリウレアコロイド溶液から析出
したポリウレアコロイド粒子が均一に付着しており、微
粒子を分散溶媒から分離した状態においては、微粒子が
上記コロイド粒子によって均一に被覆されていることを
見出して本発明を完成した。
The present inventors have found that a polyurea colloid solution can easily emulsify a polyisocyanate compound and a compound having active hydrogen, which are raw materials for producing a polyurethane gel, into fine particles in an inert solvent. The isocyanate compound and the compound having active hydrogen undergo a polymerization reaction to generate polyurethane gel fine particles.Polyurea colloid particles precipitated from the polyurea colloid solution are uniformly attached around the generated fine particles, and the fine particles are dispersed in a solvent. In the state separated from the particles, it was found that the fine particles were uniformly coated with the above colloid particles, and the present invention was completed.

【0008】更に、本発明においては、通常はポリウレ
タンゲル微粒子の合成過程において著しい粘度上昇が発
生するが、ポリウレアコロイド溶液の存在下に上記微粒
子を合成すると、合成過程において著しい粘度上昇は発
生せず、生成したポリウレタンゲル微粒子が凝集するこ
とがなく、優れた分散安定性を維持するという特徴があ
る。この作用は従来公知の有機の乳化剤や分散安定剤と
は根本的に異なる作用である。
Further, in the present invention, a significant increase in the viscosity usually occurs in the process of synthesizing the polyurethane gel fine particles, but when the fine particles are synthesized in the presence of the polyurea colloid solution, no significant increase in the viscosity occurs in the synthesis process. It is characterized in that the resulting polyurethane gel fine particles do not aggregate and maintain excellent dispersion stability. This action is a fundamentally different action from conventionally known organic emulsifiers and dispersion stabilizers.

【0009】[0009]

【好ましい実施態様】次に好ましい実施態様を挙げて本
発明を更に詳しく説明する。本発明のポリウレタンゲル
微粒子は、少なくともいずれか一方の化合物が3官能以
上であるポリイソシアネート化合物と活性水素を有す
る化合物とを、乳化剤としてのポリウレアコロイド溶液
の存在下に、不活性溶媒中で乳化重合させることによっ
て得られる。この様にして得られるポリウレタンゲル微
粒子の表面が、ポリウレアコロイド溶液から析出したポ
リウレアコロイド粒子によって被覆されていることを特
徴としている。
BEST MODE FOR CARRYING OUT THE INVENTION Next, the present invention will be described in more detail with reference to preferred embodiments. Polyurethane gel particles of the present invention is at least one compound 3 or more functional groups and a compound having a polyisocyanate compound and an active hydrogen, in the presence of polyurea colloid solution as an emulsifier, emulsified in an inert solvent It is obtained by polymerizing. The surface of the thus obtained polyurethane gel fine particles is characterized by being coated with polyurea colloid particles precipitated from a polyurea colloid solution.

【0010】本発明のポリウレタンゲル微粒子は上記方
法によって得られるが、好ましい方法は、ポリウレアコ
ロイド溶液を不活性溶媒を撹拌機や乳化機付きのジャケ
ット式合成釜に仕込み、この中に少なくともいずれか
方の化合物が3官能以上であるポリイソシアネート化
合物及び活性水素を有する化合物の不活性溶媒溶液を添
加及び乳化し、これらの合成原料を反応させてポリウレ
タンゲル微粒子を合成する方法や、少なくとも一方が3
官能以上であるポリイソシアネート化合物及び活性水素
を有する化合物を夫々別個に、ポリウレアコロイド溶液
の存在下に不活性溶媒中に乳化させ、これらを反応させ
る方法等が挙げられる。
The polyurethane gel fine particles of the present invention can be obtained by the above method. A preferred method is to charge a polyurea colloid solution with an inert solvent in a jacket type synthesis kettle equipped with a stirrer or an emulsifier, and at least one of them. compounds of <br/> side is 3 or more functional groups, an inert solvent solution was added and emulsified compounds with polyisocyanate compounds and active hydrogen, Ya methods by reacting these starting materials for synthesis to synthesize a polyurethane gel particles are , At least one of which is 3
A method of separately emulsifying a polyisocyanate compound having a functionality or higher and a compound having active hydrogen in an inert solvent in the presence of a polyurea colloid solution and reacting them is exemplified.

【0011】合成温度は特に限定されないが、好ましい
温度は40℃〜120℃である。又、合成時に使用する
ポリウレアコロイド溶液は、その固形分としての使用量
は、少なくともいずれか一方の化合物が3官能以上であ
ポリイソシアネート化合物及び活性水素を有する化
合物夫々100重量部当たり0.5重量部以上を使用す
ることが出来、好ましくは1.0〜20重量部である。
0.5重量部未満では原料の乳化性が不十分で、合成過
程でポリウレタンゲル微粒子の大きい凝集塊が発生し、
目的とする微細な重合体の分散体が得難い。一方、20
重量部を越えるとポリウレタンの原料の乳化性には問題
はなく、ポリウレタンゲル微粒子の分散体は製造するこ
とが出来るが、乳化剤としての作用として過剰な量であ
り特に利点はない。ポリイソシアネート化合物及び活性
水素を有する化合物の不活性溶媒中における濃度は、低
い程小さい粒径のものが得られ易く、生産性から好まし
い濃度は20〜70重量部である。
The synthesis temperature is not particularly limited, but the preferred temperature is 40 ° C to 120 ° C. Further, polyurea colloid solution used during synthesis, the amount thereof as solids is at least one compound 3 or more functional groups, compounds each 100 parts by weight per 0.5 with polyisocyanate compound and an active hydrogen More than one part by weight can be used, preferably from 1.0 to 20 parts by weight.
If the amount is less than 0.5 part by weight, the emulsifiability of the raw material is insufficient, and large aggregates of polyurethane gel fine particles are generated in the synthesis process,
It is difficult to obtain a desired fine polymer dispersion. On the other hand, 20
When the amount is more than 10 parts by weight, there is no problem in the emulsifying property of the raw material of the polyurethane, and a dispersion of polyurethane gel fine particles can be produced. The smaller the concentration of the polyisocyanate compound and the compound having active hydrogen in the inert solvent, the easier it is to obtain a smaller particle size, and the preferred concentration is 20 to 70 parts by weight from the viewpoint of productivity.

【0012】本発明のポリウレタンゲル微粒子の合成に
使用するポリイソシアネート化合物の例としては、トリ
レンジイソシアネート、4,4´−ジフェニルメタンジ
イソシアネート、キシレンジイソシアネート、メタキシ
レンジイソシアネート、1,6−ヘキサメチレンジイソ
シアネート、リジンジイソシアネート、4,4´−メチ
レンビス(シクロヘキシルイソシアネート)、メチルシ
クロヘキサン−2,4−(又は−2,6−)−ジイソシ
アネート、1,3−ビス(イソシアネートメチル)シク
ロヘキサン、イソホロンジイソシアネート、トリメチル
ヘキサメチレンジイソシアネート、ダイマー酸ジイソシ
アネート等の2個のイソシアネート基を有するものが挙
げられる。
Examples of the polyisocyanate compound used for synthesizing the polyurethane gel fine particles of the present invention include tolylene diisocyanate, 4,4'-diphenylmethane diisocyanate, xylene diisocyanate, metaxylene diisocyanate, 1,6-hexamethylene diisocyanate, and lysine. Diisocyanate, 4,4'-methylenebis (cyclohexylisocyanate), methylcyclohexane-2,4- (or -2,6-)-diisocyanate, 1,3-bis (isocyanatomethyl) cyclohexane, isophorone diisocyanate, trimethylhexamethylene diisocyanate, Those having two isocyanate groups such as dimer acid diisocyanate are exemplified.

【0013】又、これらの化合物をイソシアヌレート
体、ビューレット体、アダクト体、ポリメリック体とし
た多官能のイソシアネート基を有するもの、例えば、
4,4’,4”−トリフェニルメタントリイソシアネー
ト、2,4−トリレンジイソシアネートの環状三量体、
2,6−トリレンジイソシアネートの環状三量体、混合
した3モルの2,4−及び2,6−トリレンジイソシア
ネートの環状三量体、ジフェニールメタン−4,4’−
ジイソシアネートの三量体、3モルのジフェニールメタ
ン−4,4’−ジイソシアネートと1モルのトリメチロ
ールプロパンとの反応生成物、3モルの2,4−トリレ
ンジイソシアネートと1モルのトリメチロールプロパン
との反応生成物、3モルの2,6−トリレンジイソシア
ネートと1モルのトリメチロールプロパンとの反応生成
物、3モルの2,4−トリレンジイソシアネートと1モ
ルのトリメチロールエタンとの反応生成物、3モルの
2,6−トリレンジイソシアネートと1モルのトリメチ
ロールエタンとの反応生成物、混合した3モルの2,4
−及び2,6−トリレンジイソシアネートと1モルのト
リメチロールプロパンとの反応生成物等、及びこれらの
ポリイソシアネートを、メタノール、エタノール、フェ
ノール、クレゾール、ε−カプロラクタム、メチルエチ
ルケトンオキシム、アセトンオキシム、N,N−ジメチ
ルヒドロキシアミン、マロン酸ジエチル、アセチルアセ
トン等の活性水素を分子内に1個有する化合物とポリイ
ソシアネート化合物のイソシアネート基の一部又は全部
を反応したもの等を使用することが出来る。
Further, those compounds having polyfunctional isocyanate groups, such as isocyanurate, buret, adduct, and polymer, are exemplified by, for example,
4,4 ′, 4 ″ -triphenylmethane triisocyanate, cyclic trimer of 2,4-tolylene diisocyanate,
Cyclic trimer of 2,6-tolylene diisocyanate, mixed 3 moles of cyclic trimer of 2,4- and 2,6-tolylene diisocyanate, diphenylmethane-4,4'-
Reaction product of trimer of diisocyanate, 3 moles of diphenylmethane-4,4'-diisocyanate and 1 mole of trimethylolpropane, 3 moles of 2,4-tolylenediisocyanate and 1 mole of trimethylolpropane Reaction product of 3 mol of 2,6-tolylene diisocyanate with 1 mol of trimethylolpropane Reaction product of 3 mol of 2,4-tolylene diisocyanate with 1 mol of trimethylolethane Reaction product of 3 moles of 2,6-tolylene diisocyanate with 1 mole of trimethylolethane, 3 moles of 2,4
And the reaction products of 2,6-tolylene diisocyanate with 1 mol of trimethylolpropane, and the like, and these polyisocyanates are converted into methanol, ethanol, phenol, cresol, ε-caprolactam, methyl ethyl ketone oxime, acetone oxime, N, A compound obtained by reacting a compound having one active hydrogen in the molecule, such as N-dimethylhydroxyamine, diethyl malonate, and acetylacetone, with a part or all of the isocyanate groups of the polyisocyanate compound can be used.

【0014】本発明で使用する活性水素を有する化合物
の例として、ポリエチレンオキサイド基を有さない化合
物であって、例えば、水、エチレングリコール、プロピ
レングリコール、1,4−ブタンジオール、1,5−ペ
ンタンジオール、1,6−ヘキサンジオール、オクタン
ジオール、ネオペンチルグリコール、グリセリン、トリ
メチロールプロパン、ヘキサントリオール、トリエタノ
ールアミン、ペンタエリスリトール、エチレンジアミ
ン、プロピレンジアミン、ブチレンジアミン、1,4−
ベンゼンチオール、ソルビトール、ポリプロピレングリ
コール、ポリエチレンアジペート、ポリブチレンアジペ
ート、ポリテトラメチレングリコール、ポリヘキサメチ
レンアジペート、ポリ−ε−カプロラクトン、ポリヘキ
サメチレンカーボネート、水素添加ダイマーポリオー
ル、ヒマシポリオール、ポリオレフィン系ポリオール、
酸化プロピレンとテトラヒドロフランやグリセリン付加
物等の単独、混合物、共重合物等、ポリイソシアネート
化合物と反応するものは全て使用することが出来る。
Examples of the compound having an active hydrogen used in the present invention include compounds having no polyethylene oxide group, such as water, ethylene glycol, propylene glycol, 1,4-butanediol, 1,5- Pentanediol, 1,6-hexanediol, octanediol, neopentyl glycol, glycerin, trimethylolpropane, hexanetriol, triethanolamine, pentaerythritol, ethylenediamine, propylenediamine, butylenediamine, 1,4-
Benzenethiol, sorbitol, polypropylene glycol, polyethylene adipate, polybutylene adipate, polytetramethylene glycol, polyhexamethylene adipate, poly-ε-caprolactone, polyhexamethylene carbonate, hydrogenated dimer polyol, castor polyol, polyolefin polyol,
Any of propylene oxide, tetrahydrofuran, glycerin adducts and the like, which can react with a polyisocyanate compound, such as homopolymers, mixtures, and copolymers can be used.

【0015】本発明に使用されるポリイソシアネート化
合物及び活性水素を有する化合物の種類、使用量及び使
用比率は、得られるポリウレタンゲル微粒子の使用目的
によって決定されるが、いずれか一方の成分が3官能以
上であることが必要である。例えば、ポリイソシアネー
トが2官能である場合には、活性水素を有する化合物は
3官能以上であり、又、活性水素を有する化合物が2官
能である場合には、ポリイソシアネートが3官能以上が
必要であり、両成分とも3官能以上であってもよい。
又、NCO/OH比は、使用する化合物と生成物に要求
される性能によって決定されるが、好ましくは0.5〜
1.2の範囲である。
The type, amount and ratio of the polyisocyanate compound and the compound having active hydrogen used in the present invention are determined according to the intended use of the obtained polyurethane gel fine particles. It is necessary to be above. For example, when the polyisocyanate is bifunctional, the compound having active hydrogen is trifunctional or more, and when the compound having active hydrogen is bifunctional, the polyisocyanate needs to be trifunctional or more. Yes, both components may be trifunctional or higher.
The NCO / OH ratio is determined depending on the compound used and the performance required for the product.
1.2.

【0016】上記両化合物の反応に使用し、生成するポ
リウレタンゲル微粒子分散体の連続相を形成する不活性
溶媒は、生成するポリウレタンに対して実質的に非溶媒
であり且つ活性水素を有しないものである。その例とし
て、ペンタン、ヘキサン、ヘプタン、オクタン、デカ
ン、石油エーテル、石油ベンジン、リグロイン、石油ス
ピリット、シクロヘキサン、メチルシクロヘキサン、ト
ルエン、キシレン等の炭化水素、ジメチルポリシロキサ
ン等の単独又は混合物が挙げられ、これらの不活性溶媒
は、該不活性溶媒と合成されたポリウレタンの分離工程
の生産性の点からは150℃以下の沸点を有するものが
好ましい。本発明のポリウレタンゲル微粒子の合成に際
しては公知の触媒を使用すれば低温でもよいが、作業面
から40℃以上の反応温度が好ましい。
The inert solvent used for the reaction of the above two compounds and forming the continuous phase of the resulting polyurethane gel fine particle dispersion is a solvent which is substantially a non-solvent for the produced polyurethane and has no active hydrogen. It is. Examples thereof include pentane, hexane, heptane, octane, decane, petroleum ether, petroleum benzene, ligroin, petroleum spirit, cyclohexane, methylcyclohexane, toluene, hydrocarbons such as xylene, dimethylpolysiloxane and the like, alone or in combination. These inert solvents preferably have a boiling point of 150 ° C. or lower from the viewpoint of productivity in the step of separating the polyurethane synthesized with the inert solvent. When synthesizing the polyurethane gel fine particles of the present invention, the temperature may be low if a known catalyst is used, but a reaction temperature of 40 ° C. or higher is preferred from the viewpoint of work.

【0017】上記ポリウレタンゲル微粒子の合成時に乳
化剤として使用するポリウレアコロイド溶液中のポリウ
レアコロイド粒子は、溶媒に対して溶媒和されている部
分と非溶媒和部分とから構成されており、非溶媒和部分
の粒子径が好ましくは0.01μm〜1.0μmの粒子
であり、かかるポリウレアコロイド溶液は、例えば、非
水溶媒中で、油脂変性ポリオールとポリイソシアネート
(又はこれらの化合物からなる末端NCOプレポリマ
ー)とポリアミン化合物との反応で得られる。
The polyurea colloid particles in the polyurea colloid solution used as an emulsifier at the time of synthesizing the polyurethane gel fine particles are composed of a portion solvated with a solvent and a non-solvated portion. Is preferably 0.01 μm to 1.0 μm, and such a polyurea colloid solution is prepared, for example, in a non-aqueous solvent, using a fat-modified polyol and a polyisocyanate (or a terminal NCO prepolymer comprising these compounds). And a polyamine compound.

【0018】この反応では、反応が進むにつれて、ウレ
ア結合同士の水素結合により、溶媒中に不溶解のウレア
ドメインが形成され、同時に油脂変性ポリオール鎖が溶
媒中で溶媒和されることにより、非溶解性のウレアドメ
インの凝集等によるポリウレアコロイド粒子の巨大化が
防止され、安定なポリウレアコロイド溶液が容易に得ら
れる。
In this reaction, as the reaction proceeds, insoluble urea domains are formed in the solvent due to hydrogen bonds between the urea bonds, and at the same time, the oil-fat-modified polyol chains are solvated in the solvent, so that Enlargement of the polyurea colloid particles due to aggregation of the acidic urea domain or the like is prevented, and a stable polyurea colloid solution can be easily obtained.

【0019】更に、使用する油脂変性ポリオールが、非
水溶媒中での結晶性が少なく、反応が進むにつれて生じ
る高分子化の過程でも、溶媒中で油脂変性ポリオールを
主体とするポリマー鎖がある程度自由に動き得る為に、
非溶解性結晶部分と溶解性非結晶部分の分離が容易に行
われ、ウレア結合同士の水素結合による非溶解性結晶部
分を粒子の中心とするウレアドメインを形成し、その周
囲に溶媒和されたポリマー鎖が規則正しく外向きに配向
される。これは従来のミセル下に重合することにより得
られる公知のコロイド溶液の製造方法における界面活性
剤とは根本的に異なる作用である。
Further, the oil-modified polyol used has low crystallinity in a non-aqueous solvent, and the polymer chains mainly composed of the oil-modified polyol in the solvent are free to some extent even in the process of polymerizing which occurs as the reaction proceeds. To be able to move
Separation of the non-soluble crystalline part and the soluble non-crystalline part was easily performed, forming a urea domain centered on the particle with the non-soluble crystalline part due to hydrogen bonding between urea bonds, and solvated around it. The polymer chains are regularly oriented outward. This is a fundamentally different action from a surfactant in a known method for producing a colloid solution obtained by polymerizing under a micelle.

【0020】上記ポリウレアコロイド溶液の製造方法を
更に具体的に説明する。先ず、最初に油脂変性ポリオー
ルとポリイソシアネート化合物とを非水溶媒中又は無溶
媒で反応させ、NCO基を有するプレポリマーを合成す
る。次にこのプレポリマーを撹拌機付きのジャケット式
合成釜に仕込み、濃度が5〜70重量%になるように非
水系溶媒を添加して濃度を調整する。この溶液を撹拌し
ながら、予め2〜20重量%の濃度に調整したポリアミ
ン化合物の溶液を徐々に添加し反応を行い、ポリウレア
化反応においてポリウレアコロイド溶液を製造する。
The method for producing the above polyurea colloid solution will be described more specifically. First, a fat-modified polyol and a polyisocyanate compound are reacted in a non-aqueous solvent or without a solvent to synthesize a prepolymer having an NCO group. Next, this prepolymer is charged into a jacket-type synthesis kettle equipped with a stirrer, and the concentration is adjusted by adding a non-aqueous solvent so that the concentration becomes 5 to 70% by weight. While stirring this solution, a solution of a polyamine compound adjusted to a concentration of 2 to 20% by weight in advance is gradually added to carry out a reaction, and a polyurea colloid solution is produced in the polyureaization reaction.

【0021】ポリアミンの添加方法は、上記の方法の他
にポリアミン溶液に前記プレポリマー又はその溶液を添
加する方法でもよい。ポリマー合成の為の温度は特に限
定されないが、好ましい温度は30℃〜120℃であ
る。ポリマー合成の為の反応濃度、温度、撹拌機の形
態、撹拌力、ポリアミン溶液及びプレポリマー又はその
溶液の添加速度等は特に限定されないが、ポリアミン化
合物とプレポリマーのイソシアネート基との反応は速い
ので、急激な反応が行われないように、反応を制御する
ことが好ましい。
The method of adding the polyamine may be a method of adding the prepolymer or a solution thereof to a polyamine solution, in addition to the above method. The temperature for synthesizing the polymer is not particularly limited, but a preferred temperature is 30 ° C to 120 ° C. The reaction concentration, temperature, form of the stirrer, stirring power, addition rate of the polyamine solution and the prepolymer or its solution for polymer synthesis are not particularly limited, but the reaction between the polyamine compound and the isocyanate group of the prepolymer is fast. It is preferable to control the reaction so that no rapid reaction is performed.

【0022】ポリウレアコロイド溶液の製造に使用する
油脂変性ポリオールは、官能基が2以下のポリオールで
あって、好ましい分子量は1,000±300である
が、これに限定されない。油脂変性ポリオールの具体例
としては、例えば、各種の油脂を低級アルコールやグリ
コールを用いてアルコリシス化する方法、油脂を部分鹸
化する方法、水酸基含有脂肪酸をグリコールによりエス
テル化する方法等によって、油脂に約2個以下の水酸基
を含有させたもの、或はJ.H.SAUNDERS,K.C.FRISCH著のP
OLYURETHANES,CHEMISTRY AND TECHNOLOGY PART 1,Chemi
stry(p48〜53)(1962年発行)等に記載の油
脂変性ポリオール等が挙げられる。上記の水酸基含有脂
肪酸としては、例えば、リシノレイン酸、12−ヒドロ
キシステアリン酸、ヒマシ油脂肪酸、水添ヒマシ油脂肪
酸等が挙げられる。
The fat-modified polyol used for producing the polyurea colloid solution is a polyol having a functional group of 2 or less, and has a preferable molecular weight of 1,000 ± 300, but is not limited thereto. Specific examples of fats and oils modified polyols include, for example, a method of alcoholicizing various fats and oils with lower alcohols and glycols, a method of partially saponifying fats and oils, a method of esterifying a hydroxyl group-containing fatty acid with glycol, and the like. Those containing two or less hydroxyl groups, or P by JHSAUNDERS, KCFRISCH
OLYURETHANES, CHEMISTRY AND TECHNOLOGY PART 1, Chemi
Fat-modified polyols described in stry (p48-53) (issued in 1962) and the like. Examples of the hydroxyl group-containing fatty acid include ricinoleic acid, 12-hydroxystearic acid, castor oil fatty acid, and hydrogenated castor oil fatty acid.

【0023】油脂変性ポリオールとポリイソシアネート
化合物との反応は、1<NCO/OH≦2の条件で行
い、溶媒和されるプレポリマー鎖の分子量をコントロー
ルする。この様に合成されるプレポリマーの分子量は、
特に限定されないが、好ましい範囲は約500〜15,
000である。本発明で使用されるポリイソシアネート
化合物としては、公知のポリイソシアネート化合物の全
てが挙げられる。特に好ましいものはヘキサメチレンジ
イソシアネート、水添加TDI、水添加MDI、イソホ
ロンジイソシアネート等の脂肪族又は脂環族系ジイソシ
アネート化合物である。
The reaction between the oil-modified polyol and the polyisocyanate compound is performed under the condition of 1 <NCO / OH ≦ 2, and the molecular weight of the prepolymer chain to be solvated is controlled. The molecular weight of the prepolymer synthesized in this way is
Although not particularly limited, a preferable range is about 500 to 15,
000. The polyisocyanate compound used in the present invention includes all known polyisocyanate compounds. Particularly preferred are aliphatic or alicyclic diisocyanate compounds such as hexamethylene diisocyanate, water-added TDI, water-added MDI, and isophorone diisocyanate.

【0024】ポリウレアコロイド溶液の製造に使用する
非水系溶媒としては、使用原料である油脂変性ポリオー
ル、ジイソシアネート化合物及びポリアミン化合物を溶
解するもので、活性水素を有さない全ての非水系溶媒を
使用することが出来る。特に好ましいものはヘキサン、
ヘプタン、オクタン、デカン、シクロヘキサン、トルエ
ン、キシレン等の炭化水素系である。尚、本発明におい
て「溶解」とは常温及び高温下での溶解の両方を包含す
る。
As the non-aqueous solvent used for the production of the polyurea colloid solution, any non-aqueous solvent which does not have active hydrogen and which dissolves the oil / fat-modified polyol, diisocyanate compound and polyamine compound used as the raw materials can be used. I can do it. Particularly preferred are hexane,
It is a hydrocarbon system such as heptane, octane, decane, cyclohexane, toluene and xylene. In the present invention, "dissolution" includes both dissolution at normal temperature and high temperature.

【0025】ポリウレアコロイド溶液の製造に使用する
ポリアミン化合物として、例えば、エチレンジアミン、
ジアミノプロパン、ジアミノブタン、ヘキサメチレンジ
アミン、トリメチルヘキサメチレンジアミン、N−アミ
ノエチルピペラジン、ビス−アミノプロピルピペラジ
ン、ポリオキシプロピレンジアミン、4,4−ジアミノ
ジシクロヘキシルメタン、イソホロンジアミン、チオ尿
素、メチルイミノビスプロピルアミン等のジアミンの単
独及び混合物を好ましく使用することが出来る。
As the polyamine compound used for producing the polyurea colloid solution, for example, ethylenediamine,
Diaminopropane, diaminobutane, hexamethylenediamine, trimethylhexamethylenediamine, N-aminoethylpiperazine, bis-aminopropylpiperazine, polyoxypropylenediamine, 4,4-diaminodicyclohexylmethane, isophoronediamine, thiourea, methyliminobispropyl A single or a mixture of diamines such as amines can be preferably used.

【0026】ポリウレアコロイド溶液の製造に使用する
油脂変性ポリオール、ジイソシアネート化合物、ポリア
ミン化合物、得られるプレポリマーの種類、使用量及び
使用比率は、使用する溶媒中でのポリウレアコロイド粒
子の大きさ及び安定性等を制御する目的で決定される。
即ち、本発明のポリウレアコロイド溶液中のポリウレア
コロイド粒子は、溶媒中で溶媒和されない結晶部分のウ
レアドメインと、そのウレアドメインから伸びて溶媒中
で溶媒和されたポリマー鎖により形成されている。
The types, amounts and ratios of the oil- and fat-modified polyols, diisocyanate compounds, polyamine compounds and the obtained prepolymers used in the production of the polyurea colloid solution are determined by the size and stability of the polyurea colloid particles in the solvent used. Etc. are determined for the purpose of controlling.
That is, the polyurea colloid particles in the polyurea colloid solution of the present invention are formed by urea domains of crystal parts that are not solvated in the solvent and polymer chains extending from the urea domains and solvated in the solvent.

【0027】ポリウレアコロイド溶液中のポリウレアコ
ロイド粒子のウレアドメインの大きさ及び溶媒和された
ポリマー鎖の大きさと形態がポリウレアコロイド溶液の
性質を左右する。この様に、ウレアドメインと溶媒和さ
れたポリマー鎖とで形成されたポリウレアコロイド粒子
は、溶媒中で安定なポリウレアコロイド溶液であり、そ
の溶液中のポリウレアコロイド粒子のウレアドメインの
粒径は、通常0.01〜1.0μmであり、溶媒和され
ているポリマー鎖の1個の分子量は約500〜15,0
00であり、両者の重量比はウレアドメイン(ウレア結
合又はポリアミン化合物)/ポリマー鎖が0.5〜30
の範囲が好ましい。ウレア結合の割合が上記範囲未満で
あると、得られるポリウレアコロイド粒子中の非溶媒和
性ウレアドメインが形成されにくく、ポリウレアコロイ
ド粒子が非水溶媒に溶解し易くなり、良好なポリウレア
コロイド溶液が生成されない。一方、ウレア結合の割合
が上記範囲を越えると、非溶媒和性ウレアドメインが大
きくなり、得られるポリウレアコロイド溶液の安定性が
低下し、ポリウレアコロイド粒子の凝集が生じ易くな
る。
The size of the urea domain and the size and morphology of the solvated polymer chains of the polyurea colloid particles in the polyurea colloid solution determine the properties of the polyurea colloid solution. As described above, the polyurea colloid particles formed of the urea domain and the solvated polymer chain are a polyurea colloid solution that is stable in a solvent, and the particle size of the urea domain of the polyurea colloid particles in the solution is usually 0.01 to 1.0 μm, and the molecular weight of one solvated polymer chain is about 500 to 15.0.
00, and the weight ratio between the two is such that the urea domain (urea bond or polyamine compound) / polymer chain is 0.5 to 30.
Is preferable. When the ratio of the urea bond is less than the above range, the non-solvate urea domain in the obtained polyurea colloid particles is hardly formed, the polyurea colloid particles are easily dissolved in the non-aqueous solvent, and a good polyurea colloid solution is formed. Not done. On the other hand, when the ratio of the urea bond exceeds the above range, the size of the nonsolvable urea domain becomes large, the stability of the obtained polyurea colloid solution is reduced, and the aggregation of the polyurea colloid particles is likely to occur.

【0028】以上の如きポリウレアコロイド溶液は光の
錯乱により青い乳光から黄味がかった乳光に見える。該
ポリウレアコロイド溶液を乾燥固化したものは、比較的
溶解力の低い炭化水素系溶媒中に容易に再分散し、任意
の濃度のポリウレアコロイド溶液とすることが出来、
又、ジメチルホルムアミド、ホルムアミド、シメチルス
ルホキシド、メチルエチルケトン、酢酸ブチル等の極性
溶剤には殆ど溶解し、これに上記の如き溶解力に低い溶
媒を適当量添加混合することにより、ポリマー中のウレ
ア結合が析出結晶化して非溶媒和ウレアドメインを形成
し、ポリウレアコロイド溶液とすることが出来る。
The polyurea colloid solution as described above looks like a blue milky light to a yellowish milky light due to light scattering. The dried and solidified polyurea colloid solution can be easily redispersed in a relatively low-solvent hydrocarbon solvent to give a polyurea colloid solution of any concentration,
Also, it is almost soluble in polar solvents such as dimethylformamide, formamide, cimethylsulfoxide, methylethylketone, butylacetate, etc. Precipitated and crystallized to form a non-solvated urea domain to form a polyurea colloid solution.

【0029】ポリウレアコロイド溶液中のポリウレアコ
ロイド粒子は、溶媒和されていない結晶部のウレアドメ
インと溶媒和されたポリマー鎖から形成されている不均
一粒子である為に、その性質は溶媒和されていないウレ
アドメインと溶媒和されたポリマー鎖の両者の性能を合
わせ持っている。1例として、NCO基を有するプレポ
リマーとポリアミン化合物をNCO/NH2=1.0の
モル比で反応させて合成したポリウレアコロイド溶液
を、固形分で10重量%の溶液としてガラス板の上に、
乾燥膜が10μmになるように塗付し乾燥して製膜した
ところ、この乾燥塗膜は、透明性に優れ、粘着性の無
い、しかも驚くべきことに、溶融温度は200℃以上を
示した。
Since the polyurea colloid particles in the polyurea colloid solution are heterogeneous particles formed from the solvated polymer chains and the urea domain of the unsolvated crystal part, their properties are solvated. Has the performance of both non-urea domains and solvated polymer chains. As an example, a polyurea colloid solution synthesized by reacting a prepolymer having an NCO group with a polyamine compound at a molar ratio of NCO / NH 2 = 1.0 is formed on a glass plate as a solution having a solid content of 10% by weight. ,
When the dried film was applied so as to have a thickness of 10 μm and dried to form a film, the dried film was excellent in transparency and tack-free, and surprisingly, the melting temperature was 200 ° C. or higher. .

【0030】本発明で使用するポリウレアコロイド粒子
の溶媒中における形態は、図1に示す様なものと想像さ
れる。このポリウレアコロイド粒子の粒径の制御につい
ては、溶媒和したポリマー部分とウレアドメインを含ん
だ粒子全体の大きさと、溶媒和したポリマー部分とウレ
アドメインのそれぞれの大きさについて、それらの制御
が可能である。尚、先に記載のポリウレアコロイド粒子
の粒径は、ウレアドメイン部分を表現している。
The form of the polyurea colloid particles used in the present invention in a solvent is assumed to be as shown in FIG. Regarding the control of the particle size of the polyurea colloid particles, it is possible to control the size of the entire particle including the solvated polymer portion and the urea domain, and the respective sizes of the solvated polymer portion and the urea domain. is there. The particle size of the polyurea colloid particles described above represents a urea domain portion.

【0031】安定に制御されたポリウレアコロイド溶液
を製造する為には、図1の様に、溶媒和したポリマー部
分とウレアドメイン部分が明瞭に相分離しているのが望
ましく、その為には溶媒和されるポリマー鎖と結晶部分
のウレアドメインとが混在しない様に製造することが必
要である。この為には、合成過程で溶媒和したポリマー
部分とウレアドメイン部分が分離しやすい合成条件が要
求される。
In order to produce a stable and controlled polyurea colloid solution, it is desirable that the solvated polymer portion and the urea domain portion are clearly phase-separated as shown in FIG. It is necessary to manufacture the polymer chain so that the polymer chain to be added and the urea domain of the crystal part do not coexist. For this purpose, synthesis conditions are required in which the solvated polymer portion and the urea domain portion are easily separated in the synthesis process.

【0032】ポリウレアコロイド溶液の合成は、NCO
基を有するプレポリマーの溶液及びポリアミン化合物の
溶液の両方の濃度が低く、一方の溶液に他方の溶液を添
加する添加速度が遅いほど良好な結果が得られ、撹拌は
プロペラミキサー撹拌で充分である。又、原料溶液の濃
度が高い場合や溶液の添加速度が速い場合には、ホモジ
ナイザー等の使用による高剪断力の混合を行いながら合
成することが好ましい。反応温度は使用する溶媒の種類
と、その溶媒に対するウレアドメインの溶解度により決
まるが、好ましい温度は合成を制御し易い30℃〜12
0℃であるが、この温度範囲に特に限定されない。ウレ
アドメインの形成は合成過程で形成する方法、或は高温
で合成したものを冷却過程で形成する方法でもよい。
The synthesis of the polyurea colloid solution is performed using NCO
The lower the concentration of both the solution of the prepolymer having groups and the solution of the polyamine compound, the slower the addition rate of adding the other solution to one solution, the better the results are obtained, and stirring with a propeller mixer is sufficient. . When the concentration of the raw material solution is high or when the solution is added at a high rate, the synthesis is preferably performed while mixing with a high shear force by using a homogenizer or the like. The reaction temperature is determined by the type of the solvent used and the solubility of the urea domain in the solvent.
Although it is 0 ° C., it is not particularly limited to this temperature range. The urea domain may be formed in a synthesis process, or may be formed in a cooling process of a product synthesized at a high temperature.

【0033】ポリウレアコロイド溶液中のポリウレアコ
ロイド粒子の重要な因子は、その表面基の種類及び濃度
であり、更には不活性溶媒中における分散性と分散粒径
である。即ち、ポリウレアコロイド溶液の乳化剤として
の作用は、W/O、O/O型の乳化剤であり、ポリイソ
シアネート化合物及び活性水素を有する化合物の親水
性、疎水性の強さと不活性溶媒との相関性で作用する。
これらの条件を加味して検討を加えた結果として、ポリ
イソシアネート化合物及び活性水素を有する化合物に対
するポリウレアコロイド溶液の添加量の調整で、ポリウ
レタンゲル微粒子の粒径をコントロールすることが可能
であり、前記の範囲で添加量が多い程粒径は小さくな
り、少ない程粒径が大きくなる。
The important factors of the polyurea colloid particles in the polyurea colloid solution are the type and concentration of the surface groups, and the dispersibility in an inert solvent and the dispersed particle size. That is, the action of the polyurea colloid solution as an emulsifier is a W / O, O / O type emulsifier, and the correlation between the hydrophilicity and hydrophobicity of the polyisocyanate compound and the compound having active hydrogen and the inert solvent. Act on.
As a result of considering these conditions, it is possible to control the particle size of the polyurethane gel fine particles by adjusting the amount of the polyurea colloid solution added to the polyisocyanate compound and the compound having active hydrogen. The larger the amount of addition, the smaller the particle size, and the smaller the amount, the larger the particle size.

【0034】以上の如き原材料から得られたポリウレタ
ン溶液から、常圧又は減圧下で不活性溶媒を分離するこ
とによって、本発明のポリウレタンゲル微粒子が得られ
る。粒子化に用いる装置としてスプレイドライヤー、濾
過装置付き真空乾燥機、撹拌装置付真空乾燥機、棚式乾
燥機等公知のものがいずれも使用出来、好ましい乾燥温
度は不活性溶媒の蒸気圧、ポリウレタンゲル微粒子の軟
化温度、粒径等に影響されるが、好ましくは減圧下40
℃〜80℃である。
The polyurethane gel fine particles of the present invention can be obtained by separating the inert solvent from the polyurethane solution obtained from the above raw materials under normal pressure or reduced pressure. Any known apparatus such as a spray drier, a vacuum drier with a filtration device, a vacuum drier with a stirrer, and a shelf type drier can be used as a device used for particle formation. Preferred drying temperatures are a vapor pressure of an inert solvent, a polyurethane gel. Although it is affected by the softening temperature, particle size, etc. of the fine particles,
C. to 80C.

【0035】この様にして製造されたポリウレタンゲル
微粒子の粒径は、0.5μm〜100μmで真球状であ
る。粒径のコントロールは、ポリウレタンの組成が同一
の場合、合成釜の乳化型式(プロペラ式、錨型式、ホモ
ジナイザー、螺旋帯式等)及び撹拌力の大小に左右され
るが、特に不活性溶媒中のポリイソシアネート化合物及
び活性水素を有する化合物の濃度、ポリウレアコロイド
溶液の種類及び添加量に影響される。ポリイソシアネー
ト化合物及び活性水素を有する化合物を乳化する為の機
械的撹拌や剪断力は乳化の初期段階で決定され、これが
強力な程分散体の粒径が小さくなる。その後の撹拌及び
剪断力は大きくは影響しない。かえってその力が強すぎ
ると分散体同士の凝集を促進することになり好ましくな
い。
The particle size of the polyurethane gel fine particles produced in this way is 0.5 μm to 100 μm and is a true sphere. The control of the particle size depends on the emulsification type (propeller type, anchor type, homogenizer, spiral band type, etc.) of the synthesis pot and the magnitude of the stirring power when the composition of the polyurethane is the same. It is affected by the concentration of the polyisocyanate compound and the compound having active hydrogen, and the type and amount of the polyurea colloid solution. The mechanical stirring and shearing force for emulsifying the polyisocyanate compound and the compound having active hydrogen are determined in the initial stage of emulsification, and the stronger this is, the smaller the particle size of the dispersion becomes. Subsequent stirring and shearing forces have no significant effect. On the contrary, if the force is too strong, it promotes the aggregation of the dispersions, which is not preferable.

【0036】又、本発明では、上記のポリウレタンゲル
微粒子の製造に当たり、原料の少なくとも一部又は全部
に染料や顔料等の着色剤、可塑剤、安定剤、酸化防止
剤、紫外線吸収剤、帯電防止剤、研磨剤、体質顔料等の
各種添加剤を混合して、ポリウレタンの合成を行い種々
の用途に適したポリウレタンゲル微粒子を得ることも可
能である。
In the present invention, in producing the polyurethane gel fine particles, at least a part or all of the raw materials include a coloring agent such as a dye or a pigment, a plasticizer, a stabilizer, an antioxidant, an ultraviolet absorber, an antistatic agent, or the like. It is also possible to obtain polyurethane gel fine particles suitable for various uses by synthesizing polyurethane by mixing various additives such as an agent, an abrasive and an extender.

【0037】これらの微粒子は、図2の電子顕微鏡写真
(倍率5,000倍)に示す様に、ほぼ完全に真球状の
微粒子であり、図3の想像図に示す如く個々のポリウレ
タンゲル微粒子の表面にはポリウレアコロイド溶液から
析出したポリウレアコロイド粒子が付着或は被覆されて
おり且つポリウレアコロイド粒子が非粘着性と耐熱性に
優れている為、該微粒子を分散溶媒から単に除去するの
みで極めて流動性に富んだ微粒子となり、微粒子化に当
たっては従来技術における如き煩雑且つコスト高な粉砕
工程や分級操作を何ら要しない等の種々の利点を有して
いる。
These fine particles are almost perfectly spherical fine particles as shown in the electron micrograph of FIG. 2 (magnification: 5,000 times). As shown in the imaginary diagram of FIG. Polyurea colloid particles precipitated from the polyurea colloid solution adhere to or are coated on the surface, and the polyurea colloid particles are non-adhesive and have excellent heat resistance. The fine particles have a variety of advantages, such as a complicated and costly pulverizing step and a classifying operation which are not required in the prior art.

【0038】[0038]

【実施例】次に実施例及び比較例を挙げて本発明を更に
具体的に説明するが、本発明はこれらの実施例に限定さ
れるものでない。尚、文中部又は%とあるのは特に断り
のない限り重量基準である。
Next, the present invention will be described more specifically with reference to examples and comparative examples, but the present invention is not limited to these examples. In the following, "parts" and "%" are based on weight unless otherwise specified.

【0039】(ポリウレアコロイド溶液の作成) 実施例1 水酸基価119.5の2官能の油脂変性ポリオール(伊
藤製油(株)製 UR IC Y−202)100部とn
−オクタン100部とを撹拌機付き合成釜に仕込み上記
ポリオールを溶解した。撹拌しながら温度を50℃に制
御し、NCO/OH=2になる様に予め用意したイソホ
ロンジイソシアネート47.3部を1時間かけて徐々に
添加し、この条件で3時間反応を続け、更に80℃3時
間の反応を行い合成を完結した。次にn−オクタンで濃
度50%に調整し、NCO基を2.9%含有するプレポ
リマー溶液(PP−1)を得た。この物の分子量は1,
383である。
(Preparation of Polyurea Colloid Solution) Example 1 Bifunctional oil- and fat-modified polyol having a hydroxyl value of 119.5 (Italy)
UR IC Y-202 manufactured by Fuji Oil Co., Ltd. 100 parts and n
-100 parts of octane was charged into a synthesis kettle equipped with a stirrer to dissolve the polyol. The temperature was controlled to 50 ° C. while stirring, and 47.3 parts of isophorone diisocyanate prepared in advance so that NCO / OH = 2 was gradually added over 1 hour. The reaction was continued for 3 hours under these conditions, and the reaction was continued for 80 hours. The reaction was performed at 3 ° C. for 3 hours to complete the synthesis. Next, the concentration was adjusted to 50% with n-octane to obtain a prepolymer solution (PP-1) containing 2.9% of NCO groups. The molecular weight of this product is 1,
383.

【0040】上記のPP−1の40部を、n−オクタン
60部を撹拌機付き合成釜に仕込み溶解した、撹拌しな
がら温度を70℃に制御しながら、予め用意したイソホ
ロンジアミンのn−オクタンの10%溶液23.4部を
5時間掛けて徐々に添加し反応を完結して、(ポリアミ
ン(ウレア結合部)/プレポリマー鎖)×100=1
1.7%のポリウレアコロイド溶液(固形分18.1
%)(C−1)を得た。この溶液は青い乳光色の安定な
溶液であった。
40 parts of the above PP-1 were charged and dissolved in 60 parts of n-octane in a synthesis kettle equipped with a stirrer. While stirring and controlling the temperature to 70 ° C., the previously prepared n-octane of isophorone diamine was prepared. 23.4 parts of a 10% solution was gradually added over 5 hours to complete the reaction, and (polyamine (urea bond) / prepolymer chain) × 100 = 1
1.7% polyurea colloid solution (solid content 18.1
%) (C-1). This solution was a blue opalescent stable solution.

【0041】実施例2 水酸基価119.5の2官能の油脂変性ポリオール(伊
藤製油(株)製 URIC Y−202)100部とn
−オクタン100部とを撹拌機付き合成釜に仕込み上記
ポリオールを溶解した。撹拌しながら温度を50℃に制
御し、NCO/OH=1.1になる様に予め用意したイ
ソホロンジイソシアネート26.6部を1時間掛けて徐
々に添加し、この条件で3時間反応を続け、更に80℃
4時間の反応を行い合成を完結した。次にn−オクタン
で濃度50%に調整し、NCO基を1.64%含有する
プレポリマー溶液(PP−2)を得た。この物の分子量
は2,543である。
Example 2 A bifunctional oil / fat-modified polyol having a hydroxyl value of 119.5 (Italy)
URIC Y-202 manufactured by Fuji Oil Co., Ltd.) 100 parts and n
-100 parts of octane was charged into a synthesis kettle equipped with a stirrer to dissolve the polyol. The temperature was controlled to 50 ° C. while stirring, and 26.6 parts of isophorone diisocyanate prepared in advance so that NCO / OH was 1.1 was gradually added over 1 hour, and the reaction was continued under these conditions for 3 hours. 80 ° C
The reaction was carried out for 4 hours to complete the synthesis. Next, the concentration was adjusted to 50% with n-octane to obtain a prepolymer solution (PP-2) containing 1.64% of NCO groups. The molecular weight of this product is 2,543.

【0042】上記のPP−2の20部とn−オクタン8
0部とを撹拌機付き合成釜に仕込み上記プレポリマー溶
解した。撹拌しながら温度を70℃に制御しながら、予
め用意したイソホロンジアミンのn−オクタンの1%溶
液17.0部を8時間掛けて徐々に添加し反応を完結し
て、(ポリアミン/プレポリマー鎖)×100=1.7
%のポリウレアコロイド溶液(固形分8.7%)(C−
2)を得た。この溶液は青い乳光色の安定な溶液であっ
た。
20 parts of the above PP-2 and n-octane 8
0 parts were charged into a synthesis kettle equipped with a stirrer to dissolve the above prepolymer. While stirring and controlling the temperature to 70 ° C., 17.0 parts of a 1% solution of n-octane of isophoronediamine prepared in advance was gradually added over 8 hours to complete the reaction, thereby completing the reaction (polyamine / prepolymer chain). ) × 100 = 1.7
% Polyurea colloid solution (solid content: 8.7%) (C-
2) was obtained. This solution was a blue opalescent stable solution.

【0043】実施例3 水酸基価157.8の1官能の油脂変性ポリオール(伊
藤製油(株)製 URIC H−31)100部を、撹
拌機付き合成釜に仕込み、撹拌しながら温度を60℃に
制御し、NCO/OH=2.0になる様に、予め用意し
たトリレンジイソシアネート49.0部を1時間掛けて
徐々に添加し、この条件で5時間の反応を行い合成を完
結した。次にn−ヘプタンで濃度60%に調整し、NC
O基を4.71%含有するプレポリマー溶液(PP−
3)を得た。この物の分子量は528である。
Example 3 Monofunctional oil / fat-modified polyol having a hydroxyl value of 157.8 (Italy)
100 parts of URIC H-31 manufactured by Fuji Oil Co., Ltd. were charged into a synthesis kettle equipped with a stirrer, and the temperature was controlled at 60 ° C. while stirring, and a pre-prepared bird was prepared so that NCO / OH = 2.0. 49.0 parts of range isocyanate was gradually added over 1 hour, and the reaction was carried out for 5 hours under these conditions to complete the synthesis. Next, the concentration was adjusted to 60% with n-heptane, and NC
A prepolymer solution containing 4.71% of O groups (PP-
3) was obtained. The molecular weight of this product is 528.

【0044】上記のPP−3の100部を撹拌機付き合
成釜に仕込み、撹拌しながら温度を50℃に制御し、予
め用意したトリメチルヘキサメチレンジアミンのn−ヘ
プタンの10%溶液88.5部を5時間掛けて徐々に添
加し反応を完結して、(ポリアミン/プレポリマー鎖)
×100=14.75%のポリウレアコロイド溶液(固
形分36.5%)(C−3)を得た。この溶液は黄味の
乳光色の安定な溶液であった。
100 parts of the above PP-3 was charged into a synthesis kettle equipped with a stirrer, the temperature was controlled at 50 ° C. while stirring, and 88.5 parts of a 10% solution of n-heptane of trimethylhexamethylenediamine prepared in advance was prepared. Over 5 hours to complete the reaction, (polyamine / prepolymer chain)
× 100 = 14.75% polyurea colloid solution (solid content 36.5%) (C-3) was obtained. This solution was a yellowish opalescent stable solution.

【0045】実施例4 水酸基価165.5の2官能の油脂変性ポリオール(伊
藤製油(株)製 URIC Y−403)100部とn
−デカン100部とを撹拌機付き合成釜に仕込み上記ポ
リオールを溶解した。撹拌しながら温度を50℃に制御
し、NCO/OH=2.0になる様に、予め用意したヘ
キサメチレンジイソシアネート49.6部を1時間掛け
て徐々に添加し、この条件で3時間反応を続け、更に8
0℃3時間の反応を行い合成を完結した。次にn−デカ
ンで濃度50%に調整し、NCO基を4.05%含有す
るプレポリマー溶液(PP−4)を得た。この物の分子
量は1,012である。
Example 4 A bifunctional oil- and fat-modified polyol having a hydroxyl value of 165.5 (Italy
URIC Y-403 manufactured by Fuji Oil Co., Ltd. 100 parts and n
-100 parts of decane was charged into a synthesis kettle equipped with a stirrer to dissolve the polyol. The temperature was controlled at 50 ° C. while stirring, and 49.6 parts of hexamethylene diisocyanate prepared in advance were gradually added over 1 hour so that NCO / OH = 2.0, and the reaction was carried out under these conditions for 3 hours. Continue, 8 more
The reaction was carried out at 0 ° C. for 3 hours to complete the synthesis. Next, the concentration was adjusted to 50% with n-decane to obtain a prepolymer solution (PP-4) containing 4.05% of NCO groups. The molecular weight of this product is 1,012.

【0046】上記のPP−4の40部とn−デカン60
部とを撹拌機付き合成釜に仕込み上記プレポリマーを溶
解した。撹拌しながら温度を70℃に制御し、予め用意
したヘキサメチレンジアミンのn−デカンの5%溶液4
9.8部を8時間掛けて徐々に添加し反応を完結して、
(ポリアミン/プレポリマー鎖)×100=12.45
%のポリウレアコロイド溶液(固形分15%)(C−
4)を得た。この溶液は透明な青い乳光色の安定な溶液
であった。
Forty parts of the above PP-4 and n-decane 60
And the above prepolymer was dissolved in a synthesis kettle equipped with a stirrer. The temperature was controlled at 70 ° C. while stirring, and a 5% solution of n-decane of hexamethylenediamine prepared in advance 4
9.8 parts were gradually added over 8 hours to complete the reaction,
(Polyamine / prepolymer chain) × 100 = 12.45
% Polyurea colloid solution (solid content 15%) (C-
4) was obtained. This solution was a clear blue opalescent stable solution.

【0047】(ポリウレタンゲル微粒子の製造) 実施例5 平均分子量1,000のポリブチレンアジペート20部
を60℃で溶解し、この中に下記の構造式で示される
キサメチレンジイソシアネートのイソシアヌレートポリ
イソシアネー(旭化成工業(株)製 デュラネートTP
A−100)ト8.12部を添加し均一に混合した。こ
の物を予め1リットルのステンレス容器に準備した実施
例1のポリウレアコロイド溶液(C−1)3.0部とn
−オクタン25部の混合液の中にの中に徐々に加え、ホ
モジナイザーで15分間乳化した。この乳化液は分散質
の平均分散粒子径が5μmで分離もなく安定な乳化液で
あった。
(Production of Polyurethane Gel Fine Particles) Example 5 20 parts of polybutylene adipate having an average molecular weight of 1,000 was dissolved at 60 ° C., and hexamethylene diisocyanate represented by the following structural formula was added thereto. Isocyanurate polyisocyanate (Duranate TP manufactured by Asahi Kasei Corporation)
A-100) 8.12 parts were added and mixed uniformly. This product was previously prepared in a 1-liter stainless steel container, and 3.0 parts of the polyurea colloid solution (C-1) of Example 1 and n
-Octane was gradually added into a mixed solution of 25 parts and emulsified with a homogenizer for 15 minutes. This emulsion was a stable emulsion having an average dispersoid particle size of 5 μm and no separation.

【0048】次にこれを錨型撹拌機付き反応釜に仕込
み、400rpmの回転をさせながら温度を80℃まで
上げ、6時間の反応を終了しポリウレタンゲル微粒子の
溶液を得た。この溶液を100Toorで真空乾燥を行
ってn−オクタンを分離しポリウレタンゲル微粒子
(1)を得た。このものは平均粒子径が5μmの真球状
の白色粉末状であった。
Next, this was charged into a reaction vessel equipped with an anchor type stirrer, the temperature was increased to 80 ° C. while rotating at 400 rpm, and the reaction was completed for 6 hours to obtain a solution of polyurethane gel fine particles. This solution was vacuum-dried at 100 Toor to separate n-octane to obtain polyurethane gel fine particles (1). This was a true spherical white powder having an average particle diameter of 5 μm.

【0049】実施例6 錨型撹拌機付反応釜に平均分子量2,000のポリテト
ラメチレンアジペート100部を仕込み、70℃に加熱
溶解して撹拌しながらジフェニルメタンジイソシアネー
ト(MDI)25部を徐々に添加し、5時間の反応を行
いNCO/OH=2のプレポリマーを得た。このものに
トリメチロールプロパン4.5部を添加混合した。
Example 6 100 parts of polytetramethylene adipate having an average molecular weight of 2,000 was charged into a reactor equipped with an anchor-type stirrer, and heated and dissolved at 70 ° C., and 25 parts of diphenylmethane diisocyanate (MDI) was gradually added with stirring. Then, the reaction was carried out for 5 hours to obtain a prepolymer of NCO / OH = 2. To this, 4.5 parts of trimethylolpropane was added and mixed.

【0050】この物の25部を予め1リットルのステン
レス容器に準備した実施例1の実施例2のポリウレアコ
ロイド溶液(C−2)12部とn−ヘプタン50部の混
合液の中にの中に徐々に加え、ホモジナイザーで25分
間乳化した。この乳化液は分散質の平均分散粒子径が8
μmで分離もなく安定な乳化液であった。次にこれを錨
型撹拌機付き反応釜に仕込み、500rpmの回転をさ
せながら温度を100℃まで上げ、5時間の反応を終了
しポリウレタンゲル微粒子の溶液を得た。この溶液から
実施例5と同様にしてポリウレタンゲル微粒子(2)を
得た。このものは平均粒子径が8μmの真球状の白色粉
末状であった。
In a mixture of 12 parts of the polyurea colloid solution (C-2) of Example 2 of Example 1 and 50 parts of n-heptane, 25 parts of this product was previously prepared in a 1-liter stainless steel container. And gradually emulsified with a homogenizer for 25 minutes. This emulsion has an average dispersoid particle size of 8
It was a stable emulsion without separation at μm. Next, this was charged into a reaction vessel equipped with an anchor-type stirrer, the temperature was increased to 100 ° C. while rotating at 500 rpm, and the reaction was completed for 5 hours to obtain a solution of polyurethane gel fine particles. From this solution, polyurethane gel fine particles (2) were obtained in the same manner as in Example 5. This was a true spherical white powder having an average particle diameter of 8 μm.

【0051】実施例7 500ミリリットルのセパラブルフラスコに、実施例3
のポリウレアコロイド溶液(C−3)12部とイソオク
タン150部とを仕込み混合した。次にこの液をホモミ
キサーで混合しながら予め50℃に加温した平均分子量
1,250の3官能のポリラクトンポリオール100部
を徐々に添加して乳化させた。更に下記の構造式で示さ
れるヘキサメチレンジイソシアネートアダクトポリイソ
シアネート(旭化成工業(株)製 デュラネート24A
−100)44.2部を徐々に添加した。
Example 7 Example 3 was placed in a 500 ml separable flask.
Of polyurea colloid solution (C-3) was mixed with 150 parts of isooctane. Next, 100 parts of a trifunctional polylactone polyol having an average molecular weight of 1,250 and preliminarily heated to 50 ° C. was gradually added to this liquid while mixing with a homomixer to emulsify the mixture. Further shown by the following structural formula
The hexamethylene diisocyanate adduct polyisocyanate (Asahi Chemical Industry Co., Ltd. DURANATE 24A
-100) 44.2 parts were gradually added.

【0052】次にホモミキサーを回転しながら、温度を
80℃に上げ、3時間の反応後に反応触媒としてジブチ
ル錫ジラウレート0.005部を加え、更に4時間の反
応を行ない、ポリウレタンゲル微粒子の分散液を得た。
この分散液から実施例5と同様にしてポリウレタンゲル
微粒子(3)を得た。このものは平均粒子径が3μmの
真球状の白色粉末状であった。
Next, while rotating the homomixer, the temperature was raised to 80 ° C., and after 3 hours of reaction, 0.005 parts of dibutyltin dilaurate was added as a reaction catalyst, and the reaction was further carried out for 4 hours to disperse the polyurethane gel fine particles. A liquid was obtained.
From this dispersion, polyurethane gel fine particles (3) were obtained in the same manner as in Example 5. This was a true spherical white powder having an average particle diameter of 3 μm.

【0053】実施例8 500ミリリットルのセパラブルフラスコに、実施例4
のポリウレアコロイド溶液(C−4)10部とイソオク
タン130部及びトルエン20部とを仕込み混合した。
次にこの液をホモミキサーで混合しながら、予め50℃
に加温した平均分子量1,250の3官能のポリラクト
ンポリオール15部及び平均分子量1,000の2官能
のポリラクトンジオール85部に、トリレンジイソシア
ネート18部を加え混合したものを徐々に添加して乳化
させた。
Example 8 Example 4 was placed in a 500 ml separable flask.
Of polyurea colloid solution (C-4), 130 parts of isooctane and 20 parts of toluene were mixed.
Next, while mixing this liquid with a homomixer, 50 ° C.
To 15 parts of a trifunctional polylactone polyol having an average molecular weight of 1,250 and 85 parts of a bifunctional polylactone diol having an average molecular weight of 1,000 were added 18 parts of tolylene diisocyanate, and the mixture was gradually added. And emulsified.

【0054】次にホモミキサーを回転しながら、温度を
80℃に上げ、3時間の反応後に反応触媒としてジブチ
ル錫ジラウレート0.005部を加え、更に6時間の反
応を行ない、ポリウレタンゲル微粒子の分散液を得た。
この分散液から実施例5と同様にしてポリウレタンゲル
微粒子(4)を得た。このものは平均粒子径が12μm
の真球状の白色粉末状であった。以上で得られたポリウ
レタンゲル微粒子の吸油性、分散性及び耐熱性は下記表
1の通りであった。
Next, while rotating the homomixer, the temperature was raised to 80 ° C., and after 3 hours of reaction, 0.005 parts of dibutyltin dilaurate was added as a reaction catalyst, and the reaction was further carried out for 6 hours to disperse the polyurethane gel fine particles. A liquid was obtained.
From this dispersion, polyurethane gel fine particles (4) were obtained in the same manner as in Example 5. It has an average particle size of 12 μm
Was a true spherical white powder. The oil absorption, dispersibility, and heat resistance of the polyurethane gel fine particles obtained as described above were as shown in Table 1 below.

【0055】[0055]

【表1】 [Table 1]

【0056】*1:25℃で吸収前後の粒子の大きさ
(直径)の変化(吸収前を1とした場合を顕微鏡で観察
した顕微鏡により観察した。 *2:微粒子20部を溶剤80部に添加し軽く手で撹拌
したときに分散液の状態を肉眼で観察した。○;分散
△;ペースト ×;ゲル 溶剤1:エチルアセテ−ト 溶剤2:ジメチルホルムアミド 溶剤3:ミネラルスピリット *3:コフラーホットベンチで滴定して測定した。
* 1: Change in the size (diameter) of the particles before and after absorption at 25 ° C. (observed with a microscope where the sample before absorption was set to 1). When the mixture was added and lightly stirred by hand, the state of the dispersion was visually observed.
Δ: paste ×: gel Solvent 1: ethyl acetate Solvent 2: dimethylformamide Solvent 3: mineral spirit * 3: Measured by titration with a Kofler hot bench.

【0057】[0057]

【発明の効果】本発明は下記の効果を奏する。 1.粒径のコントロールされたポリウレタンゲル微粒子
の製造が可能である。 2.得られたポリウレタンゲル微粒子は真球状であり、
該ポリウレタンゲル微粒子の表面にはポリウレアコロイ
ド溶液から析出したポリウレアコロイド粒子が均一に付
着又は被覆されている為、該微粒子は極めて流動性に優
れ、取り扱いが容易であり、例えば、輸送、計量、溶媒
や樹脂中への再分散が極めて容易である等の種々の利点
がある。 3.以上の効果から、本発明のポリウレタンゲル微粒子
は、塗料、コーティング剤、樹脂、ゴム、エラストマー
等に可塑剤や有機溶剤等に対する優れた吸油性、耐熱
性、耐摩耗性等の性能を与える改質剤等として有益であ
る。
The present invention has the following effects. 1. Polyurethane gel particles having a controlled particle size can be produced. 2. The obtained polyurethane gel fine particles are truly spherical,
Since the polyurea colloid particles precipitated from the polyurea colloid solution are uniformly adhered or coated on the surface of the polyurethane gel fine particles, the fine particles have extremely excellent fluidity and are easy to handle. And redispersion into resin is extremely easy. 3. From the above effects, the polyurethane gel fine particles of the present invention are modified to give paints, coatings, resins, rubbers, elastomers, etc. excellent performances such as oil absorption, heat resistance, and abrasion resistance to plasticizers and organic solvents. It is useful as an agent.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明で使用するポリウレアコロイド溶液中
のポリウレアコロイド粒子の断面の想像図。
FIG. 1 is an imaginary view of a cross section of polyurea colloid particles in a polyurea colloid solution used in the present invention.

【図2】 本発明のポリウレタンゲル微粒子の状態の1
例を示す図。
FIG. 2 shows a state 1 of a polyurethane gel fine particle of the present invention.
The figure which shows an example.

【図3】 本発明のポリウレタンゲル微粒子の断面の想
像図。
FIG. 3 is an imaginary view of a cross section of the polyurethane gel fine particles of the present invention.

【符号の説明】[Explanation of symbols]

1:溶媒和されているポリマー鎖 2:非溶媒和部分のウレアドメイン 3:ポリウレタンゲル微粒子 4:ポリウレアコロイド粒子 1: Solvated polymer chain 2: Unsolvated urea domain 3: Polyurethane gel fine particle 4: Polyurea colloid particle

フロントページの続き (72)発明者 遠藤 隆夫 東京都中央区日本橋馬喰町1丁目7番6 号 大日精化工業株式会社内 (72)発明者 秋田 晃男 東京都中央区日本橋馬喰町1丁目7番6 号 大日精化工業株式会社内 (56)参考文献 特開 平5−239341(JP,A) 特開 平5−239340(JP,A) 特開 平5−70539(JP,A) (58)調査した分野(Int.Cl.7,DB名) C08G 18/08 - 18/81 Continuing on the front page (72) Inventor Takao Endo 1-7-6 Nihombashi Bakurocho, Chuo-ku, Tokyo Inside Dainichi Seika Kogyo Co., Ltd. (72) Inventor Akio Akita 1-7-6 Nihombashi Bakurocho, Chuo-ku, Tokyo Large (56) References JP-A-5-239341 (JP, A) JP-A-5-239340 (JP, A) JP-A-5-70539 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) C08G 18/08-18/81

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 少なくともいずれか一方の化合物が3官
能以上である、ポリイソシアネート化合物とポリエチレ
ンオキサイド基を有さない活性水素を有する化合物とか
らなる三次元架橋したポリウレタンゲル微粒子であっ
て、該微粒子の表面がポリウレアコロイド非水溶媒溶液
から析出したポリウレアコロイド粒子によって被覆され
ていることを特徴とするポリウレタンゲル微粒子。
(1) at least one of the compounds has three
Polyisocyanate compound and polyethylene
Compounds with active hydrogens without oxide groups
A Ranaru three dimensional crosslinked polyurethane gel particles, surface polyurea colloid aqueous solvent solution of the fine particles
Polyurethane gel fine particles, which are coated with polyurea colloid particles precipitated from the polymer.
【請求項2】 ポリウレアコロイド非水溶媒溶液中の
リウレアコロイド粒子が、溶媒に対して溶媒和されてい
る部分と非溶媒和部分とから構成されており、非溶媒和
部分の粒子径が0.01μm〜1.0μmである請求項
1に記載のポリウレタンゲル微粒子。
2. The polyurea colloid particles in the polyurea colloid non-aqueous solvent solution are composed of a part solvated with a solvent and a non-solvated part, and a non-solvated part. 2. The polyurethane gel fine particles according to claim 1, wherein the particle diameter of the polyurethane gel is 0.01 μm to 1.0 μm. 3.
【請求項3】 ポリウレアコロイド非水溶媒溶液中の
リウレアコロイド粒子が、油脂変性ポリオールとポリイ
ソシアネートとポリアミン化合物との反応で得られるポ
リウレアコロイド粒子であって、非溶媒和部分がウレア
結合の水素結合からなっている請求項1に記載のポリウ
レタンゲル微粒子。
3. The polyurea colloid particles in the polyurea colloid non-aqueous solvent solution are polyurea colloid particles obtained by reacting an oil- and fat-modified polyol, a polyisocyanate and a polyamine compound, wherein the unsolvated part is a polyurea colloid particle. 2. The polyurethane gel fine particles according to claim 1, wherein the fine particles comprise hydrogen bonds of urea bonds.
【請求項4】 粒子径が0.5〜100μmの範囲であ
る請求項1に記載のポリウレタンゲル微粒子。
4. The polyurethane gel fine particles according to claim 1, wherein the particle diameter is in the range of 0.5 to 100 μm.
【請求項5】 少なくともいずれか一方の化合物が3官
能以上であるポリイソシアネート化合物とポリエチレ
ンオキサイド基を有さない活性水素を有する化合物とを
不活性溶媒中で乳化重合させるに当り、乳化剤としてポ
リウレアコロイド非水溶媒溶液を使用することを特徴と
するポリウレタンゲル微粒子の製造方法。
5. At least one of the compound is trifunctional or higher polyisocyanate compounds and polyethylene
A method for producing polyurethane gel fine particles, comprising using a polyurea colloid non-aqueous solvent solution as an emulsifier in emulsion-polymerizing a compound having active hydrogen having no oxide group in an inert solvent .
【請求項6】 乳化重合物を不活性溶媒から粉末状とし
て取り出す請求項5に記載のポリウレタンゲル微粒子の
製造方法。
6. The method for producing polyurethane gel fine particles according to claim 5, wherein the emulsion polymer is taken out as a powder from an inert solvent .
JP5263102A 1993-09-28 1993-09-28 Polyurethane gel fine particles and method for producing the same Expired - Lifetime JP3042950B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP5263102A JP3042950B2 (en) 1993-09-28 1993-09-28 Polyurethane gel fine particles and method for producing the same
EP94115206A EP0645409B1 (en) 1993-09-28 1994-09-27 Fine polyurethane particles, colloidal polyurea particles, and production processes thereof
US08/312,839 US5571623A (en) 1993-09-28 1994-09-27 Fine polyurethane particles, colloidal polyurea particles, and production processes thereof
DE69415113T DE69415113T2 (en) 1993-09-28 1994-09-27 Fine-grain polyurethane particles, colloidal polyurea particles and process for their production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5263102A JP3042950B2 (en) 1993-09-28 1993-09-28 Polyurethane gel fine particles and method for producing the same

Publications (2)

Publication Number Publication Date
JPH0797426A JPH0797426A (en) 1995-04-11
JP3042950B2 true JP3042950B2 (en) 2000-05-22

Family

ID=17384856

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5263102A Expired - Lifetime JP3042950B2 (en) 1993-09-28 1993-09-28 Polyurethane gel fine particles and method for producing the same

Country Status (4)

Country Link
US (1) US5571623A (en)
EP (1) EP0645409B1 (en)
JP (1) JP3042950B2 (en)
DE (1) DE69415113T2 (en)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2127639T3 (en) * 1995-05-22 1999-04-16 Ici Plc ORGANIC AIRGELS.
DE29518226U1 (en) * 1995-11-17 1996-01-04 Winter Optik Shoe sole
JP3921324B2 (en) * 1999-04-01 2007-05-30 三洋化成工業株式会社 Polyurethane paste composition and sealing material
CN1235930C (en) * 2000-09-15 2006-01-11 Ppg工业俄亥俄公司 Method for preparing particulate crosslinked polymer
JP4096198B2 (en) 2004-06-09 2008-06-04 美津濃株式会社 Golf ball forming composition and multi-piece golf ball
US20060089095A1 (en) 2004-10-27 2006-04-27 Swisher Robert G Polyurethane urea polishing pad
WO2006076888A2 (en) * 2005-01-18 2006-07-27 Forbo Siegling Gmbh Multi-layered belt
EP1902081B1 (en) * 2005-06-28 2010-12-29 Nuplex Resins B.V. A polyurea product as thixotropic rheology modifying agent
JP4832094B2 (en) * 2006-02-01 2011-12-07 大日精化工業株式会社 Light diffusion film for optics
JP4782706B2 (en) * 2007-01-31 2011-09-28 大日精化工業株式会社 Cosmetics
JP4936374B2 (en) * 2007-02-06 2012-05-23 大日精化工業株式会社 Cosmetics
JP4782719B2 (en) * 2007-03-27 2011-09-28 大日精化工業株式会社 Cosmetics
JP4802136B2 (en) * 2007-04-12 2011-10-26 大日精化工業株式会社 Cosmetics
JP5139729B2 (en) * 2007-06-22 2013-02-06 大日精化工業株式会社 Waterborne intermediate coating for automobiles
JP5139730B2 (en) * 2007-06-22 2013-02-06 大日精化工業株式会社 Synthetic leather skin layer coating and synthetic leather manufacturing method
JP5139728B2 (en) * 2007-06-22 2013-02-06 大日精化工業株式会社 Weatherstrip paint and weatherstrip
KR101418133B1 (en) 2007-10-15 2014-07-09 미쓰이 가가쿠 가부시키가이샤 Polyurethane resin
JP5379014B2 (en) * 2007-10-15 2013-12-25 三井化学株式会社 Particulate polyurethane resin composition and molded product thereof
JP5254654B2 (en) * 2008-04-28 2013-08-07 大日精化工業株式会社 Plastic paint
JP5207530B2 (en) * 2008-07-10 2013-06-12 大日精化工業株式会社 Plastic paint
CN107075070B (en) * 2014-09-30 2019-12-03 富士胶片株式会社 Gel particles, photosensitive composite, printing ink composition, gel particles water dispersion manufacturing method and image forming method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3787525A (en) * 1972-08-07 1974-01-22 Usm Corp Manufacture of polyurethane powders using polyvinyl pyrrolidone having side chains from copolymerization with alkylated olefins
US4746684A (en) * 1986-05-21 1988-05-24 Dainichiseika Color & Chemicals Mfg. Co., Ltd. Polyurethane dispersion and emulsion, sheet-like porous material and production process thereof
DE3641494A1 (en) * 1986-12-04 1988-06-09 Bayer Ag POYLURETHANE SOLUBLE OR DISPERSABLE IN WATER, A METHOD FOR THE PRODUCTION THEREOF AND THEIR USE FOR COATING ANY SUBSTRATE
DE69217268T2 (en) * 1991-04-16 1997-05-28 Dainichiseika Color Chem Process for the production of polyurethanes and really spherical fine particles

Also Published As

Publication number Publication date
US5571623A (en) 1996-11-05
DE69415113D1 (en) 1999-01-21
EP0645409A1 (en) 1995-03-29
DE69415113T2 (en) 1999-04-29
JPH0797426A (en) 1995-04-11
EP0645409B1 (en) 1998-12-09

Similar Documents

Publication Publication Date Title
JP3042950B2 (en) Polyurethane gel fine particles and method for producing the same
JP5170499B2 (en) Emulsion composition containing blocked isocyanate, method for producing the same, and composition for baking type paint or adhesive
US4306998A (en) Process for the preparation of stable aqueous dispersions of oligourethanes or polyurethanes and their use as coating compounds for flexible or rigid substrates
JPS63145317A (en) Water-soluble or water-dispersible polyurethane, production thereof and use thereof for covering support
JPS60243163A (en) Polyurethane dispersion and use as finishing agent
JP2003533567A (en) Polyurethane dispersion and film produced therefrom
JP3042948B2 (en) Water-absorbing polyurethane gel fine particles and method for producing the same
EP0509494B1 (en) Process for the production of polyurethane, and true spherical, fine polyurethane particles
JP2845024B2 (en) Method for producing uncrosslinked polyurethane and spherical uncrosslinked polyurethane fine particles
US4940750A (en) Continuous process for the production of powdered polyisocyanate addition products and the powders produced therefrom
JP3016413B2 (en) Crosslinked polyurethane colloid particles and method for producing the same
JP3042949B2 (en) Polyurethane fine particles and method for producing the same
JP5065599B2 (en) Polyurethane gel fine particles and method for producing the same
CN112912248B (en) Polyurethane resin aqueous dispersion, paint, film structure and structure
JP5007076B2 (en) Polyurea colloid solution, process for producing the same, and dispersion stabilizer
JP5065598B2 (en) Polyurethane fine particles and method for producing the same
JP2881095B2 (en) Polyurea colloid solution and method for producing the same
US8192842B2 (en) Process for preparing polyurethane particulate and polyurethane particulate prepared therefrom
JP3254710B2 (en) Method for producing powdery polyurethane resin
KR100564381B1 (en) Method for the preparation of polyurethane micro-sphere
JPH0397711A (en) Production of polymeric granule
JPH10218960A (en) Production of aqueous resin dispersion
JPH02269723A (en) Aqueous urethane resin composition
CN115612120A (en) Method for preparing novel waterborne polyurethane based on Pickering emulsion method
JPS6375038A (en) Production of powdery polyurethane

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080310

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090310

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100310

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100310

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110310

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110310

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120310

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130310

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140310

Year of fee payment: 14

EXPY Cancellation because of completion of term