JP3041990B2 - Single crystal growing method and apparatus - Google Patents

Single crystal growing method and apparatus

Info

Publication number
JP3041990B2
JP3041990B2 JP3045288A JP4528891A JP3041990B2 JP 3041990 B2 JP3041990 B2 JP 3041990B2 JP 3045288 A JP3045288 A JP 3045288A JP 4528891 A JP4528891 A JP 4528891A JP 3041990 B2 JP3041990 B2 JP 3041990B2
Authority
JP
Japan
Prior art keywords
oxygen concentration
single crystal
crucible
reaction vessel
rotation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3045288A
Other languages
Japanese (ja)
Other versions
JPH06211594A (en
Inventor
俊彦 青木
邦彦 北川
健一 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP3045288A priority Critical patent/JP3041990B2/en
Publication of JPH06211594A publication Critical patent/JPH06211594A/en
Application granted granted Critical
Publication of JP3041990B2 publication Critical patent/JP3041990B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本願発明は、単結晶中の酸素濃度
を均一化させる単結晶育成方法及び該単結晶育成方法の
実施に適した単結晶育成装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for growing a single crystal for making the concentration of oxygen in a single crystal uniform, and a single crystal growing apparatus suitable for carrying out the method for growing a single crystal.

【0002】[0002]

【従来の技術】図3は、従来のCZ法単結晶製造装置の
概念図であって、1は反応容器、2は石英製のルツボ、
3はヒータを示す。CZ法では、上記ルツボ2内に適当
な大きさの多結晶シリコン(以下、シリコンをSiと略
記する。)が投入され、上記ヒータ3からの熱を受けて
固型の多結晶Siが溶融しSi融液4となされる。上述
のルツボ2は、上下移動用モータ5によって上下移動可
能に、また回転用モータ6はよって水平面内に回転可能
に支持されている。7は保温材を示す。
2. Description of the Related Art FIG. 3 is a conceptual diagram of a conventional CZ method single crystal manufacturing apparatus, wherein 1 is a reaction vessel, 2 is a quartz crucible,
Reference numeral 3 denotes a heater. In the CZ method, polycrystalline silicon of an appropriate size (hereinafter, silicon is abbreviated as Si) is charged into the crucible 2 and solid polycrystalline Si is melted by receiving heat from the heater 3. The Si melt 4 is formed. The above-mentioned crucible 2 is supported so as to be able to move up and down by a motor 5 for moving up and down, and the motor 6 for rotation is rotatably supported in a horizontal plane. Reference numeral 7 denotes a heat insulating material.

【0003】8は引き上げ手段(ワイヤロープを図示す
る)であって、該引き上げ手段8の最下端に種結晶9が
取付けられ、他方、上端部に引き上げ用モータ10と回
転用モータ11とが取付けられている。そして、上記種
結晶9をSi融液4の表面に接触させて上記回転用モー
タ11をルツボ2の回転用モータ6と逆方向に回転させ
ながら、引き上げ用モータ10を駆動し、種結晶9を1
〜2mm/minの速度で引き上げていく。かくして種
結晶9の下端面にSiが整列して固まり、更に育成され
たSi単結晶12の下端面に次々とSiが整列して固っ
ていき、円柱状のSi単結晶12が得られる。
Reference numeral 8 denotes a pulling means (illustrated by a wire rope). A seed crystal 9 is attached to the lowermost end of the pulling means 8, and a pulling motor 10 and a rotating motor 11 are mounted to the upper end. Have been. Then, while bringing the seed crystal 9 into contact with the surface of the Si melt 4 and rotating the rotation motor 11 in the opposite direction to the rotation motor 6 of the crucible 2, the pulling motor 10 is driven to remove the seed crystal 9. 1
It is pulled up at a speed of about 2 mm / min. Thus, the Si is aligned and solidified on the lower end face of the seed crystal 9, and the Si is successively aligned and hardened on the lower end face of the grown Si single crystal 12, thereby obtaining the columnar Si single crystal 12.

【0004】ところでCZ法に依るSi単結晶製造にお
いては、石英製のルツボ2からO2がSi融液4に溶け
込み、酸素が〔Oi〕としてSi単結晶12に導入され
る。そしてこの酸素の導入については、歩留りの向上を
図るために、Si単結晶12の軸方向の酸素濃度分布が
一定化されるように留意されている。導入される酸素量
は、Si単結晶12の育成面と酸素との接触頻度に依っ
て定ってくる。従って育成面における酸素濃度及び育成
面と酸素との接触回数が、導入される酸素量を決定する
ファクターとなる。具体的には、酸素濃度が大きくなる
につれ、またルツボ2の回転数が増大するにつれ導入さ
れる酸素量は増える。そして、実操業では、Si単結晶
12が引き上げられるにつれてSi融液4が減少し、系
全体の熱バランスが変化して、Si単結晶12に導入さ
れる酸素量が変化する。
In the production of a Si single crystal by the CZ method, O2 is dissolved into a Si melt 4 from a quartz crucible 2 and oxygen is introduced into the Si single crystal 12 as [Oi]. Regarding the introduction of oxygen, care is taken to stabilize the oxygen concentration distribution in the axial direction of the Si single crystal 12 in order to improve the yield. The amount of oxygen introduced depends on the frequency of contact between the growth surface of the Si single crystal 12 and oxygen. Therefore, the oxygen concentration on the growth surface and the number of times of contact between the growth surface and oxygen are factors that determine the amount of oxygen to be introduced. Specifically, the amount of oxygen introduced increases as the oxygen concentration increases and as the number of rotations of the crucible 2 increases. In actual operation, as the Si single crystal 12 is pulled up, the amount of the Si melt 4 decreases, the heat balance of the entire system changes, and the amount of oxygen introduced into the Si single crystal 12 changes.

【0005】そこで従来は、製造された円柱状のSi単
結晶12を図4に示すように輪切りにし、この輪切り片
13の酸素濃度を調べ(酸素濃度サンプリング)、その
結果に基いてルツボ2の回転数に関する経験的な学習曲
線を作成し、該学習曲線に従って、ルツボ2の回転用モ
ータ6の回転数制御を行い、以て導入される酸素量が常
時一定となるように行っていた。
Therefore, conventionally, the manufactured columnar Si single crystal 12 is sliced as shown in FIG. 4 and the oxygen concentration of the slice 13 is examined (oxygen concentration sampling). An empirical learning curve related to the number of revolutions is created, and the number of revolutions of the rotation motor 6 of the crucible 2 is controlled according to the learning curve, so that the amount of oxygen introduced is always constant.

【0006】[0006]

【発明が解決しようとする課題】したがって上記従来法
は、Si単結晶12の育成完了後、Si単結晶12を薄
く輪切りにして試料たる輪切り片13を得、該輪切り片
13の酸素濃度を測定し、Si単結晶12の軸方向の濃
度分布を調べているため、実操業中の酸素濃度分布の制
御が測定できない。また、経験的な学習曲線のみに依る
制御(回転用モータ6の回転数制御)は、操業中の急激
な熱バランス変化に対応できないという問題もある。
Therefore, in the conventional method, after the growth of the Si single crystal 12 is completed, the Si single crystal 12 is thinly sliced to obtain a slice 13 serving as a sample, and the oxygen concentration of the slice 13 is measured. However, since the axial concentration distribution of the Si single crystal 12 is examined, the control of the oxygen concentration distribution during actual operation cannot be measured. Further, there is a problem that control based on only an empirical learning curve (control of the number of rotations of the rotation motor 6) cannot cope with a rapid change in heat balance during operation.

【0007】本願第1の発明は、上記問題点を解決した
単結晶育成方法を提案することを目的とし、第2の発明
は上記第1の発明の実施に適した装置を提することを目
的としてなされた。
[0007] The first invention of the present application aims to propose a method for growing a single crystal which solves the above problems, and the second invention aims to provide an apparatus suitable for carrying out the first invention. It was made as.

【0008】[0008]

【課題を解決するための手段】すなわち本願第1の発明
は、CZ法に依るSi単結晶の育成操業中に、ルツボ内
のSi融液中の酸素濃度を検出し、該検出酸素濃度を設
定酸素濃度と対比せしめて、前記検出酸素濃度と設定酸
素濃度との差が所定の許容範囲内にある場合と、その範
囲外の場合とでルツボ回転数に差異を設けるものであ
り、本願第2の発明は、反応容器中のルツボが上下移動
用モータ及び回転用モータを備えている単結晶育成装置
であって、前記反応容器に、Si融液中の酸素濃度を検
出するサンプル具が気密調整室を介して取付けられ、前
記サンプル具からの検出信号を受けて前記回転用モータ
を回転制御する制御装置を備えて構成される。
In other words, the first invention of the present application is to detect the oxygen concentration in the Si melt in the crucible during the growth operation of the Si single crystal by the CZ method and to set the detected oxygen concentration. In contrast to the oxygen concentration, a difference is set in the crucible rotation speed between a case where the difference between the detected oxygen concentration and the set oxygen concentration is within a predetermined allowable range and a case where the difference is outside the range. The invention of the present invention is a single crystal growing apparatus in which a crucible in a reaction vessel is provided with a motor for moving up and down and a motor for rotation. A control device is provided via a chamber and receives the detection signal from the sample tool and controls the rotation of the rotation motor.

【0009】[0009]

【作用】上記本願第1の発明に依れば、従来の学習曲線
が問題視される濃度変化があった場合に、回転用モータ
の回転数が変り、この結果、単結晶育成面におけるO2
の接触機会が変化し、導入される酸素濃度が常時一定範
囲に均一化される。
According to the first aspect of the present invention, when there is a density change that causes a problem with the conventional learning curve, the number of rotations of the rotating motor changes, and as a result, the O2 on the single crystal growing surface changes.
Changes the contact opportunity, and the concentration of oxygen introduced is always uniformed within a certain range.

【0010】また本願第2の発明に依れば、回転用モー
タが自動的に制御される。
According to the second aspect of the present invention, the rotation motor is automatically controlled.

【0011】[0011]

【実施例】本願第1の発明は、図1において、大略、ル
ツボ2内の検出酸素濃度tが、学習曲線に依る設定酸素
濃度toから許容できる酸素濃度の差ta以上に離れて
いる場合に、ルツボ2の回転数を増減変化させること
を、内容としている。勿論、上記両酸素濃度t、toの
差が許容できる酸素濃度の差taを越えていない場合に
は、従来通り学習曲線に基いてルツボ2回転用モータ6
を回転制御する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The first invention of the present application will be described with reference to FIG. 1 when the detected oxygen concentration t in the crucible 2 is separated from the set oxygen concentration to based on the learning curve by at least the allowable oxygen concentration difference ta. The content of the method is to increase or decrease the rotation speed of the crucible 2. Of course, if the difference between the two oxygen concentrations t and to does not exceed the allowable oxygen concentration difference ta, the crucible two-rotation motor 6
To control the rotation.

【0012】すなわち、ルツボ2の高さ位置を検出して
学習曲線により一の設定酸素濃度toが定まり、後述す
るサンプル具15によりSi融液4中の検出酸素濃度t
が求められる。そして上記検出酸素濃度tが設定酸素濃
度toよりも小さい場合にはルツボ2の回転用モータ6
の回転数を上げるべきであり、逆に検出酸素濃度tが設
定酸素濃度toよりも大きい場合には回転用モータ6の
回転数を下げるべきである。
That is, the height position of the crucible 2 is detected, a set oxygen concentration to is determined by a learning curve, and the detected oxygen concentration t in the Si melt 4 is determined by a sample tool 15 described later.
Is required. When the detected oxygen concentration t is smaller than the set oxygen concentration to, the rotation motor 6 of the crucible 2
Should be increased, and conversely, if the detected oxygen concentration t is higher than the set oxygen concentration to, the rotation speed of the rotation motor 6 should be decreased.

【0013】しかし実操業においては、t≠toの場合
に必ずしも回転数を変更させる必要はなく、両酸素濃度
t、toの差が許容値taを越えている場合にのみ回転
用モータ6の回転数制御を行えばよい。
However, in the actual operation, it is not always necessary to change the rotation speed when t ≠ to, and only when the difference between the two oxygen concentrations t and to exceeds the allowable value ta, the rotation of the rotation motor 6 is performed. Numerical control may be performed.

【0014】具体的には、図2のチャートに示すよう
に、ステップS1で設定酸素濃度をtoとし、ステップ
2でSi融液中の酸素濃度tを測定する。ステップS3
でto≧tか否かを判定し、YESの場合は、ステップ
4で、(to−t)≧taか否かを判定する。ステッ
プS4においてYESのときは、回転数が増加し、その
増加した後の回転数Uupは、U・(to−t)/taと
なる(ステップS5)。ここで、Uは、経験的な学習に
よって得られた回転数で、予め設定されているものであ
る。ステップS4においてNOのときは、UupはUとな
る(ステップS6)。他方、ステップS3において、to
≧tかの判定がNOのときは、ステップS7において、
(t−to)≧taか否かが判定される。このステップ
7においてYESのときは、回転数が減速し、その減
速した後の回転数Udownは、U・(t−to)/taと
なる(ステップS8)。ステップS7でNOのときは、U
downはUとなる(ステップS9)。このように補正する
ことにより、Si単結晶12の成育面に導入される酸素
量が均一化される。
[0014] Specifically, as shown in the chart of FIG. 2, the set oxygen concentration and to Step S 1, measuring the oxygen concentration t in the Si melt in step S 2. Step S 3
In determining whether-to ≧ t, if YES, the Step S 4, it determines whether the (to-t) ≧ ta. If YES in step S 4, the rotational speed increases, the rotation speed U Stay up-after the increase, the U · (to-t) / ta ( step S 5). Here, U is the number of revolutions obtained by empirical learning and is set in advance. If NO in step S 4, U up becomes U (Step S 6). On the other hand, in step S 3, to
≧ t When Kano determination is NO, at step S 7,
It is determined whether (t-to) ≧ ta. If YES in step S 7, the rotational speed is decelerated, the rotation speed U down after the deceleration, the U · (t-to) / ta ( step S 8). If NO in step S 7, U
down becomes U (step S 9 ). By performing such correction, the amount of oxygen introduced into the growth surface of Si single crystal 12 is made uniform.

【0015】次に図1に基いて第2の発明について説明
する。図1において図3に使用した符号と同一の符号
は、同一物若しくは該当物を示す。
Next, the second invention will be described with reference to FIG. In FIG. 1, the same reference numerals as those used in FIG. 3 indicate the same or corresponding items.

【0016】本願発明装置は、反応容器1の肩部に気圧
調整室14を有し、Si融液の酸素濃度tを検出するた
めのサンプル具15が、上記気圧調整室14を介して取
付けられる構成となっている。すなわち操業中の反応容
器1内の気圧は、大気圧よりも低く設定されており、こ
の条件を損わないようにするためサンプル具15が気圧
調整室14を介して取り付けられる構成としてある。そ
して同様の趣旨からサンプル具14の上端も外気から遮
断された構造とされている。
The apparatus of the present invention has a pressure adjusting chamber 14 at the shoulder of the reaction vessel 1, and a sample tool 15 for detecting the oxygen concentration t of the Si melt is mounted via the pressure adjusting chamber 14. It has a configuration. That is, the pressure inside the reaction vessel 1 during operation is set lower than the atmospheric pressure, and the sample device 15 is mounted via the pressure adjusting chamber 14 so as not to impair this condition. For the same purpose, the upper end of the sample device 14 is also configured to be shielded from the outside air.

【0017】これを詳述すると、サンプル具15を気圧
調整室14に入れる前は、該室14の蔽閉ドア14aが
閉っており、室14の気圧は大気圧と等しい。そして室
14にサンプル具15を挿入した際、サンプル具と室1
4との係合部14bの気密保持が図られている。この状
態下、室14の気圧を減圧ポンプ(図示を省略)で低下
し、反応容器1内の気圧と等しく設ける。その後、ドア
14aを開け、サンプル具15を下方へ移動させ、その
先端をSi融液に挿入させるものである。
More specifically, before the sample device 15 is placed in the pressure adjusting chamber 14, the closing door 14a of the chamber 14 is closed, and the pressure in the chamber 14 is equal to the atmospheric pressure. When the sample tool 15 is inserted into the chamber 14, the sample tool and the chamber 1
4, the airtightness of the engaging portion 14b is achieved. Under this condition, the pressure in the chamber 14 is reduced by a pressure-reducing pump (not shown), and is set equal to the pressure in the reaction vessel 1. Thereafter, the door 14a is opened, the sample tool 15 is moved downward, and the tip is inserted into the Si melt.

【0018】16は制御用コンピュータであって、上述
の回転数制御を自動的に行うべく配設されている。具体
的には、設定酸素濃度toを確定して該設定酸素濃度t
oとサンプル具15から得た検出酸素濃度tとを対比判
断し、ルツボ2の回転用モータ6の回転数Uを制御する
役割を担っている。従って、上記第1の発明の処理プロ
グラムを入力しておくことにより、回転数Uが自動制御
できる。
A control computer 16 is provided for automatically performing the above-described rotation speed control. Specifically, the set oxygen concentration to is determined and the set oxygen concentration t is determined.
o and the detected oxygen concentration t obtained from the sample device 15 are compared to determine the rotation speed U of the rotation motor 6 of the crucible 2. Therefore, the rotation speed U can be automatically controlled by inputting the processing program of the first invention.

【0019】[0019]

【発明の効果】以上説明したように本願第1の発明に依
ればSi単結晶の育成面に導入される酸素量が一定化さ
れ、Siウエーハの歩留りが向上すると共に急激な熱バ
ランスの変化にも対応でき、本願第2の発明を用いるこ
とにより、第1の発明を自動的に実施できる。
As described above, according to the first aspect of the present invention, the amount of oxygen introduced to the growth surface of the Si single crystal is made constant, the yield of Si wafer is improved, and the thermal balance changes rapidly. The first invention can be automatically implemented by using the second invention of the present application.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本願第1の発明のフローチャートFIG. 1 is a flowchart of the first invention of the present application.

【図2】本願第2の発明の概念図FIG. 2 is a conceptual diagram of the second invention of the present application.

【図3】従来装置の概念図FIG. 3 is a conceptual diagram of a conventional device.

【図4】学習曲線作成法の説明図FIG. 4 is an explanatory diagram of a learning curve creation method.

【符号の説明】[Explanation of symbols]

1 反応容器 2 ルツボ 4 Si融液 6 回転用モータ 12 Si単結晶 t 検出酸素濃度 to 設定酸素濃度 Reference Signs List 1 reaction vessel 2 crucible 4 Si melt 6 rotation motor 12 Si single crystal t detected oxygen concentration to set oxygen concentration

フロントページの続き (56)参考文献 特開 平5−32480(JP,A) 特開 昭61−151088(JP,A) (58)調査した分野(Int.Cl.7,DB名) C30B 1/00 - 35/00 Continuation of front page (56) References JP-A-5-32480 (JP, A) JP-A-61-151088 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C30B 1 / 00-35/00

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 予め設定されたルツボ回転数による制御
を行いつつシリコン融液から単結晶を育成する方法にお
いて、ルツボ内のシリコン融液中の酸素濃度を検出し、
該検出酸素濃度を設定酸素濃度と対比せしめて、前記検
出酸素濃度と設定酸素濃度との差が所定の許容範囲内に
ある場合と、当該許容範囲外の場合とで、ルツボ回転数
に差異を設けたことを特徴とする単結晶育成方法。
1. A method for growing a single crystal from a silicon melt while controlling a predetermined crucible rotation speed, comprising detecting an oxygen concentration in the silicon melt in the crucible,
The detected oxygen concentration is compared with the set oxygen concentration, and the difference between the detected oxygen concentration and the set oxygen concentration is within a predetermined allowable range, and the difference between the detected oxygen concentration and the set oxygen concentration is out of the allowable range. A method for growing a single crystal, comprising:
【請求項2】 反応容器中のルツボが、回転用モータ及
び上下移動用モータによって回転且つ上下移動可能に設
けられている単結晶育成装置において、反応容器の上部
に設けられ、該反応容器に挿入される器具の存在によっ
て生じる反応容器内の気圧変化を防止する気密調整室
と、前記気密調整室を介して取付けられ、シリコン融液
中の酸素濃度を検出するサンプル具と、前記サンプル具
からの検出信号に基づいてルツボの回転制御を行う制御
装置と、を備えたことを特徴とする単結晶育成装置。
2. A single crystal growing apparatus in which a crucible in a reaction vessel is rotatably and vertically movable by a rotation motor and a vertical movement motor, provided at an upper portion of the reaction vessel and inserted into the reaction vessel. An airtight adjustment chamber for preventing a change in air pressure in the reaction vessel caused by the presence of a tool to be performed; a sample tool attached via the airtight adjustment chamber to detect the oxygen concentration in the silicon melt; A control device for controlling the rotation of the crucible based on the detection signal.
JP3045288A 1991-03-12 1991-03-12 Single crystal growing method and apparatus Expired - Lifetime JP3041990B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3045288A JP3041990B2 (en) 1991-03-12 1991-03-12 Single crystal growing method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3045288A JP3041990B2 (en) 1991-03-12 1991-03-12 Single crystal growing method and apparatus

Publications (2)

Publication Number Publication Date
JPH06211594A JPH06211594A (en) 1994-08-02
JP3041990B2 true JP3041990B2 (en) 2000-05-15

Family

ID=12715128

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3045288A Expired - Lifetime JP3041990B2 (en) 1991-03-12 1991-03-12 Single crystal growing method and apparatus

Country Status (1)

Country Link
JP (1) JP3041990B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101721646B1 (en) * 2015-01-29 2017-04-10 전자부품연구원 Ski jump simulator

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08259380A (en) * 1995-03-23 1996-10-08 Nec Corp Growing method for silicon crystal

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101721646B1 (en) * 2015-01-29 2017-04-10 전자부품연구원 Ski jump simulator

Also Published As

Publication number Publication date
JPH06211594A (en) 1994-08-02

Similar Documents

Publication Publication Date Title
EP1605079B1 (en) Method and apparatus for growing silicon crystal by controlling melt-solid interface shape as a function of axial length
JP3992816B2 (en) Method of manufacturing single crystal silicon ingot and wafer by adjusting pulling speed profile in hot zone, ingot and wafer manufactured thereby
US4134785A (en) Real-time analysis and control of melt-chemistry in crystal growing operations
EP0173764A1 (en) Single crystal growing method and apparatus
KR101032593B1 (en) METHOD FOR MANUFACTURING Si SINGLE CRYSTAL INGOT BY CZ METHOD
EP0191111B1 (en) Improvements to pulling processes and equipment for growing silicon crystals having high and controlled carbon content
CN111771018B (en) Method for manufacturing ingot, method for manufacturing semiconductor wafer, and apparatus for manufacturing ingot
JPS61163188A (en) Process for doping impurity in pulling method of silicon single crystal
JP3041990B2 (en) Single crystal growing method and apparatus
JP3444178B2 (en) Single crystal manufacturing method
KR101862157B1 (en) Method and apparatus for manufacturing silicon monocrystalline ingot
JP2016013957A (en) Point defect concentration calculation method, grown-in defect calculation method, grow-in defect in-plane distribution calculation method, and silicon single crystal manufacturing method using said methods
KR100912345B1 (en) Prediction method of oxygen concentration by process parameter in single crystal growing and computer readable record medium on which a program therefor is recorded
US6294017B1 (en) Growth of semiconductor single crystals
JP4066710B2 (en) Silicon single crystal manufacturing method, silicon single crystal manufacturing operation program, and silicon single crystal manufacturing apparatus
JPH07277879A (en) Apparatus for producing single crystal by cz method and melt level control method
JP2720274B2 (en) Single crystal pulling method
JP4715528B2 (en) Semi-insulating GaAs wafer for electronic devices and manufacturing method thereof
JP2579761B2 (en) Control method of single crystal diameter
JP2682600B2 (en) (III) -Method for producing group V compound semiconductor single crystal
JP2002234794A (en) Method of puling up silicon single crystal and silicon wafer
JPH09315887A (en) Production of single crystal and device therefor
JPH06279172A (en) Method and device for pulling up single crystal
CN110273178A (en) The method of pulling up of monocrystalline silicon
JPS63159287A (en) Production of silicon single crystal