JP3036017B2 - Solid electrolytic capacitor and method of manufacturing the same - Google Patents

Solid electrolytic capacitor and method of manufacturing the same

Info

Publication number
JP3036017B2
JP3036017B2 JP2209889A JP20988990A JP3036017B2 JP 3036017 B2 JP3036017 B2 JP 3036017B2 JP 2209889 A JP2209889 A JP 2209889A JP 20988990 A JP20988990 A JP 20988990A JP 3036017 B2 JP3036017 B2 JP 3036017B2
Authority
JP
Japan
Prior art keywords
anode lead
press
insulating resin
electrolytic capacitor
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2209889A
Other languages
Japanese (ja)
Other versions
JPH0493012A (en
Inventor
遠藤  隆之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2209889A priority Critical patent/JP3036017B2/en
Publication of JPH0493012A publication Critical patent/JPH0493012A/en
Application granted granted Critical
Publication of JP3036017B2 publication Critical patent/JP3036017B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は固体電解コンデンサおよびその製造方法に関
し、特にコンデンサ素子構造の改良およびその製造方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid electrolytic capacitor and a method for manufacturing the same, and more particularly, to an improvement in a capacitor element structure and a method for manufacturing the same.

〔従来の技術〕[Conventional technology]

一般に固体電解コンデンサの素子は第9図(a)に示
す如くタンタル,ニオブ,アルミニウムなどの弁作用を
有する金属粉末に、前述の金属粉末と同種の陽極リード
61の一部を埋設してプレス加工し、円柱状,角柱状等の
プレス成形体62を形成した後、真空焼結して多孔質構造
を有する焼結体63を形成する。次に第9図(b)に示す
如く焼結体63の陽極リード61を導電性金属からなる支持
材5に溶接等の工法で接続した後、電解液に浸漬し、電
気化学的工法で、焼結体63の周囲に誘電体皮膜層を形成
する。次に、陽極リード61のプレス成形体62に近接した
部分61bの周囲にポリテトラフルオロエチレン等の耐熱
性,耐薬品性,溌水性を有する絶縁樹脂64を塗布し、乾
燥硬化させる。次に第10図に示す如く、硝酸マンガン水
溶液7に前述の誘電体皮膜層を形成した焼結体63を前述
の絶縁樹脂64を塗布した部位まで浸漬し、焼結体内部ま
で含浸させた後200〜400℃の高温雰囲気中での熱分解を
繰り返し、焼結体63の誘電体皮膜層の上に、二酸化マン
ガンからなる固体電解質層を形成する。次に、その上
に、グラファイト及び銀ペーストなどの陰極引き出し層
8を設け第9図(b)に示すような固体電解コンデンサ
素子69を形成していた。
Generally, the elements of a solid electrolytic capacitor are made of a metal powder having a valve action, such as tantalum, niobium, or aluminum, as shown in FIG.
A part of 61 is buried and pressed to form a press-formed body 62 having a columnar shape, a prismatic shape, or the like, and then subjected to vacuum sintering to form a sintered body 63 having a porous structure. Next, as shown in FIG. 9 (b), the anode lead 61 of the sintered body 63 is connected to the support material 5 made of a conductive metal by a method such as welding, and then immersed in an electrolytic solution, and then electrochemically processed. A dielectric film layer is formed around the sintered body 63. Next, an insulating resin 64 having heat resistance, chemical resistance, and water repellency, such as polytetrafluoroethylene, is applied around a portion 61b of the anode lead 61 close to the press-formed body 62, and dried and cured. Next, as shown in FIG. 10, the sintered body 63 having the above-described dielectric film layer formed thereon is immersed in the manganese nitrate aqueous solution 7 up to the portion where the above-mentioned insulating resin 64 is applied, and impregnated into the inside of the sintered body. Thermal decomposition in a high temperature atmosphere of 200 to 400 ° C. is repeated to form a solid electrolyte layer made of manganese dioxide on the dielectric film layer of the sintered body 63. Next, a cathode lead layer 8 such as graphite and silver paste was provided thereon to form a solid electrolytic capacitor element 69 as shown in FIG. 9 (b).

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

しかし、上述した従来の焼結体には次の欠点がある。 However, the above-described conventional sintered body has the following disadvantages.

(1)平滑な曲面を有する陽極リード61の表面に絶縁樹
脂64を塗布する為、絶縁樹脂64の自重により第11図に示
す如く絶縁樹脂64がたれ下り、更に、絶縁性樹脂64のた
れ下りが著しい場合には、プレス成形体62の表面に達し
て、プレス成形体内部に浸み込み、二酸化マンガン層の
被覆率低下,誘電体皮膜層修復時の電解液浸透性の劣化
等により、容量不足,漏れ電流の増大,インピーダンス
の増大等電気的特性を悪化する原因となる。
(1) Since the insulating resin 64 is applied to the surface of the anode lead 61 having a smooth curved surface, the insulating resin 64 drips down by the weight of the insulating resin 64 as shown in FIG. If it is significant, it reaches the surface of the press-formed body 62, soaks into the inside of the press-formed body, decreases the coverage of the manganese dioxide layer, and deteriorates the electrolyte permeability when the dielectric film layer is repaired. Insufficiency, an increase in leakage current, an increase in impedance, and the like may cause deterioration of electrical characteristics.

(2)一方、コンデンサの小型大容量化に伴い、コンデ
ンサ素子の陽極リードと外部引き出し陽極端子との接続
点はプレス成形体62に限りなく近ずいており、従って陽
極リード61上の限られた狭い部分に絶縁樹脂64を正確
に、且つ適量塗布する必要性が生じている。
(2) On the other hand, with the increase in the size and the capacity of the capacitor, the connection point between the anode lead of the capacitor element and the external lead-out anode terminal is as close as possible to the press-formed body 62, so that the limited point on the anode lead 61 is limited. There is a need to apply the insulating resin 64 accurately and in an appropriate amount to a narrow portion.

本発明の第1の目的は、半導体層形成前に陽極リード
の所定位置に形成される絶縁樹脂がたれ下ることがなく
なり、プレス成形体内に絶縁樹脂が入ることがなく、二
酸化マンガン層の被覆率低下,誘電体皮膜層修復不良が
なくなり、容量不足,漏れ電流増大,インピーダンス大
等の電気的特性不良を減少させることができる固体電解
コンデンサ及びその製造方法を提供することにある。
A first object of the present invention is to prevent an insulating resin formed at a predetermined position of an anode lead from dripping down before a semiconductor layer is formed, prevent an insulating resin from entering a press-formed body, and provide a coverage of a manganese dioxide layer. It is an object of the present invention to provide a solid electrolytic capacitor and a method for manufacturing the same, which are capable of eliminating the deterioration and the failure of repairing the dielectric film layer, and reducing the poor electric characteristics such as insufficient capacity, increased leakage current and large impedance.

また、本発明の第2の目的は、絶縁樹脂を正確、かつ
適量塗布することができ、コンデンサ素子の陽極リード
と外部引き出し陽極端子との接続点がプレス成形体に近
づけることが可能となり、その結果より高密度化が達成
できる固体電解コンデンサ及びその製造方法を提供する
ことにある。
Further, a second object of the present invention is to allow an accurate and appropriate amount of insulating resin to be applied, so that a connection point between an anode lead of a capacitor element and an external lead anode terminal can be brought closer to a press-formed body. An object of the present invention is to provide a solid electrolytic capacitor capable of achieving higher density than the result and a method for manufacturing the same.

〔課題を解決するための手段〕[Means for solving the problem]

本発明の第1の発明の固体電解コンデンサは、弁作用
を有する金属粉末に陽極リードを植立させてプレス成形
し、真空焼結した陽極体の陽極リードに、陽極リードの
断面方向に凸部又は凹部を設け、更に、上記陽極リード
上の断面方向凸部又は凹部の周上およびその周囲又は凹
部内およびその周囲に、ポリテトラフルオロエチレン等
の溌水性絶縁樹脂層を設けたことを特徴として構成され
る。
The solid electrolytic capacitor according to the first aspect of the present invention is characterized in that an anode lead is planted on a metal powder having a valve action, press-molded, and the anode lead of a vacuum-sintered anode body is provided with a projection in a cross-sectional direction of the anode lead. Or a concave portion, and further, a water-repellent insulating resin layer such as polytetrafluoroethylene is provided on and around the convex portion or concave portion in the cross-sectional direction on the anode lead or in and around the concave portion. Be composed.

また、本発明の第2の発明の固体電解コンデンサの製
造方法は、弁作用を有する金属粉末に陽極リードの一部
を埋設・プレス成形し、プレス成形体を得る工程と、そ
のプレス成形体を真空焼結し焼結体を得る工程と、その
焼結体の陽極リードの前記プレス成形体から所定の距離
離れた部分に陽極リードの断面方向に凸部又は凹部を形
成する工程と、前記凸部上およびその周囲又は凹部内お
よびその周囲にポリテトラフルオロエチレン等の溌水性
絶縁樹脂を塗布・硬化し、環状の絶縁樹脂層を形成する
工程と、誘電体皮膜層を形成する工程と、固体電解質層
を形成する工程とを含むことを特徴として構成される。
Further, a method for manufacturing a solid electrolytic capacitor according to a second invention of the present invention includes a step of embedding and press-forming a part of an anode lead in a metal powder having a valve action to obtain a press-formed body. A step of obtaining a sintered body by vacuum sintering, a step of forming a convex portion or a concave portion in a cross-sectional direction of the anode lead in a portion of the anode lead at a predetermined distance from the press-formed body of the sintered body, A step of applying and curing a water-repellent insulating resin such as polytetrafluoroethylene on the part and its periphery or in and around the concave part to form an annular insulating resin layer; a step of forming a dielectric coating layer; And forming an electrolyte layer.

〔実施例〕〔Example〕

次に本発明について図面を参照して説明する。第1図
(a)〜(c)は、本発明の第1の実施例の固体電解コ
ンデンサ素子の構造を示す側面断面図、斜視図及び陽極
リード凸部の拡大図、第2図(a),(b),(d),
(e)は本発明の固体電解コンデンサ素子の製造工程を
順次説明した側面図、第2図(c)は陽極リード凸部の
断面図である。
Next, the present invention will be described with reference to the drawings. 1 (a) to 1 (c) are side sectional views, perspective views, and enlarged views of an anode lead convex portion showing the structure of a solid electrolytic capacitor element according to a first embodiment of the present invention, and FIG. 2 (a). , (B), (d),
FIG. 2 (e) is a side view for sequentially explaining the manufacturing process of the solid electrolytic capacitor element of the present invention, and FIG. 2 (c) is a sectional view of the anode lead convex portion.

図中参照符号1aは、弁作用を有する金属粉末からなる
プレス成形体2と同種の金属よりなる陽極リード1上
に、上記プレス成形体に近接した部分1bで、陽極リード
1の中心線に平行で、且つ対面する2方向にくの字状の
突出を設けた凸部であり、4は上記陽極リード1の凸部
1a上に、充填された耐熱性・耐薬品性及び溌水性を有す
る絶縁樹脂である。
In the figure, reference numeral 1a denotes a portion 1b close to the press-formed body on an anode lead 1 made of the same kind of metal as a press-formed body 2 made of a metal powder having a valve action, which is parallel to the center line of the anode lead 1. And a convex portion provided with a U-shaped protrusion in two directions facing each other, and 4 is a convex portion of the anode lead 1.
An insulating resin having heat resistance, chemical resistance and water repellency filled on 1a.

次に本発明の実施例で用いた固体電解コンデンサ素子
を従来例で用いた固体電解コンデンサ素子と比較して詳
細に説明する。
Next, the solid electrolytic capacitor element used in the embodiment of the present invention will be described in detail in comparison with the solid electrolytic capacitor element used in the conventional example.

従来例の固体電解コンデンサ素子として第9図
(a),(b)に示し概略を説明した様にタンタル粉末
をプレス成形して、直径0.4mmの陽極リード61を埋設部
分の深さ1.5mm,素子の直径を2.0mm全長を3.0mmの円柱状
のプレス成形体62を得た。次に、このプレス成形体62を
真空度10-5torr,温度1700℃の真空高温炉で真空焼結し
て、焼結体63を得た。次に銅,銀,アルミニウム等の導
電性を有する金属からなる支持材5に溶接等の工法で接
続した後、硝酸,硫酸等の水溶液からなる電解液に浸漬
し、電気化学的工法により、焼結体63の空腔内を含め、
タンタルの表面に五酸化タンタルからなる誘電体皮膜層
を形成し、次に、陽極リード61のプレス成形体62から0.
5mm離れたプレス成形体近接部分61の周上に、ポリテト
ラフルオロエチレン等の絶縁樹脂64をディスペンサー等
で幅0.3mm厚さ0.3mm程度に塗布し、乾燥硬化後、硝酸マ
ンガン水溶液に浸漬し、200〜400℃の高温雰囲気中での
熱分解により二酸化マンガンからなる固体電解質層を形
成し、この二酸化マンガン形成工程を数回繰り返した
後、その上にグラファイト層,銀ペースト層などの陰極
引き出し層8を順次形成して固体電解コンデンサ素子69
を形成した。
As a conventional solid electrolytic capacitor element, a tantalum powder was press-molded as shown in FIGS. 9A and 9B, and an anode lead 61 having a diameter of 0.4 mm was buried at a depth of 1.5 mm. A cylindrical press-formed body 62 having a device diameter of 2.0 mm and a total length of 3.0 mm was obtained. Next, this press-formed body 62 was vacuum-sintered in a vacuum high-temperature furnace having a degree of vacuum of 10 −5 torr and a temperature of 1700 ° C. to obtain a sintered body 63. Next, after being connected to a support member 5 made of a conductive metal such as copper, silver, and aluminum by a method such as welding, it is immersed in an electrolytic solution composed of an aqueous solution of nitric acid, sulfuric acid, or the like, and fired by an electrochemical method. Including in the cavity of the body 63
A dielectric film layer made of tantalum pentoxide is formed on the surface of tantalum, and then a press-formed body 62 of anode lead 61 has a thickness of 0.
On the periphery of the press-formed body proximity portion 61 5 mm away, apply an insulating resin 64 such as polytetrafluoroethylene to a width of about 0.3 mm and a thickness of about 0.3 mm with a dispenser or the like, and after drying and curing, immerse in a manganese nitrate aqueous solution, A solid electrolyte layer composed of manganese dioxide is formed by thermal decomposition in a high-temperature atmosphere at 200 to 400 ° C. After repeating this manganese dioxide formation process several times, a cathode extraction layer such as a graphite layer and a silver paste layer is formed thereon. 8 are sequentially formed to form a solid electrolytic capacitor element 69
Was formed.

一方本発明の一実施例による固体電解コンデンサ素子
として、前述従来例と同一のタンタル粉末をプレス成形
し、陽極リード1を埋設した後、真空焼結し、次に前述
従来例と同一の金属よりなる支持材5に溶接し、第2図
(a)に示すプレス成形体を得る。次に第1図(c),
第2図(b),(c)に示す如く陽極リード1のプレス
成形体2から0.5mm離れた部分に、陽極リードの中心線1
cから0.1mm離れる方向に幅が最大0.3mmとなるくの字状
の突出が、中心線をはさんで対背する様に、超鋼等から
なるクランプ6で、陽極リード1の一部を圧延し陽極リ
ードの凸部1aを得た。次に、第2図(d)に示す如く、
陽極リードの凸部1aの上部及びその周囲をディスペンサ
ー等を用いて、絶縁樹脂を環状に塗布し、乾燥硬化さ
せ、次に、電気化学的方法により、誘電体皮膜層を形成
する。次に、硝酸マンガン水溶液に浸漬すると、第2図
(e)に示す如く絶縁樹脂4が硝酸マンガン水溶液7を
溌水させる。次に、従来例と同様に熱分解を行ない、二
酸化マンガンからなる固体電解質層を形成し、この二酸
化マンガン形成工程を数回繰り返した後、グラファイト
層,銀ペースト層を順次形成し、本発明の一実施例によ
る固体電解コンデンサ素子を得た。
On the other hand, as a solid electrolytic capacitor element according to one embodiment of the present invention, the same tantalum powder as in the above-described conventional example is press-molded, the anode lead 1 is embedded, vacuum-sintered, and then the same metal as in the above-described conventional example is used. 2A to obtain a press-formed body as shown in FIG. Next, FIG. 1 (c),
As shown in FIGS. 2 (b) and 2 (c), the center line 1 of the anode lead 1
A part of the anode lead 1 is clamped with a clamp 6 made of super steel or the like so that a U-shaped protrusion with a maximum width of 0.3 mm in the direction away from c by 0.3 mm is placed across the center line. Rolling was performed to obtain a projection 1a of the anode lead. Next, as shown in FIG.
Using a dispenser or the like, an insulating resin is applied in an annular shape on the upper portion of the convex portion 1a of the anode lead and its surroundings, dried and cured, and then a dielectric film layer is formed by an electrochemical method. Next, when immersed in a manganese nitrate aqueous solution, the insulating resin 4 repels the manganese nitrate aqueous solution 7 as shown in FIG. Next, pyrolysis is performed in the same manner as in the conventional example to form a solid electrolyte layer made of manganese dioxide. After repeating this manganese dioxide formation step several times, a graphite layer and a silver paste layer are sequentially formed, and A solid electrolytic capacitor element according to one example was obtained.

従来例では絶縁性樹脂の粘度,チキソトロピーの変動
等により、陽極リード上の所定の位置に塗布しても、自
重により、陽極リード上のたれ下りが発生したのに対
し、本発明では、陽極リード上に凸部を設け、その上部
に絶縁樹脂を塗布することにより、絶縁樹脂の陽極リー
ドとの体積あたりの接触面積が広くなり、かつ凸部上に
絶縁樹脂が保持され、絶縁樹脂のたれ下りが発生しなく
なる利点があり、被膜率の低下による容量不足の発生を
従来の1/2以下にすることが出来る。
In the conventional example, even if it is applied to a predetermined position on the anode lead due to the fluctuation of the viscosity and thixotropy of the insulating resin, the sagging down on the anode lead occurs due to its own weight. By providing a convex part on the upper part and applying the insulating resin on the upper part, the contact area per volume of the insulating resin with the anode lead is increased, and the insulating resin is held on the convex part, and the insulating resin is dripped. This has the advantage that the generation of insufficient capacity due to a decrease in the coating ratio can be reduced to 1/2 or less of the conventional case.

第3図は、本発明の他の実施例を示す斜視図であり、
絶縁樹脂を塗布する前の形状を示す。この実施例では前
例と同様に弁作用を有する金属粉末をプレス成形してプ
レス成形体2を形成した後、プレス成形体2より導出し
ている陽極リード11上のプレス成形体2に近接した部分
11bに陽極リードの中心線11cに平行になるように対背す
るくの字状の突出を2段連続して設けた陽極リードの凸
部11aが得られ、2段に連続した突出部が樹脂との接触
面積を拡げることにより、実施例1と同等以上の効果が
得られる。
FIG. 3 is a perspective view showing another embodiment of the present invention,
The shape before applying the insulating resin is shown. In this embodiment, as in the previous example, a metal powder having a valve action is press-formed to form a press-formed body 2, and a portion of the anode lead 11 protruding from the press-formed body 2 and adjacent to the press-formed body 2.
A convex portion 11a of the anode lead is provided on the lead 11b so as to be parallel to the center line 11c of the anode lead and formed in a two-step shape. By increasing the contact area with the first embodiment, an effect equal to or greater than that of the first embodiment can be obtained.

第4図は本発明の第3の実施例を説明するための斜視
図である。実施例3では実施例1に於て、陽極リードの
凸部を中心線を挟んで対背した2箇所に設けたのに対
し、断面形状くの字状の突出を陽極リード21の周囲に輪
状に設けた陽極リードの凸部21aに於ても実施例1と同
様な効果が得られるとともに突出が陽極リードを1周す
る為、絶縁樹脂がよりいっそうたれにくくなる。
FIG. 4 is a perspective view for explaining a third embodiment of the present invention. In the third embodiment, the protrusions of the anode lead are provided at two places opposite to each other with the center line interposed therebetween in the first embodiment. The same effect as that of the first embodiment can be obtained in the projection 21a of the anode lead provided in the first embodiment, and the protrusion makes one round of the anode lead.

尚、凸部の形状は本実施例に限るものではなく第2,第
3の実施例を合わせたもの、2段の突出部を陽極リード
の中心線に対して90゜回転して交互に設けたもの等の形
状に於ても、同様の効果が得られる。
The shape of the projections is not limited to this embodiment, but is a combination of the second and third embodiments. Two-stage projections are provided alternately by rotating the anode lead by 90 ° with respect to the center line. The same effect can be obtained even in a shape such as the one obtained by the above method.

更に、凸部の形成工程も、支持材に焼結体を接続した
後に限るものではなく、線材料に於ての加工、又はプレ
ス成形体形成時、プレス成形体焼結後、誘電体皮膜形成
後等で実施しても同様な効果が得られることは勿論であ
る。
Further, the step of forming the projections is not limited to the step after connecting the sintered body to the support material, and the processing of the wire material or the formation of the press-formed body, the sintering of the press-formed body, the formation of the dielectric film, Obviously, a similar effect can be obtained even if the method is performed later.

第5図(a),(b)は本発明の第4の実施例の固体
電解コンデンサ素子の構造を示す側面断面図及び斜視図
であり、第6図(a)〜(d)は第4の実施例の固体電
解コンデンサ素子の製造工程を順次説明した側面図であ
る。
FIGS. 5 (a) and 5 (b) are a side sectional view and a perspective view showing the structure of a solid electrolytic capacitor element according to a fourth embodiment of the present invention, and FIGS. 6 (a) to 6 (d) show the fourth embodiment. FIG. 7 is a side view for sequentially explaining the manufacturing process of the solid electrolytic capacitor element of the embodiment.

図中符号31aは弁作用を有する金属粉末からなるプレ
ス成形体2と同種の金属よりなる陽極リード31上に、上
記プレス成形体に近接した部分31bで陽極リード31の中
心線31cに平行で、かつ対面する様に2方向からコの字
状の凹みを設けた凹部であり、34は上記陽極リード31の
凹部31a内に充填された耐熱性,耐薬品性及び溌水性を
有する絶縁樹脂である。
In the figure, reference numeral 31a denotes an anode lead 31 made of the same kind of metal as the press-formed body 2 made of a metal powder having a valve action, and a portion 31b close to the press-formed body, parallel to the center line 31c of the anode lead 31, A concave portion is provided with a U-shaped concave from two directions so as to face each other. Reference numeral 34 denotes an insulating resin filled in the concave portion 31a of the anode lead 31 and having heat resistance, chemical resistance and water repellency. .

製造工程は、前述の第1の実施例と同様に、タンタル
粉末をプレス成形して、陽極リード31を埋設した後、真
空焼結し、次に前述従来例と同一の金属からなる支持材
5に溶接し、第5図(a)に示すプレス成形体を得る。
次に、第6図(b)に示す如く陽極リード31のプレス成
形体2から0.5mm離れた部分に陽極リードの中心線31c方
向に幅0.3mm,直径方向の深さ0.1mmのコの字状の凹み
が、中心線31cを挟んで、対面する様に超鋼等からなる
クランプ36で加圧成形し陽極リードの凹部31aを得た。
次に、第6図(c)に示す如く、陽極リードの凹部31a
の内部、及びその周囲をディスペンサー等を用いて絶縁
樹脂を環状に塗布し、乾燥硬化させ、次に電気化学的方
法により誘電体皮膜層を形成する。次に硝酸マンガン水
溶液に浸漬すると、第6図(d)に示す如く絶縁樹脂34
が硝酸マンガン水溶液を溌水させる。次に従来例と同様
に熱分解を行ない二酸化マンガンからなる固体電解質層
を形成し、この二酸化マンガン形成工程を数回繰り返し
た後、前述従来例,第1実施例と同様にグラファイト
層,銀ペースト層を順次形成し、本発明第4の実施例に
よる固体電解コンデンサ素子を得た。
The manufacturing process is the same as in the first embodiment described above, in which tantalum powder is press-molded, the anode lead 31 is buried, vacuum sintering is performed, and then the supporting material 5 made of the same metal as the above-described conventional example is used. To obtain a press-formed body shown in FIG. 5 (a).
Next, as shown in FIG. 6 (b), a U-shape having a width of 0.3 mm in the direction of the center line 31c of the anode lead and a depth of 0.1 mm in the diametrical direction is placed at a position 0.5 mm away from the press-formed body 2 of the anode lead 31. Pressing was performed with a clamp 36 made of carbide steel or the like so that the dents facing each other with the center line 31c interposed therebetween, thereby obtaining a concave portion 31a of the anode lead.
Next, as shown in FIG. 6 (c), a concave portion 31a of the anode lead is formed.
An insulating resin is applied in a ring shape inside and around using a dispenser or the like, dried and cured, and then a dielectric film layer is formed by an electrochemical method. Next, when immersed in an aqueous solution of manganese nitrate, as shown in FIG.
Makes the manganese nitrate aqueous solution water repellent. Next, pyrolysis is performed in the same manner as in the conventional example to form a solid electrolyte layer made of manganese dioxide, and this manganese dioxide forming step is repeated several times. The layers were sequentially formed to obtain a solid electrolytic capacitor element according to the fourth embodiment of the present invention.

本実施例では、陽極リード上に凹部を設け、その内部
に絶縁樹脂を入れることにより絶縁樹脂の陽極リードと
の体積あたりの接触面積が拡くなり、凹部内に絶縁樹脂
が保持され、かつ凹部の側面部に樹脂が支えられ、絶縁
樹脂のたれ下がりが発生しなくなる利点がある。
In this embodiment, a concave portion is provided on the anode lead, and the insulating resin is put in the concave portion, so that the contact area per volume of the insulating resin with the anode lead is increased, the insulating resin is held in the concave portion, and the concave portion is formed. There is an advantage that the resin is supported on the side surface of the substrate and the insulating resin does not sag.

第7図は本発明の第5の実施例を示す斜視図であり、
絶縁樹脂を塗布する前の形状を示す。この実施例では前
例と同様に弁作用を有する金属粉末をプレス成形してプ
レス成形体2を形成した後、プレス成形体2より導出し
ている陽極リード上に、プレス成形体2に近接した部分
41bで、陽極リードの中心線41cに平行で、かつ対面する
様に2方向からコの字状の凹みを設け、更に、陽極リー
ドの中心線41cと平行する部分に鋸歯状の細かい凹凸41d
を設けた陽極リードの凹部41aが得られ、鋸歯状の細か
い凹凸41dを有することにより、実施例4と同等以上の
効果が得られる。
FIG. 7 is a perspective view showing a fifth embodiment of the present invention.
The shape before applying the insulating resin is shown. In this embodiment, a metal powder having a valve action is press-formed in the same manner as in the previous example to form a press-formed body 2, and a portion close to the press-formed body 2 is placed on an anode lead extending from the press-formed body 2.
In U, a U-shaped recess is provided from two directions parallel to and facing the center line 41c of the anode lead, and fine serrations 41d are formed in portions parallel to the center line 41c of the anode lead.
By providing the concave portion 41a of the anode lead provided with, and having fine saw-toothed irregularities 41d, an effect equal to or more than that of the fourth embodiment can be obtained.

第8図は本発明の第6の実施例の斜視図である。実施
例6では実施例4に於て、陽極リードの凹部を中心線を
挟んだ対面した2箇所に設けたのに対し、断面形状コの
字状の凹みを陽極リード51の周囲に輪状に設けた陽極リ
ードの凹部51aが得られ、実施例4と同様な効果が得ら
れるとともに凹みが陽極リードを1周する為、絶縁樹脂
がよりいっそうたれにくくなる。
FIG. 8 is a perspective view of a sixth embodiment of the present invention. In the sixth embodiment, the concave portion of the anode lead is provided at two locations facing each other across the center line in the fourth embodiment, whereas the U-shaped concave portion is provided around the anode lead 51 in a ring shape. Thus, the concave portion 51a of the anode lead is obtained, and the same effect as that of the fourth embodiment is obtained. In addition, since the concave portion makes one round of the anode lead, the insulating resin is harder to drip.

尚、凹みの形状は前述した実施例に限るものではな
く、第5,第6の実施例を合わせたもの、凹み内に格子状
の細かい凹凸等の形状にしても、同様の効果が得られ
る。
Note that the shape of the recess is not limited to the above-described embodiment, and the same effect can be obtained by combining the fifth and sixth embodiments, or by forming a lattice with fine irregularities in the recess. .

更に凹みの形成工程も、支持材に焼結体を接続した後
に限るものではなく、プレス成形体形成時、プレス成形
体焼結後、誘電体皮膜形成後等で実施しても同様な効果
が得られることは勿論である。
Further, the step of forming the dent is not limited to the step after connecting the sintered body to the support material. The same effect can be obtained even when the pressed body is formed, after the pressed body is sintered, or after the dielectric film is formed. Of course, it can be obtained.

〔発明の効果〕〔The invention's effect〕

以上説明したように、本発明には次の効果がある。 As described above, the present invention has the following effects.

(1)陽極リード上に塗布される絶縁樹脂は陽極リード
上に形成された凸部上又は凹部内に保持される為、たれ
下ることがなくなり、プレス成形体内に絶縁樹脂が入る
ことがなく二酸化マンガン層の被覆率低下,誘電体皮膜
層修復不良がなくなり、容量不足,漏れ電流増大,イン
ピーダンス大等の電気的特性不良を減少させることが出
来る。
(1) Since the insulating resin applied on the anode lead is held on the convex portion or the concave portion formed on the anode lead, the insulating resin does not sag, and the insulating resin does not enter the press-formed body, and the A reduction in the coverage of the manganese layer and a failure in repairing the dielectric film layer are eliminated, and defective electrical characteristics such as insufficient capacity, increased leakage current, and large impedance can be reduced.

(2)絶縁樹脂を正確且つ適量塗布出来る為、コンデン
サ素子の陽極リードと外部引き出し陽極端子との接続点
がプレス成形体に近ずけることが可能となり、従ってよ
り高密度な固体電解コンデンサを作ることが出来る。
(2) Since the insulating resin can be applied accurately and in an appropriate amount, the connection point between the anode lead of the capacitor element and the external lead-out anode terminal can be close to the press-formed body, and therefore a higher density solid electrolytic capacitor can be manufactured. I can do it.

【図面の簡単な説明】[Brief description of the drawings]

第1図(a)〜(c)は本発明の第1の実施例の固体電
解コンデンサ素子の側面断面図,斜視図及び陽極リード
凹部の拡大図、第2図(a)〜(e)は第1図(a)〜
(c)に示す第1の実施例の製造工程を説明するための
側面図、第3図は本発明の第2の実施例斜視図、第4図
は本発明の第3の実施例の斜視図、第5図(a),
(b)は本発明の第4の実施例の側面断面図および斜視
図、第6図(a)〜(d)は第5図(a),(b)に示
す第4の実施例の製造工程を説明するための側面図、第
7図は本発明の第5の実施例の斜視図、第8図は本発明
の第6の実施例の斜視図、第9図(a),(b)は従来
の固体電解コンデンサの焼結体の側断面図及び陰極引き
出し層形成後の正面図、第10図は絶縁樹脂形成後の焼結
体を硝酸マンガン水溶液に浸漬中の正面図、第11図は従
来例で絶縁樹脂が垂れ下った不良焼結体を示す正面図で
ある。 1,11,21,31,41,51……陽極リード、1a,11a,21a……陽極
リードの凸部、31a,41a,51a……陽極リードの凹部、1b,
11b,31b,41b,61b……陽極リードのプレス成形体に近接
した部分、1c,11c,31c,41c……陽極リードの中心線、41
d……鋸歯状の細かい凹凸、2……プレス成形体、3,33,
63……焼結体、4,34,64……絶縁樹脂、5……支持材、
6,36……クランプ、7……硝酸マンガン水溶液、8……
陰極引き出し層、69……固体電解コンデンサ素子。
FIGS. 1 (a) to 1 (c) are side sectional views, perspective views, and enlarged views of anode lead recesses of a solid electrolytic capacitor element according to a first embodiment of the present invention, and FIGS. Fig. 1 (a)-
(C) is a side view for explaining the manufacturing process of the first embodiment, FIG. 3 is a perspective view of the second embodiment of the present invention, and FIG. 4 is a perspective view of the third embodiment of the present invention. FIG. 5 (a),
(B) is a side sectional view and a perspective view of the fourth embodiment of the present invention, and FIGS. 6 (a) to 6 (d) are manufactures of the fourth embodiment shown in FIGS. 5 (a) and (b). FIG. 7 is a perspective view of a fifth embodiment of the present invention, FIG. 8 is a perspective view of a sixth embodiment of the present invention, and FIGS. 9 (a) and 9 (b). ) Is a side cross-sectional view of a conventional sintered body of a solid electrolytic capacitor and a front view after forming a cathode lead layer. FIG. 10 is a front view of the sintered body after forming an insulating resin in a manganese nitrate aqueous solution. The figure is a front view showing a defective sintered body in which an insulating resin hangs in a conventional example. 1,11,21,31,41,51 …… Anode lead, 1a, 11a, 21a …… Anode protrusion, 31a, 41a, 51a …… Anode recess, 1b,
11b, 31b, 41b, 61b ... A portion of the anode lead close to the press-formed body, 1c, 11c, 31c, 41c ... Anode line of the anode lead, 41
d… Saw-tooth fine irregularities, 2 …… Press-formed body, 3,33,
63 …… Sintered body, 4,34,64 …… Insulating resin, 5 …… Support material,
6,36 …… Clamp, 7… Manganese nitrate aqueous solution, 8 ……
Cathode extraction layer, 69 ... Solid electrolytic capacitor element.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】弁作用を有する金属粉末に陽極リードを植
立させてプレス成形し、真空焼結した陽極体の表面に順
次陽極酸化層,固体電解質層,および陰極引き出し部が
設けられた固体電解コンデンサにおいて、前記陽極体の
陽極リードに、陽極リードの断面方向に凸部又は凹部を
設け、かつ前記陽極リード上に形成した凸部上およびそ
の周囲、又は凹部内およびその周囲に、ポリテトラフル
オロエチレン等からなる溌水性絶縁樹脂層を設けたこと
を特徴とする固体電解コンデンサ。
An anode lead is planted on a metal powder having a valve action, press-formed, and vacuum-sintered. A solid body provided with an anodic oxide layer, a solid electrolyte layer, and a cathode lead portion on the surface in this order. In the electrolytic capacitor, the anode lead of the anode body is provided with a projection or a depression in a cross-sectional direction of the anode lead, and a polytetrade is formed on and around the projection formed on the anode lead, or in and around the depression. A solid electrolytic capacitor provided with a water-repellent insulating resin layer made of fluoroethylene or the like.
【請求項2】弁作用を有する金属粉末に陽極リードの一
部を埋設・プレス成形し、プレス成形体を得る工程と、
該プレス成形体を真空焼結し焼結体を得る工程と、該焼
結体の陽極リードの前記プレス成形体から所定の距離離
れた部分に陽極リードの断面方向に凸部又は凹部を形成
する工程と、前記凸部上およびその周囲又は凹部内およ
びその周囲にポリテトラフルオロエチレン等の溌水性絶
縁樹脂を塗布・硬化し、環状の絶縁樹脂層を形成する工
程と、誘電体皮膜層を形成する工程と、固体電解質層を
形成する工程とを含むことを特徴とする固体電解コンデ
ンサの製造方法。
2. A step of burying and press forming a part of the anode lead in metal powder having a valve action to obtain a press formed body;
A step of obtaining a sintered body by vacuum sintering the press-formed body, and forming a convex portion or a concave portion in a sectional direction of the anode lead in a portion of the anode lead of the sintered body separated from the press-formed body by a predetermined distance. A step of applying and curing a water-repellent insulating resin such as polytetrafluoroethylene on and around the convex portion or in or around the concave portion to form an annular insulating resin layer, and forming a dielectric film layer And a step of forming a solid electrolyte layer.
JP2209889A 1990-08-08 1990-08-08 Solid electrolytic capacitor and method of manufacturing the same Expired - Lifetime JP3036017B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2209889A JP3036017B2 (en) 1990-08-08 1990-08-08 Solid electrolytic capacitor and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2209889A JP3036017B2 (en) 1990-08-08 1990-08-08 Solid electrolytic capacitor and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH0493012A JPH0493012A (en) 1992-03-25
JP3036017B2 true JP3036017B2 (en) 2000-04-24

Family

ID=16580328

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2209889A Expired - Lifetime JP3036017B2 (en) 1990-08-08 1990-08-08 Solid electrolytic capacitor and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3036017B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2786976B2 (en) * 1992-10-12 1998-08-13 ローム株式会社 Manufacturing of electronic components
JP2784124B2 (en) * 1992-12-15 1998-08-06 ローム株式会社 Liquid insulation coating method for lead wire
JP4601440B2 (en) * 2005-02-02 2010-12-22 三洋電機株式会社 Solid electrolytic capacitor and manufacturing method thereof
JP2010153690A (en) * 2008-12-26 2010-07-08 Sanyo Electric Co Ltd Solid-state electrolytic capacitor and method of manufacturing the same
JP2015201668A (en) * 2010-04-22 2015-11-12 ローム株式会社 Solid electrolytic capacitor and manufacturing method for solid electrolytic capacitor

Also Published As

Publication number Publication date
JPH0493012A (en) 1992-03-25

Similar Documents

Publication Publication Date Title
US5707407A (en) Method of forming chip-formed solid electrolytic capacitor without an anode lead projecting from anode member
US6413282B1 (en) Electrolytic capacitor and method for manufacturing the same
US6906912B2 (en) Solid electrolytic capacitor and method of producing the same
US9472349B2 (en) Sintered article, particularly for low ESR capacitor anodes
JP3535014B2 (en) Electrode for electrolytic capacitor
JPH07320982A (en) Manufacture of capacitor element for tantalum solid electrolytic capacitor
JP3036017B2 (en) Solid electrolytic capacitor and method of manufacturing the same
JP5232899B2 (en) Solid electrolytic capacitor
JP2010192831A (en) Solid electrolytic capacitor
US8000085B2 (en) Solid electrolytic capacitor
JP5611745B2 (en) Solid electrolytic capacitor manufacturing method and solid electrolytic capacitor
US8004825B2 (en) Solid electrolyte capacitor
JP4748726B2 (en) Solid electrolytic capacitor
JP4424658B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP2008192886A (en) Solid electrolytic capacitor and manufacturing method thereof
KR100280293B1 (en) Method of manufacturing tantalum capacitor
KR20060135865A (en) Method for manufacturing solid electrolytic capacitor
KR19990039881A (en) Method for manufacturing tantalum solid electrolytic capacitor
JPH09237743A (en) Solid electrolytic capacitor
JP2023095573A (en) Manufacturing method of electrolytic capacitor, and evaluation method of conductive polymer layer
KR200211021Y1 (en) Porous Tantalum Pellets of Tantalum Solid Electrolytic Capacitors
JPH0751789Y2 (en) Solid electrolytic capacitor
JPH09213572A (en) Solid state electrolytic capacitor
JP2001006979A (en) Solid electrolytic capacitor
JP2002222735A (en) Method for manufacturing solid-state electrolyte capacitor