JP3034322B2 - Method for manufacturing superconducting junction structure - Google Patents

Method for manufacturing superconducting junction structure

Info

Publication number
JP3034322B2
JP3034322B2 JP3064444A JP6444491A JP3034322B2 JP 3034322 B2 JP3034322 B2 JP 3034322B2 JP 3064444 A JP3064444 A JP 3064444A JP 6444491 A JP6444491 A JP 6444491A JP 3034322 B2 JP3034322 B2 JP 3034322B2
Authority
JP
Japan
Prior art keywords
phase
superconducting
junction
normal
insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3064444A
Other languages
Japanese (ja)
Other versions
JPH04299877A (en
Inventor
成典 田中
伸 福島
ひろみ 丹生
健 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP3064444A priority Critical patent/JP3034322B2/en
Publication of JPH04299877A publication Critical patent/JPH04299877A/en
Application granted granted Critical
Publication of JP3034322B2 publication Critical patent/JP3034322B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Manufacturing Of Electrical Connectors (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Ceramic Products (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[発明の目的][Object of the Invention]

【0002】[0002]

【産業上の利用分野】本発明は、酸化物超電導体を用い
た超電導/常伝導もしくは超電導/絶縁の接合構造を有
する超電導接合構造体製造方法に関する。
The present invention relates to a process for producing a superconductor junction having a junction structure of the superconducting / normal conductive or superconductive / insulating an oxide superconductor.

【0003】[0003]

【従来の技術】近年、 Y-Ba-Cu-O系、 Bi-Sr-Ca-Cu-O
系、 Tl-Ba-Ca-Cu-O系等に代表される酸化物超電導体
が、液体窒素冷却によっても超電導性を示すことから注
目を集めている。このような酸化物超電導体を用いた超
電導デバイスは、その利用に際して高価な液体ヘリウム
を使用する必要がなく、安価な液体窒素によって動作さ
せることが可能となることから、その実用化が強く望ま
れている。
2. Description of the Related Art In recent years, Y-Ba-Cu-O, Bi-Sr-Ca-Cu-O
Oxide superconductors, such as Tl-Ba-Ca-Cu-O, have attracted attention because they exhibit superconductivity even when cooled with liquid nitrogen. A superconducting device using such an oxide superconductor does not require the use of expensive liquid helium when used, and can be operated with inexpensive liquid nitrogen. ing.

【0004】ところで、上記したような酸化物超電導体
を用いた超電導デバイスを実現するためには、超電導
(S)/常伝導(N) もしくは超電導(S)/絶縁体(I) 等の良好
な接合構造体を作製する必要がある。そこで、スパッタ
リング法、イオンクラスタービーム(ICB) 法、有機金属
化学気相成長(MOCVD) 法、分子ビームエピタキシー(MB
E)法等の薄膜形成技術を用いて、酸化物超電導体の薄
膜や超格子を作製し、これらを利用して、上記したよう
な S/Nあるいは S/I接合を実現しようとする試みが成さ
れている。具体的には、酸化物超電導体薄膜上に、銀や
金等の貴金属層(常伝導金属層)を薄膜形成技術を利用
して積層形成したり、同様に絶縁体層を積層形成する等
によって、 S/Nあるいは S/I接合を形成することが試み
られている。
By the way, in order to realize a superconducting device using the above-described oxide superconductor, it is necessary to use a superconducting device.
It is necessary to produce a good joint structure such as (S) / normal conduction (N) or superconductivity (S) / insulator (I). Therefore, sputtering, ion cluster beam (ICB), metal organic chemical vapor deposition (MOCVD), molecular beam epitaxy (MB
Attempts have been made to fabricate oxide superconductor thin films and superlattices by using thin film formation techniques such as E) and use these to realize S / N or S / I junctions as described above. Has been established. More specifically, a noble metal layer (normal metal layer) such as silver or gold is formed on an oxide superconductor thin film by using a thin film forming technique, or an insulating layer is similarly formed by lamination. Attempts have been made to form S / N or S / I junctions.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上述し
たような薄膜の積層形成による超電導接合構造体では、
以下に示すような問題があった。例えば、酸化物超電導
体層上に常伝導金属層を積層形成する過程で、これらの
間に絶縁体等からなる反応層が形成されたり、また超電
導層と常伝導金属層とを十分な接触面積で積層形成する
ことができない等といった問題があった。これらによっ
て、超電導体と常伝導金属間の接触抵抗が大きくなり、
超電導デバイスを実現する上で大きな障害となってしま
う。また、絶縁体層を積層形成する場合においても、十
分な接触面積が得られなかったり、さらには絶縁体薄膜
を十分な薄さで良好に形成すること自体にも困難を伴う
等の問題があった。
However, in a superconducting junction structure formed by laminating thin films as described above,
There were the following problems. For example, in the process of laminating a normal metal layer on an oxide superconductor layer, a reaction layer composed of an insulator or the like is formed between them, or a sufficient contact area between the superconducting layer and the normal metal layer is formed. However, there is a problem that it is not possible to form a laminated structure. As a result, the contact resistance between the superconductor and the normal metal increases,
This is a major obstacle in realizing a superconducting device. Further, in the case where the insulator layers are formed by lamination, there are problems that a sufficient contact area cannot be obtained and that it is difficult to form an insulator thin film with sufficient thickness itself. Was.

【0006】そこで、超電導/常伝導もしくは超電導/
絶縁体間に中間的な層を介在させたり、使用する金属や
絶縁体自体の構造を検討することによって、接合状態を
改善することが試みられているが、ミクロな意味での健
全な接合は得られていないのが現状である。
Therefore, superconductivity / normal conduction or superconductivity /
Attempts have been made to improve the bonding condition by interposing an intermediate layer between the insulators and examining the metal used and the structure of the insulator itself. At present it has not been obtained.

【0007】本発明は、このような課題に対処するため
になされたもので、酸化物超電導体を用いて、本質的に
健全な S/N接合あるいは S/I接合を再現性よく得ること
を可能にした超電導接合構造体製造方法を提供するこ
とを目的とするものである。
[0007] The present invention has been made to address such a problem, and it is an object of the present invention to obtain an essentially sound S / N junction or S / I junction with good reproducibility by using an oxide superconductor. It is an object of the present invention to provide a method of manufacturing a superconducting junction structure that is enabled.

【0008】[発明の構成][Structure of the Invention]

【0009】[0009]

【課題を解決するための手段】すなわち、本発明の製造
方法により得られる超電導接合構造体は、超電導体と常
伝導体または絶縁体との接合部を有する超電導接合構造
体において、同一構造体内で、酸化物超電導体による超
電導相と、この超電導相に組成が近似する常伝導相また
は絶縁相とが空間的に分離して存在し、これら超電導相
と常伝導相または絶縁相との界面が前記接合部を構成し
てい
Means for Solving the Problems That is, the production of the present invention
The superconducting joint structure obtained by the method is a superconducting joint structure having a junction between a superconductor and a normal conductor or an insulator. In the same structure, a superconducting phase by an oxide superconductor and a composition in this superconducting phase there a normally conducting phase or insulating phase approximating exists spatially separated, the interface between these superconducting phases and normal conducting phases or insulating phases that make up the joint.

【0010】発明の超電導接合構造体の製造方法は、
超電導体と常伝導体または絶縁体との接合部を有する超
電導接合構造体を作製するにあたり、酸化物超電導体の
前駆体に電場勾配を印加しながら、該酸化物超電導体に
よる超電導相を生成すると共に、前記超電導相に組成が
近似する常伝導相または絶縁相を該超電導相から空間的
に分離し、これら超電導相と常伝導相または絶縁相との
界面に前記接合部を形成することを特徴としている。
The method for manufacturing a superconducting junction structure of the present invention comprises:
In producing a superconducting junction structure having a junction between a superconductor and a normal conductor or an insulator, a superconducting phase is generated by the oxide superconductor while applying an electric field gradient to a precursor of the oxide superconductor. In addition, a normal conducting phase or an insulating phase whose composition is similar to the superconducting phase is spatially separated from the superconducting phase, and the junction is formed at an interface between the superconducting phase and the normal conducting or insulating phase. And

【0011】本発明に用いられる酸化物超電導体として
は、超電導状態を実現し得るものであれば種々の銅系酸
化物を適用することができる。このような銅系酸化物超
電導体としては、例えば下記の一般式で実質的に表され
るもの等が例示される。
As the oxide superconductor used in the present invention, various copper-based oxides can be applied as long as they can realize a superconducting state. Examples of such a copper-based oxide superconductor include, for example, those substantially represented by the following general formula.

【0012】 一般式:La2-x Srx Cu O4 ………(1) ( Nd2-x Cex ) 2 Cu O4 ………(2) RE M2 Cu3 O 7-δ ………(3) (REは Yを含む希土類元素から選ばれた少なくとも 1種
の元素を、M はBa、Sr、Caから選ばれた少なくとも 1種
の元素を示し、δは酸素欠損を表す) Bi2 Sr2 Ca1 Cu2 O 8+d ………(4) ( dは酸素の微小な変動を表す。また、Biの一部はPb等で置換可能) Bi2 Sr2 Ca2 Cu3 O 10+d ………(5) ( dは酸素の微小な変動を表す。また、Biの一部はPb等で置換可能) ここで、上記したような銅系酸化物超電導体は、図2に
示すように、元素(陽イオン)置換あるいは酸素量制御
によってドープされたキャリア量が変化することによ
り、絶縁相、超電導相、常伝導相の間で相転移を起こす
ことが知られている。言い換えれば、上記銅系酸化物超
電導体は、超電導相に組成が近似する常伝導相および絶
縁相を有しており、キャリア量を変化させることによっ
て、これらの間で相転移を起こす。例えば、上記 (1)式
〜 (5)式で実質的に表される銅系酸化物超電導体におい
て、 (1)式および (2)式では xの値を変化させることに
よって、 (3)式ではδの値を変化させることによって、
また (4)式および (5)式ではdの値を変化させるか、あ
るいはSrやCaの一部を希土類元素等で置換し、その置換
量を変化させることによって、図2に示した超電導相の
近傍に存在する常伝導相もしくは絶縁相とすることがで
きる。
General formula: La 2-x Sr x Cu O 4 ... (1) (Nd 2-x Ce x ) 2 Cu O 4 ... (2) RE M 2 Cu 3 O 7-δ. … (3) (RE indicates at least one element selected from rare earth elements including Y, M indicates at least one element selected from Ba, Sr and Ca, and δ indicates oxygen deficiency) Bi 2 Sr 2 Ca 1 Cu 2 O 8 + d ……… (4) (d represents a minute change in oxygen. Part of Bi can be replaced with Pb etc.) Bi 2 Sr 2 Ca 2 Cu 3 O 10 + d (5) (d represents a minute change in oxygen, and a part of Bi can be replaced with Pb or the like) Here, the above-mentioned copper-based oxide superconductor is shown in FIG. It is known that, as shown in (1), a phase transition occurs between an insulating phase, a superconducting phase, and a normal conducting phase by changing the amount of doped carriers by element (cation) substitution or oxygen amount control. In other words, the copper-based oxide superconductor has a normal phase and an insulating phase whose compositions are close to the superconducting phase, and causes a phase transition between them by changing the amount of carriers. For example, in the copper-based oxide superconductor substantially represented by the above formulas (1) to (5), by changing the value of x in the formulas (1) and (2), the formula (3) Then, by changing the value of δ,
In equations (4) and (5), by changing the value of d, or by substituting a part of Sr or Ca with a rare earth element or the like and changing the amount of substitution, the superconducting phase shown in FIG. Can be a normal conducting phase or an insulating phase existing in the vicinity of.

【0013】また、上記銅系酸化物超電導体は、ある任
意の陽イオン置換量あるいは酸素量に対して、その組成
で系は一様に固溶するわけではなく、ある限られた組成
に対してのみ固溶が起こり、それ以外の組成では相分離
が起きることが報告されている。そして、大部分の組成
に対して、系は絶縁相、超電導相、常伝導相の内の 2つ
の相の混合相となる。通常の焼結法等では、上記したよ
うな混合相は絶縁相や常伝導相内に島状の超電導相が多
数存在するような形態をとる。
In addition, the above-mentioned copper-based oxide superconductor does not form a solid solution with a certain cation substitution amount or oxygen amount, but a certain limited composition. It has been reported that solid solution occurs only when the composition is other than that phase separation occurs in other compositions. And for most compositions, the system is a mixed phase of two of the insulating, superconducting and normal phases. In a normal sintering method or the like, the above-mentioned mixed phase takes a form in which a large number of island-like superconducting phases exist in an insulating phase or a normal conducting phase.

【0014】本発明は上記したような相分離効果を利用
したものであり、同一構造体内で、意図的に上記超電導
相と常伝導相または絶縁相とを空間的に 2つの相に分離
させ、これらの界面で超電導/常伝導または超電導/絶
縁体の接合部を構成したものである。このような相分離
効果を利用して、接合部を形成する銅系酸化物超電導体
の具体的な形態としては、バルク状の焼結体等に限ら
ず、スパッタリング法、ICB法、 MOCVD法、 MBE法等の
薄膜形成技術を用いて形成した酸化物超電導体薄膜等を
適用することが可能である等、各種形態のものを適用す
ることができる。
[0014] The onset bright is obtained by utilizing the phase separation effect as noted above, the same structure, intentionally separating the said superconductive phase and normal-conducting phase or insulating phase spatially two phases These interfaces constitute a superconducting / normal conducting or superconducting / insulating junction. Utilizing such a phase separation effect, the specific form of the copper-based oxide superconductor that forms the joint is not limited to a bulk sintered body or the like, but may be a sputtering method, an ICB method, a MOCVD method, Various forms can be applied, such as an oxide superconductor thin film formed using a thin film forming technique such as the MBE method.

【0015】超電導相と常伝導相または絶縁相とを、同
一の酸化物超電導構造体内で空間的に 2つの相に分離さ
せるためには、その組成が混和性ギャップ内にある酸化
物超電導体の前駆体に、電場勾配を印加すればよい。す
なわち、陽イオン置換量の差による超電導相と常伝導相
または絶縁相とは、置換に使用した陽イオンの価数と、
置換される側の陽イオンの価数との違いによって、ある
いは酸素量によって、電荷が異なるものとなる。したが
って、その組成が混和性ギャップ内にある前駆体の段階
から電場勾配を印加すれば、その電荷の違いによって、
空間的に独立した 2つの相に分離させることができる。
In order to spatially separate the superconducting phase and the normal or insulating phase into two phases in the same oxide superconducting structure, the composition of the oxide superconductor whose composition is within the miscibility gap is determined. An electric field gradient may be applied to the precursor. That is, the superconducting phase and the normal or insulating phase due to the difference in the amount of cation substitution are the valence of the cation used for substitution,
The charge varies depending on the valence of the cation to be substituted and the amount of oxygen. Therefore, if an electric field gradient is applied from the stage of the precursor whose composition is within the miscibility gap, the difference in the charge will cause
It can be separated into two spatially independent phases.

【0016】上記酸化物超電導体の前駆体の具体例とし
ては、以下に示すようなものが例示される。例えば、固
相反応法によって酸化物超電導体の焼結体を作製する際
には、その反応過程の混合体である。また、薄膜形成技
術によって酸化物超電導体薄膜を作製する際には、混和
性ギャップ内の組成になるように仕込まれた各種原材料
の混合体である。
Specific examples of the precursor of the oxide superconductor include the following. For example, when a sintered body of an oxide superconductor is produced by a solid-phase reaction method, it is a mixture of the reaction processes. Further, when an oxide superconductor thin film is manufactured by a thin film forming technique, it is a mixture of various raw materials charged so as to have a composition within the miscibility gap.

【0017】また、酸化物超電導体の前駆体に印加する
電場の強さは、超電導相と常伝導相または絶縁相との電
荷の差や、前駆体に加えられている温度条件等によっ
て、適宜設定するものとするが、一般には10V/cm以上程
度とすればよい。
The strength of the electric field applied to the precursor of the oxide superconductor is appropriately determined according to the difference in charge between the superconducting phase and the normal or insulating phase, the temperature conditions applied to the precursor, and the like. It should be set, but generally should be about 10 V / cm or more.

【0018】[0018]

【実施例】以下、本発明の実施例について図面を参照し
て説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0019】実施例1 まず、La2 O 3 粉末、SrCO3 粉末およびCuO粉末を、原
子比でLa:Sr:Cu=1.92:0.08:1となるように所定量評量
し、充分に混合した後、プレス成形によって上記混合粉
の成形体を作製した。
Example 1 First, La 2 O 3 powder, SrCO 3 powder and CuO powder were weighed in a predetermined amount so that the atomic ratio was La: Sr: Cu = 1.92: 0.08: 1, and were thoroughly mixed. Thereafter, a compact of the above mixed powder was prepared by press molding.

【0020】次に、図1(a)に示すように、上記した
混合粉の成形体1を電気炉(図示せず)内に収容すると
共に、上記成形体1を挟み込む形で電極2、3を配置し
た。この状態で成形体1に 100V/cmの電場をかけながら
1000℃まで昇温し、その温度で電場をかけながら24時間
保持し、超電導相の生成を行った。
Next, as shown in FIG. 1 (a), the compact 1 of the mixed powder is accommodated in an electric furnace (not shown), and the electrodes 2, 3 are sandwiched by the compact 1. Was placed. In this state, apply an electric field of 100 V / cm to the compact 1
The temperature was raised to 1000 ° C., and the temperature was maintained for 24 hours while applying an electric field to generate a superconducting phase.

【0021】この後、上記熱処理後の試料を取り出し、
電子顕微鏡によって相状態を観察したところ、図1
(b)に示すように、得られた焼結体4は、加えた電場
に対して垂直な界面Sによって、超電導相(A層)と絶
縁相(B層)とに空間的に分離されていることが確認さ
れた。この実施例におけるA層は、Srイオンが多い超電
導相であり、またB層はLaイオンが多い絶縁相であっ
た。そして、上記相分離によって、結果的に S/I接合が
形成された。このS/I接合は、相分離によって形成した
ものであるため、接触抵抗もなく、ミクロな意味におい
ても健全なものである。また、A層に相当する超電導相
の超電導転移温度は、約 30Kであった。
Thereafter, the sample after the heat treatment is taken out,
When the phase state was observed with an electron microscope, FIG.
As shown in (b), the obtained sintered body 4 is spatially separated into a superconducting phase (A layer) and an insulating phase (B layer) by an interface S perpendicular to the applied electric field. It was confirmed that. The layer A in this example was a superconducting phase with a large amount of Sr ions, and the layer B was an insulating phase with a large amount of La ions. As a result, an S / I junction was formed by the above phase separation. Since this S / I junction is formed by phase separation, it has no contact resistance and is sound even in a microscopic sense. Further, the superconducting transition temperature of the superconducting phase corresponding to the layer A was about 30K.

【0022】実施例2 La2 O 3 粉末、SrCO3 粉末および CuO粉末を、原子比で
La:Sr:Cu=1.75:0.25:1となるように所定量評量し、充分
に混合した後、プレス成形によって上記混合粉の成形体
を作製した。次に、上記実施例1と同一条件で、上記混
合粉の成形体に対して電場をかけながら熱処理を施し
た。
Example 2 La 2 O 3 powder, SrCO 3 powder and CuO powder were mixed in an atomic ratio.
A predetermined amount was evaluated so that La: Sr: Cu = 1.75: 0.25: 1, and after sufficiently mixing, a molded body of the above mixed powder was produced by press molding. Next, under the same conditions as in Example 1 described above, a heat treatment was performed while applying an electric field to the compact of the mixed powder.

【0023】熱処理後の試料(焼結体)を取り出し、電
子顕微鏡によって相状態を観察したところ、得られた焼
結体4は、加えた電場に対して垂直な界面Sによって、
焼結体内が常伝導相(A層)と超電導相(B層)とに空
間的に分離されていることが確認された。この実施例に
おけるA層は、Srイオンが多い常伝導相であり、またB
層はLaイオンが多い超電導相であった。そして、上記相
分離によって、結果的に S/N接合が形成された。また、
B層に相当する超電導相の超電導転移温度は、約 30Kで
あった。
When the sample (sintered body) after the heat treatment was taken out and the phase state was observed by an electron microscope, the obtained sintered body 4 was found to have an interface S perpendicular to the applied electric field.
It was confirmed that the sintered body was spatially separated into a normal phase (layer A) and a superconducting phase (layer B). The layer A in this embodiment is a normal phase containing many Sr ions, and
The layer was a superconducting phase rich in La ions. As a result, an S / N junction was formed by the above phase separation. Also,
The superconducting transition temperature of the superconducting phase corresponding to the B layer was about 30K.

【0024】上記実施例1および2においては、価数の
小さな陽イオン例えばSrイオンが多い相または酸素量が
多い相がA層となり、価数の大きな陽イオン例えばLaイ
オンが多い相または酸素量が少ない相がB層となる。
In Examples 1 and 2, a cation having a small valence, for example, a phase having a large amount of Sr ions or a phase having a large amount of oxygen becomes the A layer, and a cation having a large valence, for example, a phase having a large amount of La ions or a phase having a large amount of oxygen. The phase with less is the B layer.

【0025】 比較例 実施1および2と同一組成比で、それぞれ同様な成形体
を作製し、これらに対して電場を引火しない以外は、そ
ぞれ同一条件で熱処理を施した。
[0025] In COMPARATIVE EXAMPLE 1 and 2 and the same composition ratio, to prepare respectively similar moldings, except that they respect not ignite the electric field, respectively Re their <br/> facilities to heat treatment at the same conditions did.

【0026】このようにして得た試料は、それぞれ転移
温度が 10K程度の超電導体となった。これらの試料中で
は、常伝導相あるいは絶縁相の中に、多数の島状の超電
導相が分布しているものと考えられる。
Each of the samples thus obtained was a superconductor having a transition temperature of about 10K. In these samples, it is considered that a large number of island-like superconducting phases are distributed in the normal phase or the insulating phase.

【0027】なお、上記実施例においては、La-Sr-Cu-O
系の酸化物超電導体を例として説明したが、本発明はNd
-Ce-Cu-O系、Y-Ba-Cu-O 系、 Bi-Sr-Ca-Cu-O系等の各種
の銅系酸化物超電導体に対して適用可能である。また、
上記したような S/I接合や S/N接合の上に薄膜を積層形
成して、 S/I/S接合や S/N/S接合を作製することもでき
る。実際、このようにして作製した接合において、良好
なジョセフソン特性が観測された。さらに、本発明によ
る方法は、接合体の作製以外に、例えば混相の相分離に
よる超電導相の精製等にも適用することができる。
In the above embodiment, La-Sr-Cu-O
Although an oxide superconductor of a system was described as an example, the present invention
It is applicable to various copper-based oxide superconductors such as -Ce-Cu-O, Y-Ba-Cu-O and Bi-Sr-Ca-Cu-O. Also,
It is also possible to form an S / I / S junction or S / N / S junction by laminating a thin film on the S / I junction or S / N junction as described above. In fact, good Josephson characteristics were observed in the junction thus manufactured. Furthermore, the method according to the present invention can be applied to, for example, purification of a superconducting phase by phase separation of a mixed phase, in addition to the production of a joined body.

【0028】[0028]

【発明の効果】以上説明したように本発明によれば、超
電導相/常伝導相または超電導相/絶縁相の接合を、同
一構造体内で超電導相と常伝導相または絶縁相とを空間
的に分離することによって形成しているため、本質的に
健全な S/N接合あるいは S/I接合を再現性よく得ること
が可能になる。よって、酸化物超電導体を用いた超電導
デバイスを実現する上で、その有用性は大である。
As described above, according to the present invention, the joining of the superconducting phase / normal conducting phase or superconducting phase / insulating phase is performed by spatially connecting the superconducting phase and the normal conducting phase or insulating phase in the same structure. Since they are formed by separation, an essentially sound S / N junction or S / I junction can be obtained with good reproducibility. Therefore, its usefulness in realizing a superconducting device using an oxide superconductor is great.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例による接合構造体の製造過程
を示すと共に、それによって得られた超電導接合構造体
の構成を模式的に示す図である。
FIG. 1 is a diagram showing a manufacturing process of a joint structure according to an embodiment of the present invention and schematically showing a configuration of a superconducting joint structure obtained thereby.

【図2】銅系酸化物超電導体の相状態の一例を示す図で
ある。
FIG. 2 is a diagram illustrating an example of a phase state of a copper-based oxide superconductor.

【符号の説明】[Explanation of symbols]

1……成形体 2、3……電極 4……超電導相と常伝導相または絶縁相とに分離された
焼結体 A……価数の小さな陽イオンが多い相または酸素量が多
い相 B……価数の大きな陽イオンが多い相または酸素量が少
ない相 S……固−固界面
1 ... molded body 2, 3 ... electrode 4 ... sintered body separated into a superconducting phase and a normal conducting phase or an insulating phase A ... a phase having a large number of cations having a small valence or a phase having a large amount of oxygen B …… Phase with high valence and high cation or phase with low oxygen content S …… Solid-solid interface

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI H01R 43/00 ZAA H01R 43/00 ZAAZ (72)発明者 安藤 健 神奈川県川崎市幸区小向東芝町1番地 株式会社東芝 総合研究所内 (56)参考文献 特開 昭64−11378(JP,A) 特開 平1−132179(JP,A) 特開 平2−260674(JP,A) 特開 平4−119997(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01L 39/24 C04B 37/00 H01B 12/02 H01L 39/22 H01R 4/68 H01R 43/00 H01L 39/00 ────────────────────────────────────────────────── ─── Continued on the front page (51) Int.Cl. 7 Identification symbol FI H01R 43/00 ZAA H01R 43/00 ZAAZ (72) Inventor Takeshi Ken Ando 1 Tokoba, Komukai Toshiba-cho, Kochi-ku, Kawasaki-shi, Kanagawa Prefecture Toshiba Corporation Within the Research Institute (56) References JP-A-64-11378 (JP, A) JP-A-1-132179 (JP, A) JP-A-2-260674 (JP, A) JP-A-4-119997 (JP, A A) (58) Field surveyed (Int. Cl. 7 , DB name) H01L 39/24 C04B 37/00 H01B 12/02 H01L 39/22 H01R 4/68 H01R 43/00 H01L 39/00

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 超電導体と常伝導体または絶縁体との接
合部を有する超電導接合構造体を作製するにあたり、 酸化物超電導体の前駆体に電場勾配を印加しながら、該
酸化物超電導体による超電導相を生成すると共に、前記
超電導相に組成が近似する常伝導相または絶縁相を該超
電導相から空間的に分離し、これら超電導相と常伝導相
または絶縁相との界面に前記接合部を形成することを特
徴とする超電導接合構造体の製造方法。
In producing a superconducting junction structure having a junction between a superconductor and a normal conductor or an insulator, an oxide electric field is applied to the precursor of the oxide superconductor while applying an electric field gradient to the superconductor. While generating a superconducting phase, a normal conducting phase or an insulating phase whose composition is close to the superconducting phase is spatially separated from the superconducting phase, and the junction is formed at the interface between the superconducting phase and the normal conducting or insulating phase. A method for manufacturing a superconducting junction structure, comprising:
JP3064444A 1991-03-28 1991-03-28 Method for manufacturing superconducting junction structure Expired - Fee Related JP3034322B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3064444A JP3034322B2 (en) 1991-03-28 1991-03-28 Method for manufacturing superconducting junction structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3064444A JP3034322B2 (en) 1991-03-28 1991-03-28 Method for manufacturing superconducting junction structure

Publications (2)

Publication Number Publication Date
JPH04299877A JPH04299877A (en) 1992-10-23
JP3034322B2 true JP3034322B2 (en) 2000-04-17

Family

ID=13258449

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3064444A Expired - Fee Related JP3034322B2 (en) 1991-03-28 1991-03-28 Method for manufacturing superconducting junction structure

Country Status (1)

Country Link
JP (1) JP3034322B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114678200A (en) * 2020-05-20 2022-06-28 阿里巴巴集团控股有限公司 Method and apparatus for manufacturing inductance element, inductance element and superconducting circuit

Also Published As

Publication number Publication date
JPH04299877A (en) 1992-10-23

Similar Documents

Publication Publication Date Title
JP2859602B2 (en) Manufacturing method of products made of superconducting material
JPH0515647B2 (en)
EP0275343A1 (en) New superconductive compounds of the K2NiF4 structural type having a high transition temperature, and method for fabricating same
JPH0818836B2 (en) Oxide superconductor, its manufacturing method and applied products
JP3034322B2 (en) Method for manufacturing superconducting junction structure
US5389603A (en) Oxide superconductors, and devices and systems comprising such a superconductor
CN1018311B (en) Method for film forming of bismuth system complex oxide superconductive film
JP3258824B2 (en) Metal oxide material, superconducting junction element using the same, and substrate for superconducting element
JP2585561B2 (en) Oxide superconducting material
JPH04275470A (en) Product composed of superconductor/insulator structure and manufacture of said product
JP2746990B2 (en) Superconducting element
JP3058515B2 (en) Superconducting Josephson device and its manufacturing method
JP2825374B2 (en) Superconducting element
JP2888650B2 (en) Superconducting member manufacturing method
JP2899287B2 (en) Josephson element
JP2653448B2 (en) Oxide superconducting element
JP3076503B2 (en) Superconducting element and method of manufacturing the same
JP2856577B2 (en) Superconducting element
JP3284010B2 (en) Metal oxide material and superconducting device using the same
SU1034548A1 (en) Device for many josephson junctions and method of manufacturing same
JP2698858B2 (en) Method for forming oxide superconductor
JPH10178220A (en) Tunnel-type superconducting junction element
JPH0529669A (en) Josephson element
JPH01290530A (en) Multiple oxides superconducting material and production thereof
JPH02293136A (en) Superconductive film and preparation thereof

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000201

LAPS Cancellation because of no payment of annual fees