JP3027313B2 - Flux-cored wire for austenitic stainless steel - Google Patents

Flux-cored wire for austenitic stainless steel

Info

Publication number
JP3027313B2
JP3027313B2 JP7686595A JP7686595A JP3027313B2 JP 3027313 B2 JP3027313 B2 JP 3027313B2 JP 7686595 A JP7686595 A JP 7686595A JP 7686595 A JP7686595 A JP 7686595A JP 3027313 B2 JP3027313 B2 JP 3027313B2
Authority
JP
Japan
Prior art keywords
weight
wire
flux
weld metal
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP7686595A
Other languages
Japanese (ja)
Other versions
JPH08267282A (en
Inventor
敏治 丸山
恒司 小川
繁樹 西山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP7686595A priority Critical patent/JP3027313B2/en
Publication of JPH08267282A publication Critical patent/JPH08267282A/en
Application granted granted Critical
Publication of JP3027313B2 publication Critical patent/JP3027313B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はステンレス鋼用フラック
ス入りワイヤに関し、特に308系オーステナイト系ス
テンレス鋼からなる溶接金属において高強度かつ高い衝
撃靱性特性を有するオーステナイト系ステンレス鋼用フ
ラックス入りワイヤに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a flux-cored wire for stainless steel, and more particularly, to a flux-cored wire for austenitic stainless steel having high strength and high impact toughness in a weld metal made of 308 series austenitic stainless steel.

【0002】[0002]

【従来の技術及びその問題点】ステンレス鋼溶接用フラ
ックス入りワイヤは、溶接施工面における優れた能率性
と良好な溶接作業性を有することから、近年急速な普及
を成し遂げ、現在においては広く産業界に用いられてい
る。そのなかでステンレス鋼鋼材の適用用途としての液
体窒素、液体酸素、LNGタンク等の極低温領域で、各
種容器の製作に際し、フラックス入りワイヤの適用が普
及しており、極低温用途用のフラックス入りワイヤも開
発されている。
2. Description of the Related Art Flux-cored wires for welding stainless steel have been rapidly popularized in recent years due to their excellent efficiency in welding work and good welding workability, and are now widely used in the industry. It is used for Among them, the use of flux-cored wire has become widespread in the manufacture of various containers in the cryogenic range of liquid nitrogen, liquid oxygen, LNG tanks, etc. as applications of stainless steel, and flux-cored for cryogenic applications. Wire has also been developed.

【0003】このような極低温環境では、母材と共に溶
接部においても厳しい靱性特性が求められており、この
ような要求に対して溶接部(溶接金属)のフェライト含
有量を低く設計する(フェライトナンバーにて3〜5前
後)ことと、溶接金属中の酸素量を低減することで、低
温特性の向上を図ることが従来一般的に採用されてき
た。
In such an extremely low temperature environment, strict toughness characteristics are required not only in the base material but also in the welded portion, and the ferrite content of the welded portion (weld metal) is designed to be low in response to such demands (ferrite content). Conventionally, it has been generally employed to improve low-temperature characteristics by reducing the amount of oxygen in the weld metal (about 3 to 5 in number).

【0004】現在市販の大半のステンレス鋼用フラック
ス入りワイヤに用いられているスラグ成分系は、溶接金
属の低炭素化と良好な溶接作業性を確保するため、Ti
2,SiO2,Al23等を主原料とした強酸性タイプ
のスラグを有している。このため、他の溶接法と比較す
ると溶接金属中の酸素量は700〜1200ppm程度
と高く、溶接金属中には多量の酸化物系の非金属介在物
が存在している。その結果、他の溶接法と比べると、溶
接金属の衝撃靱性値は低くなりがちであった。
[0004] The slag component system used in most commercially available flux cored wires for stainless steel is made of Ti in order to ensure low carbon of the weld metal and good welding workability.
It has a strongly acidic slag made mainly of O 2 , SiO 2 , Al 2 O 3 and the like. For this reason, compared with other welding methods, the amount of oxygen in the weld metal is as high as about 700 to 1200 ppm, and a large amount of oxide-based nonmetallic inclusions are present in the weld metal. As a result, the impact toughness value of the weld metal tended to be lower than in other welding methods.

【0005】このような中でステンレス鋼用フラックス
入りワイヤでは、溶接金属靱性を向上させるために、従
来高温割れ防止の観点から通常は7〜10前後にコント
ロールされている溶接金属中のフェライト量を3〜5程
度にまで下げる方法が一般的に用いられており、このよ
うな低フェライト化技術が、極低温での靱性を確保する
ための唯一の技術であった。
In such a situation, in a flux cored wire for stainless steel, in order to improve the toughness of the weld metal, the amount of ferrite in the weld metal, which is conventionally controlled to be around 7 to 10 from the viewpoint of prevention of hot cracking, is conventionally considered. A method of lowering to about 3 to 5 is generally used, and such a ferrite reduction technique is the only technique for securing toughness at an extremely low temperature.

【0006】しかし、溶接金属の低フェライト化の結果
として、溶接部の高温割れ感受性が高まるとともに、強
度低下を招きやすいことがしばしば問題となっていた。
一方、近年ステンレス鋼の構造材としての適用の拡大と
ともに、鋼材側ではTMCP技術の発達で高強度304
系材料の開発/実用化がすすみ、LNGタンク等の極低
温用機器へ304系材料が適用される一方で、FCW
(フラックス入りワイヤ)溶接材料に対しても高強度/
高靱性化の要求が高まり、従来の低フェライト化技術で
は、高強度対応が困難となっており、新しい技術開発が
望まれていた。
[0006] However, as a result of reducing the ferrite of the weld metal, it has often been a problem that the hot cracking susceptibility of the welded portion is increased and the strength tends to be reduced.
On the other hand, in recent years, the application of stainless steel as a structural material has been expanded, and the strength of 304
While the development and commercialization of base materials have progressed and 304 base materials have been applied to cryogenic equipment such as LNG tanks, FCW
(Flux-cored wire) High strength against welding materials
The demand for higher toughness has increased, and it has become difficult to cope with high strength with conventional ferrite reduction technology, and new technology development has been desired.

【0007】本発明はかかる問題点に鑑みてなされたも
のであって、高強度と高靱性とを兼ね備え、308系等
のオーステナイト系ステンレス鋼の溶接に好適のステン
レス鋼用フラックス入りワイヤを提供することを目的と
する。
The present invention has been made in view of the above problems, and provides a flux cored wire for stainless steel having both high strength and high toughness and suitable for welding austenitic stainless steel such as 308 series. The purpose is to:

【0008】[0008]

【課題を解決するための手段】本発明に係るオーステナ
イト系ステンレス鋼用フラックス入りワイヤは、オース
テナイト系ステンレス鋼からなる外皮にフラックスを充
填してなるフラックス入りワイヤにおいて、ワイヤ中に
ワイヤ全重量あたり、金属成分及び/又は合金成分とし
て C:0.015〜0.050重量% N:0.005〜0.040重量% C+N:0.025〜0.075重量% Cr:19.0〜22.5重量% Ni:8.2〜9.7重量% Mo:0.5重量%以下 Nb:0.1重量%以下 Cu:0.5重量%以下 Ti:0.5重量%以下 Si:0.2〜1.5重量% Mn:0.7〜5.0重量% を含有し、ワイヤ中に含有される各種合金元素を示す指
標F,Aによって示される下記数式1乃至3により得ら
れる値Kが13.5〜23.5の範囲にあることを特徴
とする。
The flux-cored wire for austenitic stainless steel according to the present invention is a flux-cored wire obtained by filling a sheath made of austenitic stainless steel with a flux. As a metal component and / or an alloy component, C: 0.015 to 0.050 wt% N: 0.005 to 0.040 wt% C + N: 0.025 to 0.075 wt% Cr: 19.0 to 22.5 % By weight Ni: 8.2 to 9.7% by weight Mo: 0.5% by weight or less Nb: 0.1% by weight or less Cu: 0.5% by weight or less Ti: 0.5% by weight or less Si: 0.2 Mn: 0.7 to 5.0% by weight, and the value K obtained by the following formulas 1 to 3 represented by indices F and A indicating various alloy elements contained in the wire is: Characterized in that in the range of 3.5 to 23.5.

【0009】[0009]

【数1】 F=0.5×[Si]+1.02×[Cr]+1.08×[Mo]+0.3×[Ti]+0.2×[Nb]+0.30[Formula 1] F = 0.5 × [Si] + 1.02 × [Cr] + 1.08 × [Mo] + 0.3 × [Ti] + 0.2 × [Nb] +0.30

【0010】[0010]

【数2】 A=24×[C]+28×[N]+0.25×[Mn]+0.5×[Cu]+1.10×[Ni]A = 24 × [C] + 28 × [N] + 0.25 × [Mn] + 0.5 × [Cu] + 1.10 × [Ni]

【0011】[0011]

【数3】K=4.06×F−3.23×A−32.3 なお、[ ]の数値は、その成分の含有量(重量%)を示
す。
[Mathematical formula-see original document] K = 4.06 * F-3.23 * A-32.3 The numerical value in [] indicates the content (% by weight) of the component.

【0012】また、フラックス中にワイヤ全重量あた
り、 SiO2:0.5〜5.0重量% TiO2:1.0〜9.0重量% ZrO2:0.1〜4.0重量% を含有し、Al23 :3.5重量%以下に規制し、且
つ、Al23 +ZrO2 :1.0〜6.0重量%であ
り、金属炭酸塩:0.02〜0.15重量%、アルカリ
金属フッ化物:0.02〜1.0重量%を含有し、且
つ、フラックス全体に含まれる金属酸化物、非金属酸化
物、金属炭酸塩及び金属フッ化物の総量をワイヤ全重量
あたり3.0〜12.0重量%に規制することができ
る。
In the flux, SiO 2 : 0.5 to 5.0% by weight, TiO 2 : 1.0 to 9.0% by weight, and ZrO 2 : 0.1 to 4.0% by weight based on the total weight of the wire. Al 2 O 3 : regulated to 3.5% by weight or less, and Al 2 O 3 + ZrO 2 : 1.0 to 6.0% by weight; metal carbonate: 0.02 to 0.15 % By weight, alkali metal fluoride: 0.02 to 1.0% by weight, and the total amount of metal oxides, nonmetal oxides, metal carbonates and metal fluorides contained in the entire flux as the total weight of the wire 3.0 to 12.0% by weight.

【0013】[0013]

【作用】従来より308(L)系ステンレス溶接金属の
高強度化策として、溶接金属のC+N量を増加させるこ
とが有効であることが周知の技術とされている。
It has been known that increasing the C + N content of a weld metal is effective as a measure for increasing the strength of a 308 (L) stainless steel weld metal.

【0014】本発明者らは、この技術の検証を進めた結
果、図1に示すように、308系溶接金属に対するC+
N量の増加は溶接金属の高強度化を可能にするものの、
一方では図2に示すように、溶接金属の靱性低下を招く
ことが明らかになった。このため、現時点での課題とし
ての、「高強度かつ高靱性化」に対しては、従来より周
知の技術は適用できないことが判明した。
The inventors of the present invention have conducted verification of this technique, and as a result, as shown in FIG.
Although an increase in the amount of N makes it possible to increase the strength of the weld metal,
On the other hand, as shown in FIG. 2, it was found that the toughness of the weld metal was reduced. Therefore, it has been found that conventionally well-known techniques cannot be applied to the current problem of “higher strength and higher toughness”.

【0015】なお、図1は横軸にC+N量をとり、縦軸
に引張強度をとって308系FCW(フラックス入りワ
イヤ)溶着金属の強度に及ぼすC+N量の影響を示すグ
ラフ図である。図2は横軸にC+N量をとり、縦軸に−
196℃における吸収エネルギをとって両者の関係を示
すグラフ図である。但し、図1及び図2において、JI
SZ3119.図3.Bにて規定されているFN(フェ
ライトナンバー)は5.5〜8.9である。
FIG. 1 is a graph showing the effect of the amount of C + N on the strength of the 308 series FCW (flux-cored wire) welded metal with the horizontal axis representing the C + N amount and the vertical axis representing the tensile strength. In FIG. 2, the horizontal axis represents the amount of C + N, and the vertical axis represents −
It is a graph which shows the relationship between both by taking the absorption energy in 196 degreeC. However, in FIGS. 1 and 2, JI
SZ3119. FIG. The FN (ferrite number) specified in B is 5.5 to 8.9.

【0016】更に、本発明者等は、溶接金属のフェライ
ト量の影響を検証すべく、308(L)系溶接金属の強
度/靱性に対する影響の再確認を行った。従来より周知
の技術として、溶接金属のフェライト量は多層盛り溶接
金属においては溶接熱サイクルによる熱時効効果により
炭化物が析出し、σ相等の脆化相が出現することによっ
て、溶接金属の靱性低下を招きやすいため、溶接金属の
高靱性化のためには、低フェライト組織が望ましいとさ
れていた。しかし、本願発明者等の試験の結果は、一部
では従来の周知の技術の立証となったと同時に新たな新
事実の発見を提示するものであった。これを図3、図4
に示す。
Further, the present inventors reconfirmed the influence on the strength / toughness of the 308 (L) series weld metal in order to verify the effect of the amount of ferrite in the weld metal. As a conventionally well-known technique, the amount of ferrite in a weld metal is reduced in a multi-layer weld metal by the precipitation of carbides due to the thermal aging effect of the welding heat cycle and the appearance of an embrittlement phase such as a σ phase, thereby reducing the toughness of the weld metal. It has been considered that a low ferrite structure is desirable in order to increase the toughness of the weld metal because it is easily caused. However, the results of the present inventors' tests partially proved the conventional well-known technology and at the same time suggested new findings. This is shown in FIGS.
Shown in

【0017】図3は横軸にフェライトナンバーをとり、
縦軸に吸収エネルギをとって、多層盛り溶接金属のフェ
ライト量と−196℃でのシャルピー衝撃試験結果との
関係を示したものである。溶接金属のフェライト量がほ
ぼ11以下では従来の知見通り、フェライト量の低下に
ともなって靱性値は向上しており、従来の高靱性指向の
溶接金属組成設計の妥当性を証明している。しかし、本
発明者の試験結果は図3に示すとおり、フェライト量1
1以上の高フェライトの領域においても靱性が向上する
領域が存在することを示しており、フェライト量が13
以上、23以下の領域で靱性が高位安定化することを見
いだした。
FIG. 3 shows the ferrite number on the horizontal axis.
The vertical axis shows the relationship between the amount of ferrite in the multi-pass weld metal and the result of the Charpy impact test at -196 ° C, with the absorbed energy taken. When the amount of ferrite in the weld metal is about 11 or less, the toughness value increases with a decrease in the amount of ferrite, as known in the past, and this proves the validity of the conventional high toughness-oriented weld metal composition design. However, as shown in FIG.
This indicates that there is a region where the toughness is improved even in the region of one or more high ferrites, and the ferrite content is 13% or more.
As described above, it was found that the toughness was stabilized at a high level in the region of 23 or less.

【0018】更に、このような高フェライト組成での高
靱性化は、溶接金属中のC+N量とも密接な関係があ
り、C+N量の増加と共に、例え高フェライト組成であ
っても溶接金属の靱性は低下することが明らかになっ
た。
Further, the toughness in such a high ferrite composition is closely related to the C + N content in the weld metal, and as the C + N content increases, the toughness of the weld metal increases even in the high ferrite composition. It was found to be lower.

【0019】一方、図4は横軸にフェライトナンバーを
とり、縦軸に引張強度をとって、多層盛り溶接金属のフ
ェライト量と室温での引張破断強度との関係を示したも
のである。図4より明らかなように、溶接金属中のフェ
ライト量の増加と共に溶接金属の強度も増加しており、
本発明のもう1つの課題である「高強度化」も高フェラ
イト化溶接金属の開発によって達成されることが明らか
となった。勿論、この場合も溶接金属中のC+N量と密
接な関係があり、図1からも示唆されるように適切なC
+N量の設定によって、高強度と高靱性が両立すること
はいうまでもない。
On the other hand, FIG. 4 shows the relationship between the amount of ferrite of the multi-layer weld metal and the tensile strength at room temperature by taking the ferrite number on the horizontal axis and the tensile strength on the vertical axis. As is clear from FIG. 4, the strength of the weld metal increases with the increase in the amount of ferrite in the weld metal.
It has been clarified that “high strength”, another object of the present invention, is also achieved by the development of a high ferritic weld metal. Of course, also in this case, there is a close relationship with the amount of C + N in the weld metal, and as suggested from FIG.
It goes without saying that high strength and high toughness are both compatible by setting the + N amount.

【0020】以上のような知見に基づき本発明者等は、
この「高強度」と「高靱性」とを両立させたワイヤを開
発した。以下、本願発明における数値限定理由について
説明する。
Based on the above findings, the present inventors have
We have developed a wire that achieves both high strength and high toughness. Hereinafter, the reasons for limiting the numerical values in the present invention will be described.

【0021】(1)ワイヤ中のC量 ワイヤ中に含有される炭素(C)は、溶接によって溶接
金属中に移行し、溶接金属の強度及びフェライト量の調
整に寄与するものである。このため、本発明で規定する
ワイヤ中の炭素量は溶接によって実質的にある程度の歩
留まりでもって溶接金属中に移行する元素でなければな
らない。しかるにワイヤ中に添加されるフラックス中等
に存在する各種炭酸塩及び炭素化合物等に含有される炭
素については、実質的には溶接のアークによって分解溶
融される前に、ワイヤ中で溶接電流によるジュール熱で
分解し、大半は炭酸ガス等となって飛散し、実質的に溶
接金属に歩留まる炭素量は殆どない。よって、本発明で
規定するワイヤ中の炭素量とは、ワイヤを事前に100
0℃まで加熱し、各種炭酸塩等の分解をすませてから、
実質的なワイヤ中での炭素量を燃焼法によって測定した
値でもって規定する。
(1) C Content in Wire Carbon (C) contained in the wire migrates into the weld metal by welding and contributes to the adjustment of the strength of the weld metal and the amount of ferrite. For this reason, the amount of carbon in the wire as defined in the present invention must be an element that is transferred into the weld metal by welding with substantially some yield. However, the carbon contained in the various carbonates and carbon compounds present in the flux added to the wire, etc., is substantially decomposed and melted by the welding arc before the Joule heat generated by the welding current in the wire. , Most of which is scattered as carbon dioxide gas or the like, and there is substantially no carbon amount which substantially yields to the weld metal. Therefore, the amount of carbon in the wire specified in the present invention means that the wire is
After heating to 0 ° C to decompose various carbonates, etc.,
The carbon content in the substantial wire is defined by a value measured by a combustion method.

【0022】このような測定方法によって得られた炭素
量は、本ワイヤにおいては、0.015〜0.050重
量%でなければならず、0.015重量%未満では溶接
時に溶接金属中に生じる酸化還元反応に寄与する炭素量
が不足し、実質的に脱酸不足を生じ、溶接金属の強度不
足及び溶接金属中のブローホール等の溶接欠陥が生じや
すくなる。また、0.050重量%を超えると、溶接金
属中の炭素量の増加による靱性低下と、溶接時に発生す
るスパッタ量の増加を引き起こしやすくなる。
The amount of carbon obtained by such a measuring method must be 0.015 to 0.050% by weight in the present wire, and if less than 0.015% by weight, it is generated in the weld metal during welding. The amount of carbon contributing to the oxidation-reduction reaction is insufficient, and the amount of carbon is substantially insufficient for deoxidation, and the strength of the weld metal is insufficient, and welding defects such as blowholes in the weld metal are likely to occur. On the other hand, if the content exceeds 0.050% by weight, the toughness tends to decrease due to the increase in the amount of carbon in the weld metal, and the amount of spatter generated during welding tends to increase.

【0023】(2)ワイヤ中のN量 ワイヤ中のN量は、ワイヤ中での含有量が約0.1%以
下では、溶接によってほぼ100%溶接金属中に移行す
る。そして、このNは溶接金属の強度と靱性に影響する
だけでなく、溶接作業時のスラグ剥離性に対して大きな
影響を与える。ワイヤ中のN量が0.005重量%以下
では溶接金属の強度が低くなりすぎ、逆に0.040重
量%以上では靱性の低下をもたらす。またN量の増加に
伴い、溶接時のスラグ剥離性が劣化することから、本発
明ではワイヤ中のN量を0.005〜0.040重量%
とした。
(2) N Content in Wire When the content of N in the wire is about 0.1% or less, almost 100% of the N content is transferred to the weld metal by welding. This N not only affects the strength and toughness of the weld metal, but also has a significant effect on the slag peelability during the welding operation. If the N content in the wire is 0.005% by weight or less, the strength of the weld metal becomes too low, and if it is 0.040% by weight or more, the toughness is reduced. In addition, since the slag removability at the time of welding deteriorates with an increase in the amount of N, in the present invention, the amount of N in the wire is 0.005 to 0.040% by weight.
And

【0024】(3)ワイヤ中のC+N量 ワイヤ中のC+N量は溶接金属の強度と靱性に影響し、
C+N量が0.025重量%以下ではフェライト量が所
定量確保され、溶接金属の靱性は向上するものの、強度
が低下し本発明の開発目標(550N/mm2)とする
レベルに達しなくなる。逆にワイヤ中でのC+N量が
0.075重量%以上になると溶接金属の強度レベルは
十分に確保できるものの、仮にフェライト量が所定レベ
ルであっても靱性の低下が顕著となり、本発明の開発目
標(40J以上、at−196℃)を満たさなくなる。
(3) C + N Content in Wire The C + N content in the wire affects the strength and toughness of the weld metal,
When the amount of C + N is 0.025% by weight or less, a predetermined amount of ferrite is secured, and although the toughness of the weld metal is improved, the strength is reduced and the weld metal does not reach the development target (550 N / mm 2 ). Conversely, when the amount of C + N in the wire is 0.075% by weight or more, the strength level of the weld metal can be sufficiently ensured, but even if the amount of ferrite is at a predetermined level, the toughness is significantly reduced, and the present invention is developed. The target (40 J or more, at-196 ° C) is not satisfied.

【0025】(4)ワイヤ中のCr,Ni,Mo量 ワイヤ中のCr,Ni,Mo量は、溶接金属のフェライ
ト量を決定する重要な構成成分であるとともに、308
系溶接金属の耐酸化性とオーステナイトの安定性、熱サ
イクルによる脆化挙動の抑制に重要な元素である。ワイ
ヤ中のCr量が19.0重量%未満では本発明のポイン
トとなる高フェライト組織の溶接金属を得るのに不十分
であり、逆に22.5重量%を超えると溶接時の多重熱
サイクルによる脆化傾向が顕著となる。また、ワイヤ中
でのNi量は8.2重量%未満ではオーステナイトの安
定度が低く、高フェライト組織の脆化傾向が顕著にな
り、逆に9.7重量%を超えると本発明のポイントとな
る高フェライト組織か得られにくくなる。またワイヤ中
のMo量はフェライト組織の確保及び安定化に有効であ
るが、過多に添加されると高フェライト組織での脆化が
顕著となるために、その上限を0.5重量%とした。
(4) Cr, Ni, Mo Content in Wire The Cr, Ni, Mo content in the wire is an important component that determines the ferrite content of the weld metal, and 308
It is an important element for the oxidation resistance of austenitic weld metal, the stability of austenite, and the suppression of embrittlement behavior due to thermal cycling. If the amount of Cr in the wire is less than 19.0% by weight, it is insufficient to obtain a weld metal having a high ferrite structure, which is the point of the present invention. Conversely, if it exceeds 22.5% by weight, multiple thermal cycles during welding are performed. The embrittlement tendency becomes remarkable. When the amount of Ni in the wire is less than 8.2% by weight, the stability of austenite is low, and the tendency of embrittlement of a high ferrite structure becomes remarkable. Conversely, when the amount of Ni exceeds 9.7% by weight, the point of the present invention is considered. It becomes difficult to obtain a high ferrite structure. The amount of Mo in the wire is effective for securing and stabilizing the ferrite structure, but when added excessively, embrittlement in a high ferrite structure becomes remarkable, so the upper limit is set to 0.5% by weight. .

【0026】(5)ワイヤ中のNb,Ti量 ワイヤ中のNb,Ti量は溶接金属中に移行してフェラ
イト相の安定化に寄与するものであるが、Nbは過多に
添加されるとスラグ剥離性を劣化させ、またTiは過多
に添加されると強脱酸剤としての効果から、溶接金属中
の炭素の増加を招き、溶接金属の靱性低下が問題とな
る。このため、Nb,Tiは上限を夫々0.l重量%,
0.5重量%とした。
(5) Amount of Nb and Ti in Wire The amount of Nb and Ti in the wire migrates into the weld metal and contributes to the stabilization of the ferrite phase. Excessive addition of Ti causes an increase in carbon in the weld metal due to its effect as a strong deoxidizing agent, and causes a problem of a decrease in the toughness of the weld metal. Therefore, the upper limits of Nb and Ti are each set to 0. 1% by weight,
0.5 wt%.

【0027】(6)ワイヤ中のCu量 ワイヤ中のCuは、溶接金属オーステナイト相の安定化
をもたらす効果があるが、一方では溶接金属の耐高温割
れ感受性を高めるため、その添加量上限を0.5重量%
とした。
(6) Cu content in the wire Cu in the wire has an effect of stabilizing the austenite phase of the weld metal, but on the other hand, the upper limit of the additive amount is 0 in order to enhance the hot metal cracking resistance of the weld metal. 0.5% by weight
And

【0028】(7)ワイヤ中のSi,Mn量 ワイヤ中のSi,Mnは、溶接金属の脱酸剤としての重
要な元素であり、いずれも少なすぎると脱酸不足を引き
起こし、ブローホール等の気孔欠陥の発生原因となった
り、溶接金属の靱性低下原因となるため、Si量は最低
0.2重量%、Mn量は最低0.7重量%が必要であ
る。またSiはフェライト安定化元素であるが、過多に
添加されると同一フェライト量であっても脆化感受性を
高めることからその上限を1.5重量%とした。
(7) Si and Mn Content in Wire Si and Mn in the wire are important elements as a deoxidizing agent for the weld metal. To cause pore defects or decrease the toughness of the weld metal, the Si content must be at least 0.2% by weight and the Mn amount must be at least 0.7% by weight. Although Si is a ferrite stabilizing element, the upper limit thereof is set to 1.5% by weight because if added in an excessive amount, even if the amount of ferrite is the same, embrittlement susceptibility is increased.

【0029】一方Mnは、脱酸剤であるとともにオース
テナイト安定化元素であるため、過多に添加されると溶
接金属自体のMn含有量の増加と炭素シールド雰囲気よ
りの炭素の還元により高炭素組成の溶接金属となりやす
く、所定のフェライト組織を維持することが困難になる
ことから、その上限を5.0重量%とした。
On the other hand, since Mn is a deoxidizing agent and an austenite stabilizing element, when added in an excessive amount, Mn content of the weld metal itself increases and carbon is reduced from the carbon shield atmosphere, resulting in a high carbon composition. The upper limit is set to 5.0% by weight because it is likely to become a weld metal and it is difficult to maintain a predetermined ferrite structure.

【0030】(8)K値 上記の各元素の添加範囲において、溶接金属を所定のフ
ェライト量と所定の強度レベルに維持するために、ワイ
ヤ中に含有される各種合金元素量を示す指数F,Aによ
って算出される前記数式3の値Kが13.5〜23.5
の範囲にあることか必要である。K値が13.5以下で
は溶接金属の強度/靱性が不十分となり、23.5以上
では多重熱サイクルを受けた場合の脆化傾向が顕著とな
る。
(8) K value In order to maintain the weld metal at a predetermined ferrite content and a predetermined strength level in the above-mentioned range of addition of each element, an index F, which indicates the amount of various alloying elements contained in the wire, The value K of the formula 3 calculated by A is 13.5 to 23.5.
It is necessary to be in the range of. If the K value is 13.5 or less, the strength / toughness of the weld metal becomes insufficient, and if it is 23.5 or more, the tendency of embrittlement when subjected to multiple thermal cycles becomes significant.

【0031】(9)ワイヤ中のスラグ原料の総和 本発明のワイヤでは、ワイヤ中での合金元素を最適化し
て適切なフェライト組織を安定して確保することが重要
である。しかし、フラックス中に含有される非金属原料
であるスラグ原料の量と組成は、溶接時に溶接金属中に
移行する各種元素の歩留まりを大きく変化させるため
に、これらをある程度の範囲でコントロールするのが望
ましい。このため、ワイヤ中に含まれるスラグ原料の量
は3.0〜12.0重量%であることが必要である。
(9) Summation of Slag Raw Material in Wire In the wire of the present invention, it is important to optimize alloying elements in the wire to stably secure an appropriate ferrite structure. However, the amount and composition of the slag raw material, which is a non-metallic raw material contained in the flux, should be controlled within a certain range in order to greatly change the yield of various elements transferred into the weld metal during welding. desirable. Therefore, the amount of the slag raw material contained in the wire needs to be 3.0 to 12.0% by weight.

【0032】スラグ原料の量が3.0重量%以下では、
本発明のワイヤでの合金元素の歩留まりが著しく変化
し、溶接金属は所定のフェライト量や炭素含有量が得に
くくなり、十分な強度及び靱性の両立が困難となる。ま
た、逆に、スラグ原料の量が12.0重量%を超すと溶
接金属の機械的特性にはなんら問題がないものの、実際
の溶接時にはスラグ過多となり、実継手の狭隘部等の溶
接時にスラグ巻欠陥及び融合不良欠陥の発生原因とな
る。なお、好ましくは、5.0〜12.0重量%であ
る。このようなスラグ原料の量のコントロールは本発明
においては溶接金属のフェライト組織制御の安定化技術
として行われるものであり、同様な意味あいで本発明の
フラックス入りワイヤにて使用するフープはステンレス
鋼の中でもオーステナイト系ステンレス鋼に限定するも
のである。
When the amount of the slag raw material is 3.0% by weight or less,
The yield of alloying elements in the wire of the present invention changes remarkably, and it becomes difficult to obtain a predetermined ferrite or carbon content in the weld metal, and it is difficult to achieve both sufficient strength and toughness. Conversely, if the amount of the slag raw material exceeds 12.0% by weight, there is no problem in the mechanical properties of the weld metal, but the slag is excessive during actual welding, and the slag during welding of a narrow portion of an actual joint or the like. It causes winding defects and defective fusion defects. In addition, Preferably, it is 5.0-12.0 weight%. In the present invention, such control of the amount of the slag raw material is performed as a stabilization technique for controlling the ferrite structure of the weld metal, and in the same sense, the hoop used in the flux-cored wire of the present invention is made of stainless steel. Among them, it is limited to austenitic stainless steel.

【0033】また、ワイヤ中に含有されるスラグ原料の
組成によっても溶接金属への合金元素の歩留まり変化が
生じるため、これらについても所定の成分系を特定して
おくことが必要となる。本発明で溶接時の条件変動(電
流、電圧、速度、等)による溶接金属組織への影響を最
小化するために、即ち合金組成のワイヤから溶接金属へ
の歩留まりが比較的安定しているスラグ系を選定した。
以下に各成分の数値限定理由を説明する。
Also, the yield of alloying elements in the weld metal changes depending on the composition of the slag raw material contained in the wire, and it is necessary to specify a predetermined component system for these as well. In the present invention, in order to minimize the influence on the weld metal structure due to variations in welding conditions (current, voltage, speed, etc.), that is, a slag in which the yield from the alloy composition wire to the weld metal is relatively stable. The system was selected.
The reasons for limiting the numerical values of each component will be described below.

【0034】なお、本発明におけるスラグ原料の量と
は、フラックス全体に含まれる金属酸化物、非金属酸化
物、金属炭酸塩及び金属フッ化物の総量をいう。
The amount of slag raw material in the present invention means the total amount of metal oxides, nonmetal oxides, metal carbonates and metal fluorides contained in the entire flux.

【0035】(10)金属炭酸塩 本発明のワイヤ中には実使用時の溶接作業性を考慮し
て、CaCO3、Li2CO3,BaCO3、MgCO3
炭酸ストロンチュウム等の各種金属炭酸塩の中から1種
以上で合計0.02〜0.15重量%の範囲で添加する
ことができる。これらの金属炭酸塩は0.02重量%以
上添加することでアーク安定性を向上させ、アーク長変
動を少なくする効果がある。しかし、0.15重量%を
超えると、溶接時に炭酸塩の分解が活発となり、アーク
不安定現象/アーク長の大きな変動を招き、その結果と
して溶接金属の組成/組織の不安定現象につながる結果
となる。
(10) Metal carbonate In the wire of the present invention, in consideration of welding workability in actual use, CaCO 3 , Li 2 CO 3 , BaCO 3 , MgCO 3 ,
One or more of various metal carbonates such as strontium carbonate can be added in a total amount of 0.02 to 0.15% by weight. Addition of these metal carbonates in an amount of 0.02% by weight or more has the effect of improving arc stability and reducing arc length fluctuation. However, if it exceeds 0.15% by weight, the decomposition of carbonate becomes active during welding, resulting in an arc instability phenomenon / a large variation in arc length, and as a result, an unstable phenomenon in the composition / structure of the weld metal. Becomes

【0036】(11)アルカリ金属フッ化物 アルカリ金属フッ化物は、少量の添加によってアークの
集中性を高めることが可能であり、また溶接時の耐気孔
性の向上にも大きな効果をもたらすものである。このた
め、本発明においては、最低でもワイヤ中に0.02重
量%を含有することが必要である。しかし、過多に含有
すると溶接時に生じるこれらの成分の分解現象によって
アーク長の変動及びスパッタの発生が顕著となり、溶接
金属組織の安定制御が困難となる。このため、添加の上
限は1.0重量%とした。
(11) Alkali Metal Fluoride Alkali metal fluoride can increase the arc concentration by adding a small amount thereof, and has a great effect on the improvement of the porosity resistance during welding. . For this reason, in the present invention, it is necessary that the wire contains at least 0.02% by weight. However, if they are contained excessively, the fluctuation of the arc length and the generation of spatter become remarkable due to the decomposition phenomenon of these components generated at the time of welding, and it becomes difficult to stably control the weld metal structure. For this reason, the upper limit of addition was set to 1.0% by weight.

【0037】(12)SiO2,TiO2,ZrO2,A
23 SiO2,TiO2,ZrO2,Al23は本願ワイヤの
主要なスラグ形成材となるものである。
(12) SiO 2 , TiO 2 , ZrO 2 , A
l 2 O 3 SiO 2 , TiO 2 , ZrO 2 , and Al 2 O 3 are main slag forming materials of the wire of the present invention.

【0038】SiO2,Al23はスラグの粘性を調整
すると共に、溶接時の溶融金属の流動性、なじみを調整
する効果がある。
SiO 2 and Al 2 O 3 have the effect of adjusting the viscosity of the slag and the fluidity and conformity of the molten metal during welding.

【0039】SiO2は0.5重量%より少ないと、溶
接時のなじみを損なうと共に溶接後のビードの外観、色
調を損ね、また5.0重量%を超えると溶接時のスラグ
剥離性を極めて低下させる。Al23については、本発
明において必ずしも添加を必要としないが、故意に添加
した場合3.5重量%を超えるとスラグ剥離性を低下さ
せるため、その添加上限を3.5重量%とした。
If the content of SiO 2 is less than 0.5% by weight, the conformity during welding is impaired and the appearance and color of the bead after welding are impaired. If the content exceeds 5.0% by weight, slag removability during welding is extremely reduced. Lower. Al 2 O 3 is not always required to be added in the present invention, but when intentionally added, if it exceeds 3.5% by weight, the slag removability is reduced. Therefore, the upper limit of addition is set to 3.5% by weight. .

【0040】TiO2,ZrO2もSiO2と同様にスラ
グの粘性を調整する原料であるが、TiO2は1.0重
量%以下ではアークの安定性を損ない易くなると共に、
スラグ剥離性、溶融金属の包被性が低下する。また、T
iO2が9.0重量%以上になると溶融金属の流動性が
大きくなりすぎて、すみ肉溶接時等での溶接ビードの包
被性が損なわれると共にスラグの先行現象等による溶接
ビードの形状不整やスラグ巻き込みが発生する。
TiO 2 and ZrO 2 are also raw materials for adjusting the viscosity of slag similarly to SiO 2. However, if TiO 2 is less than 1.0% by weight, the stability of the arc is easily impaired.
The slag peeling property and the encapsulation property of the molten metal decrease. Also, T
If the content of iO 2 is 9.0% by weight or more, the fluidity of the molten metal becomes too large, thereby impairing the covering property of the weld bead at the time of fillet welding and the like, and causing irregularities in the shape of the weld bead due to the slag preceding phenomenon. And slag entrainment occurs.

【0041】また、ZrO2も0.l重量%以下では溶
融金属の流動性が大きすぎる(ビード形状不良)と共に
溶融金属の包被性が低下する。またZrO2が4.0重
量%以上になると溶接スラグの粘性が高くなりすぎてス
ラグ巻き込みや融合不良等の欠陥を生じる。
Further, ZrO 2 is also contained in 0.1. If the amount is less than 1% by weight, the fluidity of the molten metal is too large (bead shape is poor) and the encapsulation of the molten metal is reduced. On the other hand, when the content of ZrO 2 is 4.0% by weight or more, the viscosity of the welding slag becomes too high, causing defects such as slag entrainment and poor fusion.

【0042】またAl23とZrO2の両者の和が1.
0重量%以下では溶接時のスラグの粘性が不足するため
に立向等の姿勢での溶接ビードの形状が不整となりやす
く、また、6.0重量%以上になると逆にスラグ粘性が
大きすぎて、横向き、水平すみ肉溶接時でのビード形状
不良となり易い。
The sum of both Al 2 O 3 and ZrO 2 is 1.
Below 0% by weight, the viscosity of the slag at the time of welding is insufficient, so that the shape of the weld bead tends to be irregular in a vertical position, and above 6.0% by weight, the slag viscosity is too large. The bead shape is liable to be defective during horizontal and horizontal fillet welding.

【0043】[0043]

【実施例】次に、本発明の実施例について、その比較例
と比較して説明する。下記表1に示す組成の供試ステン
レス鋼外皮にフラックスを充填し、表3に示す組成のフ
ラックス入りワイヤを製作し、表2に示す溶接条件でS
US304LN鋼をアーク溶接した。その開先部形状を
図5に示す。なお、表3はワイヤ全重量あたりの成分及
び本発明にて規定した指数を示す。また、表4は溶接金
属の引張強度及びシャルピー衝撃試験結果を示す。
Next, examples of the present invention will be described in comparison with comparative examples. Flux was filled in a test stainless steel sheath having the composition shown in Table 1 below, and a flux-cored wire having the composition shown in Table 3 was produced.
US304LN steel was arc welded. FIG. 5 shows the groove shape. Table 3 shows the components per the total weight of the wire and the index defined by the present invention. Table 4 shows the tensile strength of the weld metal and the results of the Charpy impact test.

【0044】[0044]

【表1】 単位は重量%である。 [Table 1] The unit is% by weight.

【0045】[0045]

【表2】 [Table 2]

【0046】[0046]

【表3】 [Table 3]

【0047】[0047]

【表4】 [Table 4]

【0048】この表4から明らかなように、本発明の実
施例は、いずれも強度及び靱性が優れているが、比較例
は強度及び靱性のいずれかが低い。
As is evident from Table 4, the examples of the present invention are all excellent in strength and toughness, but the comparative examples are low in either strength or toughness.

【0049】即ち、比較例23,24はC又はNが下限
値を外れており、引張強度が低い。比較例25はCが多
すぎてスパッタが多く、また衝撃値も低い。比較例26
はC+Nが高すぎるため、衝撃値が低い。比較例27は
Nが高すぎスラグ剥離性が劣っている。また衝撃値も低
い。比較例28はNiが低すぎてオーステナイトが不安
定となり、衝撃値が低下した。比較例29は指数Kが低
く、衝撃値が低い。比較例30は指数Kが高すぎて衝撃
値が低い。比較例31は指数Kが低く衝撃値が低い。比
較例32はMoが多いため、衝撃値が低い。比較例33
はNbが多く、スラグ剥離性が劣っている。比較例34
はCuが高すぎ高温割れが発生した。比較例35はTi
が高すぎるため、溶接金属中の炭素が上昇し、溶接金属
中のフェライトが低下して衝撃値が低下した。比較例3
6はSiが低く、脱酸不足にてブローホールが発生し
た。比較例37はSiが高すぎ、衝撃値が低下した。比
較例38はMnが低く脱酸不足にてブローホールが発生
し、また溶接金属中の炭素が低下して強度不足となっ
た。比較例39はMnが高すぎ、溶接金属中の炭素が上
昇し、フェライトが低下して靱性が低下した。
That is, in Comparative Examples 23 and 24, C or N was outside the lower limit, and the tensile strength was low. In Comparative Example 25, the amount of C was too large, the amount of spatter was large, and the impact value was low. Comparative Example 26
Has a low impact value because C + N is too high. In Comparative Example 27, N was too high and the slag removability was poor. Also, the impact value is low. In Comparative Example 28, Ni was too low, austenite was unstable, and the impact value was reduced. Comparative Example 29 has a low index K and a low impact value. In Comparative Example 30, the index K was too high and the impact value was low. Comparative Example 31 has a low index K and a low impact value. Comparative Example 32 has a low impact value because it has a large amount of Mo. Comparative Example 33
Has a large amount of Nb and is inferior in slag removability. Comparative Example 34
Cu was too high and hot cracking occurred. Comparative Example 35 is Ti
Was too high, the carbon in the weld metal increased, the ferrite in the weld metal decreased, and the impact value decreased. Comparative Example 3
Sample No. 6 had low Si and blowholes were generated due to insufficient deoxidation. In Comparative Example 37, Si was too high, and the impact value was reduced. In Comparative Example 38, Mn was low and blowholes were generated due to insufficient deoxidation, and carbon in the weld metal was reduced, resulting in insufficient strength. In Comparative Example 39, Mn was too high, carbon in the weld metal increased, ferrite decreased, and toughness decreased.

【0050】なお、実施例40〜50は本発明例ではあ
るが、フラックス成分の影響で以下の点が若干認められ
た。即ち、実施例40は若干のなじみ不良、実施例41
は若干のスラグ剥離性不良、実施例42はアーク不安
定、スラグ包被性不良、実施例43はスラグ巻き込み、
実施例44は若干のブローホール、実施例45は若干の
スパッタ増加、実施例46はスラグ剥離性不良、実施例
47は若干のスラグ巻き込み、融合不良、実施例48は
若干のビード形状不良、実施例49はスラグ包被性不
良、実施例50は若干のスラグ巻き込みが生じた。
Examples 40 to 50 are examples of the present invention, but the following points were slightly recognized due to the influence of the flux components. That is, Example 40 was slightly poor in conformity, and Example 41
Is slightly poor slag peelability, Example 42 is arc unstable, slag encapsulation is poor, Example 43 is slag entrainment,
Example 44 has a slight blow hole, Example 45 has a slight increase in spatter, Example 46 has a poor slag peeling property, Example 47 has a little slag entrainment and fusion, and Example 48 has a slight bead shape defect. In Example 49, slag encapsulation was poor, and in Example 50, slag was slightly entrained.

【0051】[0051]

【発明の効果】以上説明したように、本発明によれば、
ワイヤ中の含まれる成分の組成を適切に規定したので、
高強度及び高靱性の溶接金属を得ることができ、オース
テナイト系ステンレス鋼の溶接用ワイヤとして極めて有
益である。
As described above, according to the present invention,
Since the composition of the components contained in the wire was properly specified,
A high strength and high toughness weld metal can be obtained, which is extremely useful as a welding wire for austenitic stainless steel.

【図面の簡単な説明】[Brief description of the drawings]

【図1】308系FCW溶着金属の強度に及ぼす溶着金
属中の(C+N)量の影響を示すグラフ図である。
FIG. 1 is a graph showing the effect of the amount of (C + N) in a weld metal on the strength of a 308 series FCW weld metal.

【図2】308系FCW溶着金属の靱性に及ぼす溶着金
属中の(C+N)量の影響を示すグラフ図である。
FIG. 2 is a graph showing the effect of the amount of (C + N) in the deposited metal on the toughness of the 308 series FCW deposited metal.

【図3】308系FCW溶着金属の靱性に及ぼす溶着金
属中のフェライト量の影響を示すグラフ図である。
FIG. 3 is a graph showing the effect of the amount of ferrite in the deposited metal on the toughness of the 308 series FCW deposited metal.

【図4】308系FCW溶着金属の強度に及ぼす溶着金
属中のフェライト量の影響を示すグラフ図である。
FIG. 4 is a graph showing the effect of the amount of ferrite in the deposited metal on the strength of the 308 series FCW deposited metal.

【図5】開先形状を示す図である。FIG. 5 is a diagram showing a groove shape.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭59−215295(JP,A) (58)調査した分野(Int.Cl.7,DB名) B23K 35/368 B23K 9/23 ──────────────────────────────────────────────────続 き Continuation of front page (56) References JP-A-59-215295 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) B23K 35/368 B23K 9/23

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 オーステナイト系ステンレス鋼からなる
外皮にフラックスを充填してなるフラックス入りワイヤ
において、ワイヤ中にワイヤ全重量あたり、金属成分及
び/又は合金成分として C:0.015〜0.050重量% N:0.005〜0.040重量% C+N:0.025〜0.075重量% Cr:19.0〜22.5重量% Ni:8.2〜9.7重量% Mo:0.5重量%以下 Nb:0.1重量%以下 Cu:0.5重量%以下 Ti:0.5重量%以下 Si:0.2〜1.5重量% Mn:0.7〜5.0重量% を含有し、ワイヤ中に含有される各種合金元素を示す指
標F,Aによって示される下記数式の値Kが13.5〜
23.5の範囲にあることを特徴とするオーステナイト
系ステンレス鋼用フラックス入りワイヤ。 F=0.5×[Si]+1.02×[Cr]+1.08×[Mo]+0.3×[Ti]+0.2×[Nb]+0.30 A=24×[C]+28×[N]+0.25×[Mn]+0.5×[Cu]+1.10×[Ni] K=4.06×F−3.23×A−32.3
1. A flux-cored wire obtained by filling an outer shell made of austenitic stainless steel with a flux, wherein C: 0.015 to 0.050% by weight as a metal component and / or an alloy component per total weight of the wire. % N: 0.005 to 0.040% by weight C + N: 0.025 to 0.075% by weight Cr: 19.0 to 22.5% by weight Ni: 8.2 to 9.7% by weight Mo: 0.5 Nb: 0.1% by weight or less Cu: 0.5% by weight or less Ti: 0.5% by weight or less Si: 0.2 to 1.5% by weight Mn: 0.7 to 5.0% by weight And the value K of the following mathematical expression represented by the indices F and A indicating the various alloy elements contained in the wire is 13.5 to
A flux-cored wire for austenitic stainless steel, which is in the range of 23.5. F = 0.5 x [Si] + 1.02 x [Cr] + 1.08 x [Mo] + 0.3 x [Ti] + 0.2 x [Nb] + 0.30 A = 24 x [C] + 28 x [N] +0.25 x [Mn] + 0.5 x [Cu] + 1.10 x [Ni] K = 4.06 x F-3.23 x A-32.3
【請求項2】 フラックス中にワイヤ全重量あたり、 SiO2:0.5〜5.0重量% TiO2:1.0〜9.0重量% ZrO2:0.1〜4.0重量% を含有し、Al23 :3.5重量%以下に規制し、且
つ、Al23 +ZrO2 :1.0〜6.0重量%であ
り、金属炭酸塩:0.02〜0.15重量%、アルカリ
金属フッ化物:0.02〜1.0重量%を含有し、且
つ、フラックス全体に含まれる金属酸化物、非金属酸化
物、金属炭酸塩及び金属フッ化物の総量をワイヤ全重量
あたり3.0〜12.0重量%に規制したことを特徴と
する請求項1に記載のオーステナイト系ステンレス鋼用
フラックス入りワイヤ。
Wherein the total wire weight per in the flux, SiO 2: 0.5 to 5.0 wt% TiO 2: 1.0 to 9.0 wt% ZrO 2: 0.1 to 4.0% by weight Al 2 O 3 : regulated to 3.5% by weight or less, and Al 2 O 3 + ZrO 2 : 1.0 to 6.0% by weight; metal carbonate: 0.02 to 0.15 % By weight, alkali metal fluoride: 0.02 to 1.0% by weight, and the total amount of metal oxides, nonmetal oxides, metal carbonates and metal fluorides contained in the entire flux as the total weight of the wire The flux-cored wire for austenitic stainless steel according to claim 1, wherein the flux is regulated to 3.0 to 12.0% by weight.
JP7686595A 1995-03-31 1995-03-31 Flux-cored wire for austenitic stainless steel Expired - Lifetime JP3027313B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7686595A JP3027313B2 (en) 1995-03-31 1995-03-31 Flux-cored wire for austenitic stainless steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7686595A JP3027313B2 (en) 1995-03-31 1995-03-31 Flux-cored wire for austenitic stainless steel

Publications (2)

Publication Number Publication Date
JPH08267282A JPH08267282A (en) 1996-10-15
JP3027313B2 true JP3027313B2 (en) 2000-04-04

Family

ID=13617551

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7686595A Expired - Lifetime JP3027313B2 (en) 1995-03-31 1995-03-31 Flux-cored wire for austenitic stainless steel

Country Status (1)

Country Link
JP (1) JP3027313B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190017413A (en) * 2017-08-11 2019-02-20 현대종합금속 주식회사 Flux cored wire welding wire for cryogenic applications
EP3466585A1 (en) * 2017-10-04 2019-04-10 Voestalpine Böhler Welding Austria GmbH Welding material

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5138242B2 (en) * 2007-03-14 2013-02-06 日鐵住金溶接工業株式会社 Flux-cored wire for duplex stainless steel welding
WO2010073763A1 (en) * 2008-12-26 2010-07-01 新日本製鐵株式会社 Stainless steel flux-cored welding wire for the welding of galvanized steel sheets and process for arc welding of galvanized steel sheets with the same
JP4377955B2 (en) * 2007-12-27 2009-12-02 新日本製鐵株式会社 Stainless steel flux-cored welding wire for welding galvanized steel sheet and arc welding method for galvanized steel sheet using the same
JP5022428B2 (en) * 2009-11-17 2012-09-12 株式会社神戸製鋼所 MIG arc welding wire for hardfacing and MIG arc welding method for hardfacing
JP5410466B2 (en) * 2011-03-01 2014-02-05 株式会社神戸製鋼所 Stainless steel flux cored wire
CN102229029B (en) * 2011-05-30 2013-06-19 中冶焊接科技有限公司 Flux-cored wire for austenitic stainless steel all-position welding
CN103418940B (en) * 2012-05-23 2015-05-27 中冶焊接科技有限公司 Flux-cored wire for titanium- or niobium-contained austenitic stainless steel welding
JP6140069B2 (en) * 2013-12-20 2017-05-31 日鐵住金溶接工業株式会社 Stainless steel flux cored wire
CN104745960A (en) * 2013-12-31 2015-07-01 天津冶金集团天材科技发展有限公司 21-10Mn7Mo steel ingot and smelting process thereof
JP6434381B2 (en) * 2015-07-24 2018-12-05 日鐵住金溶接工業株式会社 Stainless steel flux cored wire
CN107262960A (en) * 2016-04-07 2017-10-20 海宁瑞奥金属科技有限公司 High intensity high corrosion resistance austenitic stainless steel flux-cored wire
US10974341B2 (en) * 2016-06-28 2021-04-13 Lincoln Global, Inc. Welding waveform for stainless steel applications
CN107971657B (en) * 2017-11-27 2020-04-21 四川大西洋焊接材料股份有限公司 Gas shielded flux-cored wire for welding SUS316L austenitic stainless steel cryogenic low-temperature storage and transportation container and equipment
CN112775585B (en) * 2021-02-01 2022-07-08 北京工业大学 Anti-scratch iron-based surfacing material and preparation method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190017413A (en) * 2017-08-11 2019-02-20 현대종합금속 주식회사 Flux cored wire welding wire for cryogenic applications
KR101965666B1 (en) 2017-08-11 2019-04-04 현대종합금속 주식회사 Flux cored wire welding wire for cryogenic applications
EP3466585A1 (en) * 2017-10-04 2019-04-10 Voestalpine Böhler Welding Austria GmbH Welding material
WO2019068118A1 (en) * 2017-10-04 2019-04-11 Voestalpine Böhler Welding Austria Gmbh Weld material

Also Published As

Publication number Publication date
JPH08267282A (en) 1996-10-15

Similar Documents

Publication Publication Date Title
JP3027313B2 (en) Flux-cored wire for austenitic stainless steel
JP3476125B2 (en) Flux-cored wire for duplex stainless steel welding
US11136654B2 (en) Low-manganese gas-shielded flux cored welding electrodes
US5055655A (en) Low hydrogen basic metal cored electrode
US20150114944A1 (en) Ni based alloy flux cored wire
US5091628A (en) Low hydrogen basic metal cored electrode
JP3815984B2 (en) Flux-cored wire for gas shielded arc welding for low alloy heat resistant steel
US3221136A (en) Method and electrode for electric arc welding
JP2019025524A (en) Flux-cored wire for gas-shielded arc welding, and manufacturing method of welded joint
US4345140A (en) Composite wire for stainless steel welding
JP2018130749A (en) Flux-cored wire for gas shield arc welding, and method for production of weld joint
JPH0420720B2 (en)
JP2019025525A (en) Flux-cored wire for gas-shielded arc welding, and manufacturing method of welded joint
CN114667201B (en) Flux-cored wire and method for manufacturing welded joint
KR0134561B1 (en) Low-fume flux-cored wire for use in gas-shielded arc welding
JP3293730B2 (en) Flux-cored wire for stainless steel
JP2019048323A (en) Flux-cored wire for gas shield arc-welding, and method of manufacturing weld joint
JP2005230912A (en) Arc welding flux cored wire superior in liquid metal embrittlement crack resistance, and arc welding method
JP3547282B2 (en) Low hydrogen coated arc welding rod
JP2667635B2 (en) Stainless steel flux cored wire
JPH0521677B2 (en)
JPH0237975A (en) Method of welding galvanized steel sheet
KR101658804B1 (en) Flux cored wire for self-shielded arc welding
JPS6045996B2 (en) Flux-cored wire for self-shield arc welding
JP2519308B2 (en) Self shielded arc welding flux cored wire

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080128

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090128

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100128

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110128

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120128

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130128

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130128

Year of fee payment: 13

EXPY Cancellation because of completion of term