JP3027021B2 - Electronic clock with temperature compensation - Google Patents

Electronic clock with temperature compensation

Info

Publication number
JP3027021B2
JP3027021B2 JP3109634A JP10963491A JP3027021B2 JP 3027021 B2 JP3027021 B2 JP 3027021B2 JP 3109634 A JP3109634 A JP 3109634A JP 10963491 A JP10963491 A JP 10963491A JP 3027021 B2 JP3027021 B2 JP 3027021B2
Authority
JP
Japan
Prior art keywords
temperature
circuit
frequency
output
oscillation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3109634A
Other languages
Japanese (ja)
Other versions
JPH04315989A (en
Inventor
樋口  晴彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citizen Watch Co Ltd
Original Assignee
Citizen Watch Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Watch Co Ltd filed Critical Citizen Watch Co Ltd
Priority to JP3109634A priority Critical patent/JP3027021B2/en
Publication of JPH04315989A publication Critical patent/JPH04315989A/en
Application granted granted Critical
Publication of JP3027021B2 publication Critical patent/JP3027021B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electric Clocks (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、温度補償付電子時計に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electronic timepiece with temperature compensation.

【0002】[0002]

【従来の技術】時計の高精度化については、水晶発振回
路を基準信号源に用いたクゥオーツ式の電子時計で飛躍
的進歩を遂げた。クゥオーツ式の電子時計は低価格で高
精度な時計を実現するものであるが、さらに高精度の時
計を要求する場合、水晶発振回路のもつ温度特性の影響
が無視できない。この為に水晶発振回路の温度特性を補
正する温度補償式の電子時計が提案されてきた。以下、
従来の温度補償動作を図を用いて説明する。周波数温度
特性が2次カーブとなる発振回路を用いた電子時計の温
度補償に関して以下図面を用いて説明する。図3は周波
数温度特性が2次カーブとなる発振回路の温度と周波数
の関係を示したものである。発振回路の出力周波数は図
3に示す如く頂点温度Ztcからの温度差の2剰に比例
して変化する。その周囲温度と発振周波数の関係は
(1)式に示す如くなる。 f=−a×(Ztc−T)2 +f0 ・・・・・(1) 但し、aは2次温度係数、Ztcは頂点温度、f0は周
囲温度がZtcの時の発振周波数である。図3からも分
かるように、a、Ztc、f0が既知であれば周囲温度
Thをなんらかの方法で測定しその結果を式(1)に代
入することで周囲温度Thの場合の発振周波数fhを求
めることが出来る。
2. Description of the Related Art With respect to increasing the precision of timepieces, dramatic progress has been made in quartz type electronic timepieces using a crystal oscillation circuit as a reference signal source. Quartz-type electronic timepieces realize low-cost and high-accuracy timepieces. However, when higher-precision timepieces are required, the influence of the temperature characteristics of the crystal oscillation circuit cannot be ignored. Therefore, a temperature-compensated electronic timepiece that corrects the temperature characteristics of a crystal oscillation circuit has been proposed. Less than,
A conventional temperature compensation operation will be described with reference to the drawings. The temperature compensation of an electronic timepiece using an oscillation circuit whose frequency temperature characteristic has a secondary curve will be described below with reference to the drawings. FIG. 3 shows the relationship between the temperature and the frequency of the oscillation circuit in which the frequency temperature characteristic has a secondary curve. As shown in FIG. 3, the output frequency of the oscillation circuit changes in proportion to the remainder of the temperature difference from the peak temperature Ztc. The relationship between the ambient temperature and the oscillation frequency is as shown in equation (1). f = −a × (Ztc−T) 2 + f0 (1) where a is the secondary temperature coefficient, Ztc is the peak temperature, and f0 is the oscillation frequency when the ambient temperature is Ztc. As can be seen from FIG. 3, if a, Ztc, and f0 are known, the ambient temperature Th is measured by some method, and the result is substituted into Expression (1) to obtain the oscillation frequency fh at the ambient temperature Th. I can do it.

【0003】図2は従来の温度補償動作を実現するため
の回路構成を示したブロック図である。図2に於いて1
は周波数温度特性が2次カーブとなる発振回路、2は分
周回路、3は演算回路、5は温度測定回路、4は記憶回
路、9は周波数調整回路、10はタイミング発生回路で
ある。前記分周回路2では前記発振回路1から出力され
た出力信号Foutを分周し動作に必要な計時信号Fd
ivを作成する。前記タイミング発生回路10は前記分
周回路2から出力された分周信号Fdivをもとに、図
4のタイムチャート図に示す如く時刻nに於いて、温度
補償動作信号St1(n)を出力する。前記温度測定回
路5では前記温度補償動作信号St1(n)の立ち上が
りに同期して、時計回路内部の温度を測定しその結果を
温度センサ出力So(n)として出力するとともに測定
終了信号Se(n)を出力する。前記記憶回路4では測
定終了信号Se(n)を受けると前記温度センサ出力S
o(n)を記憶し記憶終了信号Me(n)を出力する。
FIG. 2 is a block diagram showing a circuit configuration for realizing a conventional temperature compensation operation. 2 in FIG.
Is an oscillation circuit whose frequency temperature characteristic is a secondary curve, 2 is a frequency divider circuit, 3 is an arithmetic circuit, 5 is a temperature measurement circuit, 4 is a storage circuit, 9 is a frequency adjustment circuit, and 10 is a timing generation circuit. The frequency dividing circuit 2 divides the frequency of the output signal Fout output from the oscillating circuit 1 to generate a clock signal Fd required for the operation.
Create iv. The timing generation circuit 10 outputs a temperature compensation operation signal St1 (n) at time n as shown in the time chart of FIG. 4 based on the frequency division signal Fdiv output from the frequency division circuit 2. . The temperature measuring circuit 5 measures the temperature inside the timepiece circuit in synchronization with the rise of the temperature compensation operation signal St1 (n), outputs the result as a temperature sensor output So (n), and a measurement end signal Se (n). ) Is output. When the storage circuit 4 receives the measurement end signal Se (n), the temperature sensor output S
o (n) and outputs a storage end signal Me (n).

【0004】前記記憶回路4は時刻nから時刻n+1ま
での間、前記温度センサ出力So(n)を温度情報t
(n)として出力する。前記演算回路3では記憶終了信
号Me(n)をうけると、前期記憶回路4に記憶された
温度情報t(n)にもとづいて、温度情報t(n)にお
ける前記発振回路1の温度Ztcにおける発振出力fo
からの周波数シフトΔf(n)を下記の(2)式より演
算する。 Δf(n)=−a×(Ztc−t(n))2 ・・・・・(2) ただしaは前記発振回路1の2次温度係数、Ztcは頂
点温度でいずれの値も既知とする。前記周波数調整回路
9では前記温度補償動作信号St1(n)の立ち下がり
に同期して、演算回路3からの出力Δf(n)をもとに
調整係数fs(n)を出力し前記発振回路1の温度t
(n)における周波数シフトΔf(n)を補正する。前
記周波数調整回路9では、時刻nから時刻n+1までの
間は前記記憶回路6に記憶されている温度情報t(n)
にもとづいて周波数調整が行なわれる。なお温度補償動
作信号St1(n)、測定終了信号Se(n)、記憶終
了信号Me(n)は図10にしめすタイミングで出力さ
れる。従来例による温度補償動作は、前記温度測定回路
5を含む温度補償回路のように動作時に多くの消費電流
を費やす回路に関しては、一定の動作間隔Sをもって間
欠的に動作させていた。これは時計全体の消費電流(通
常の時計としての消費電流と温度補償回路の消費電流の
和)と、時計に用いられる電池の容量との関係から、あ
る程度以上の電池寿命を確保する為にとられた行為であ
る。従って小型、低容量の電池の使用や時計の長寿命化
を実現する場合には、必然的に動作間隔Sは長くなる傾
向にある。
The memory circuit 4 stores the temperature sensor output So (n) in the temperature information t from time n to time n + 1.
Output as (n). When the arithmetic circuit 3 receives the storage end signal Me (n), it oscillates at the temperature Ztc of the oscillating circuit 1 in the temperature information t (n) based on the temperature information t (n) stored in the storage circuit 4. Output fo
Is calculated from the following equation (2). Δf (n) = − a × (Ztc−t (n)) 2 (2) where a is a secondary temperature coefficient of the oscillation circuit 1, and Ztc is a peak temperature and any value is known. . The frequency adjustment circuit 9 outputs an adjustment coefficient fs (n) based on the output Δf (n) from the arithmetic circuit 3 in synchronization with the fall of the temperature compensation operation signal St1 (n). Temperature t
The frequency shift Δf (n) in (n) is corrected. In the frequency adjustment circuit 9, the temperature information t (n) stored in the storage circuit 6 from time n to time n + 1.
The frequency adjustment is performed based on this. The temperature compensation operation signal St1 (n), the measurement end signal Se (n), and the storage end signal Me (n) are output at the timing shown in FIG. In the temperature compensation operation according to the conventional example, a circuit that consumes a large amount of current during operation such as a temperature compensation circuit including the temperature measurement circuit 5 is operated intermittently at a constant operation interval S. This is because of the relationship between the current consumption of the watch as a whole (sum of the current consumption of the normal watch and the current consumption of the temperature compensation circuit) and the capacity of the battery used in the watch, to secure a certain level of battery life. It is an act that was performed. Therefore, when using a small-sized and low-capacity battery or extending the life of the timepiece, the operation interval S necessarily tends to be long.

【0005】[0005]

【発明が解決しようとする課題】従来例による温度補償
の場合、周囲温度が刻々と変化している場合、前記温度
測定回路5の動作直後は時計内部の温度と前記記憶回路
4の温度情報t(n)が一致しているため前記発振回路
1の周波数シフトΔf(n)を正しく知ることができ、
その結果正しい補正係数fs(n)を求めることが出来
るので正確に周波数調整が行なわれる。しかし時間の経
過とともに時計内部の温度が変化すると前前記発振回路
1の周波数シフトは温度変化にともなって変化するのに
対して前記記憶回路4の温度情報t(n)は時刻nにお
いて測定された温度情報So(n)がそのまま保持され
ているため、前記発振回路1の正しい周波数シフトを正
しく知ることが出来なくなり、その結果として周波数調
整が正しく行なわれなくなるため前記発振回路1の発振
出力の誤差が拡大する。図7は、図5に示されるように
時計内部の温度が変化した場合の前記発振回路1の発振
出力の変化を示したものである。図7において前記温度
測定回路5は図4の温度補償動作信号St1(n)に応
じて、周期Sで温度測定動作を行なっており、また図5
の時計内部温度は2次温度特性をもつ発振回路1の頂点
温度Ztcに対して、Ztc<T1<T2 という環境
を想定している。温度測定が行なわれた瞬間、すなわち
温度補償動作信号St1(n)が出力されたタイミング
では正しい温度補償動作が行なわれているため発振回路
1は正しい周波数foを出力している。次の温度測定の
タイミング、すらわち温度補償動作信号St1(n+
1)の出力までの間は温度情報t(n)は図6に示す如
く一定の値を示し、従って前記補正係数fs(n)は、
前記温度補償動作信号St1(n)の出力タイミングで
設定した値で不変であるため、前記発振回路1の温度特
性分の誤差が徐々に増大する。
In the case of the temperature compensation according to the conventional example, when the ambient temperature is constantly changing, immediately after the operation of the temperature measuring circuit 5, the temperature inside the clock and the temperature information t of the memory circuit 4 are obtained. Since (n) matches, the frequency shift Δf (n) of the oscillation circuit 1 can be correctly known,
As a result, a correct correction coefficient fs (n) can be obtained, so that the frequency is accurately adjusted. However, when the temperature inside the timepiece changes with the passage of time, the frequency shift of the oscillation circuit 1 changes with the temperature change, whereas the temperature information t (n) of the storage circuit 4 is measured at time n. Since the temperature information So (n) is held as it is, it is not possible to correctly know the correct frequency shift of the oscillation circuit 1, and as a result, the frequency adjustment is not correctly performed, so that the error of the oscillation output of the oscillation circuit 1 Expands. FIG. 7 shows a change in the oscillation output of the oscillation circuit 1 when the temperature inside the timepiece changes as shown in FIG. In FIG. 7, the temperature measuring circuit 5 performs a temperature measuring operation at a period S in accordance with the temperature compensation operation signal St1 (n) of FIG.
Is assumed to have an environment of Ztc <T1 <T2 with respect to the peak temperature Ztc of the oscillation circuit 1 having the secondary temperature characteristic. At the moment when the temperature is measured, that is, at the timing when the temperature compensation operation signal St1 (n) is output, the oscillation circuit 1 outputs the correct frequency fo because the correct temperature compensation operation is performed. The next temperature measurement timing, that is, the temperature compensation operation signal St1 (n +
Until the output of 1), the temperature information t (n) shows a constant value as shown in FIG. 6, so that the correction coefficient fs (n) is
Since the value remains unchanged at the output timing of the temperature compensation operation signal St1 (n), the error of the temperature characteristic of the oscillation circuit 1 gradually increases.

【0006】そしてつぎの温度補償動作信号St(n+
1)のタイミングで温度測定が行なわれると再び前記発
振回路1は正しい周波数を出力する。時計の精度として
の性能上、温度補償の場合に生じる誤差は小さいほうが
望ましいく、また時計の周波数を測定する場合、特に製
造における調整工程においても同様のことが言える。誤
差を小さくする手段としては、前記温度測定回路5の動
作周期Sを短くすれば良いが、前記温度測定回路5の単
位時間当りの動作回数が増えると時計としての消費電流
が増加してしまい、時計の電池寿命を考えると一概には
動作周期を短くすることは出来ない。したがって上記の
如き誤差は温度補償回路を間欠的に駆動させるシステム
では解消することは出来ない。
Then, the next temperature compensation operation signal St (n +
When the temperature is measured at the timing of 1), the oscillation circuit 1 outputs a correct frequency again. In terms of the performance of the timepiece, it is desirable that the error generated in the case of temperature compensation be small, and the same can be said for the measurement of the frequency of the timepiece, particularly in the adjustment step in manufacturing. As a means for reducing the error, the operating cycle S of the temperature measuring circuit 5 may be shortened. However, if the number of operations per unit time of the temperature measuring circuit 5 increases, the current consumption as a clock increases. Considering the battery life of a watch, the operation cycle cannot be shortened. Therefore, the above error cannot be eliminated by a system that drives the temperature compensation circuit intermittently.

【0007】[0007]

【課題を解決するための手段】上記問題を解決するため
の本発明の特徴は、周波数温度特性が2次カーブとなる
水晶発振器と、該水晶発振器出力から計時単位信号を作
成する分周回路と、温度測定回路とを備えた温度補償付
電子時計に於いて、前記温度測定回路から出力される少
なくとも2つ以上の温度情報を記憶する記憶回路と該記
憶回路に保持された2つ以上の温度情報を基に現在の温
度変化の微分係数を演算する演算回路と、該演算回路で
演算された微分係数を基に現在の温度を予測する予測回
路と該予測回路の温度情報を基に水晶発振器の周波数調
整を行なう周波数調整回路を備えたことを特徴とする。
A feature of the present invention for solving the above problems is that a frequency oscillator has a quadratic curve with respect to frequency temperature characteristics, and a frequency dividing circuit for generating a timekeeping unit signal from the output of the crystal oscillator. , A temperature compensating electronic timepiece provided with a temperature measuring circuit, a memory circuit for storing at least two or more pieces of temperature information output from the temperature measuring circuit, and two or more temperatures stored in the memory circuit. An arithmetic circuit for calculating the differential coefficient of the current temperature change based on the information; a prediction circuit for predicting the current temperature based on the differential coefficient calculated by the arithmetic circuit; and a crystal oscillator based on the temperature information of the prediction circuit. And a frequency adjusting circuit for adjusting the frequency.

【0008】[0008]

【実施例】以下図面により本発明の実施例を説明する。
図5に示すように時計内部の温度が変化した場合、時刻
n−1における時計内部の温度をt(n−1)、時刻n
における時計内部の温度をt(n)とすれば、動作間隔
Sを隔てた時刻n−1から時刻nまでの平均の温度変化
率ΔT(n)は(3)式によって示される。
Embodiments of the present invention will be described below with reference to the drawings.
When the temperature inside the watch changes as shown in FIG. 5, the temperature inside the watch at time n-1 is represented by t (n-1) and time n
Assuming that the temperature inside the timepiece at (t) is t (n), the average temperature change rate ΔT (n) from time n−1 to time n separated by the operation interval S is expressed by equation (3).

【0009】 [0009]

【0010】又、温度変化率ΔT(n)の値から、時刻
(n,m) (但し0<m<S)に於ける温度te
(n,m)は下記(4)式のごとく予測することが出来
る。 te(n,m)=t(n)+ΔT×m ・・・・・ (4) 図5に示すような時計内部の温度変化が生じている場合
に、図4に示すタイミングで温度測定を行なった時、従
来例における温度情報t(n)は図8の破線で示すよう
に変化する。これに対して前記(3)式、(4)式を用
いて、演算された予測温度te(n,m)は図8の実線
に示すようになる。
From the value of the temperature change rate ΔT (n), the temperature te at the time (n, m) (where 0 <m <S) is obtained.
(N, m) can be predicted as in the following equation (4). te (n, m) = t (n) + ΔT × m (4) When the temperature inside the timepiece changes as shown in FIG. 5, the temperature is measured at the timing shown in FIG. Then, the temperature information t (n) in the conventional example changes as shown by the broken line in FIG. On the other hand, the predicted temperature te (n, m) calculated by using the equations (3) and (4) is as shown by a solid line in FIG.

【0011】以下は例として温度測定周期Sで動作する
温度補償回路について説明する。図1は上記予測式温度
補償動作を実現するための回路構成を示したブロック図
であり、図2に示す従来と同一要素には同一番号を付し
重複する説明については省略する。図1に於いて、6は
記憶回路であり2つの時刻における温度情報を記憶する
記憶エリア61、62、2つの入力IN1、IN2のう
ち1つを選択しOUT1から出力する選択回路63を有
する。7は前記記憶回路6に記憶された2つの温度情報
をもとに温度変化率ΔT(n)を算出する微分係数演算
回路、8は温度変化率ΔT(n)より現在の時計内部の
温度を予測する予測回路である。前記発振回路1から出
力される発振出力Foutは前記分周回路2で分周さ
れ、分周信号Fdivとなる。前記タイミング発生回路
10では前期分周信号Fdivにもとづいて周期Sの温
度補償動作信号St1(n)(0≦n)、予測演算信号
St2(n,m)(0≦n、0<m<S)を出力する。
n=0の場合、すなわち電源投入、またはシステムの初
期化直後において前記選択回路63は入力としてIN
1、すなわち前記温度測定回路5の出力を選択し前記記
憶エリア62に出力するよう設定される。n=0のタイ
ミングで出力される温度補償動作信号St1(0)の立
ち上がりに同期して前記温度測定回路5が動作し時計内
部の温度を測定し、測定を終了すると測定結果を温度セ
ンサ出力So(0)として、さらに測定終了信号Se
(0)を出力する。
Hereinafter, a temperature compensation circuit that operates in the temperature measurement period S will be described as an example. FIG. 1 is a block diagram showing a circuit configuration for realizing the above-mentioned predictive temperature compensation operation. The same elements as those of the conventional art shown in FIG. 2 are denoted by the same reference numerals, and redundant description will be omitted. In FIG. 1, reference numeral 6 denotes a storage circuit, which has storage areas 61 and 62 for storing temperature information at two times, and a selection circuit 63 for selecting one of two inputs IN1 and IN2 and outputting it from OUT1. Reference numeral 7 denotes a differential coefficient operation circuit for calculating a temperature change rate ΔT (n) based on the two pieces of temperature information stored in the storage circuit 6, and 8 denotes a current temperature inside the timepiece based on the temperature change rate ΔT (n). This is a prediction circuit for performing prediction. The oscillation output Fout output from the oscillation circuit 1 is frequency-divided by the frequency dividing circuit 2 to become a frequency-divided signal Fdiv. In the timing generation circuit 10, the temperature compensation operation signal St1 (n) (0 ≦ n) of the cycle S and the prediction operation signal St2 (n, m) (0 ≦ n, 0 <m <S) based on the divided frequency signal Fdiv. ) Is output.
When n = 0, that is, immediately after the power is turned on or the system is initialized, the selection circuit 63 receives IN as an input.
1, that is, the output of the temperature measurement circuit 5 is selected and set to be output to the storage area 62. The temperature measurement circuit 5 operates in synchronization with the rise of the temperature compensation operation signal St1 (0) output at the timing of n = 0 to measure the temperature inside the timepiece, and when the measurement is completed, the measurement result is output to the temperature sensor output So. (0), the measurement end signal Se
(0) is output.

【0012】前記記憶回路6は測定終了信号Se(0)
を受けると、前記記憶エリア61は前記温度測定回路5
の出力So(0)を温度情報T1(0)として記憶し、
また前記記憶エリア62は前記選択回路63の選択出力
Sel(0)を温度情報T2(0)として記憶し各々出
力する。n=0においては先にも述べたように前記選択
回路63は入力信号としてIN1側を選択している。従
って前記記憶エリア62に記憶される情報は温度センサ
出力So(0)となり、前記記憶エリア61と前記記憶
エリア62には同じ情報が記憶される。さらに前記記憶
回路6は温度情報T1(0)、T2(0)の記憶を終了
すると、前記選択回路63の入力をIN1からIN2に
切替えると共に記憶終了信号Me(0)をし出力する。
前記微分係数演算回路7では記憶終了信号Me(0)を
受けると、前記記憶エリア61、前記記憶エリア62よ
り温度情報T1(0)、T2(0)を読みだし、(3)
式にもとづいて微分係数ΔT(0)を演算する。n=0
ではT1(0)=T2(0)であるためΔT=0とな
る。つづいて前記予測回路8では予測演算信号St2
(n,m)に同期して前記微分係数ΔT(0)をもと
に、(4)式によって0<m<Sの範囲で予測温度te
(0,m)を演算し出力する。
The storage circuit 6 stores a measurement end signal Se (0).
When the storage area 61 receives the temperature measurement circuit 5
Is stored as temperature information T1 (0),
The storage area 62 stores and outputs the selected output Sel (0) of the selecting circuit 63 as temperature information T2 (0). When n = 0, as described above, the selection circuit 63 selects the IN1 side as an input signal. Therefore, the information stored in the storage area 62 is the temperature sensor output So (0), and the same information is stored in the storage area 61 and the storage area 62. Further, when the storage circuit 6 finishes storing the temperature information T1 (0) and T2 (0), it switches the input of the selection circuit 63 from IN1 to IN2 and outputs a storage end signal Me (0).
Upon receiving the storage end signal Me (0), the differential coefficient calculation circuit 7 reads the temperature information T1 (0) and T2 (0) from the storage area 61 and the storage area 62, and (3)
The differential coefficient ΔT (0) is calculated based on the equation. n = 0
Since T1 (0) = T2 (0), ΔT = 0. Subsequently, the prediction circuit 8 predicts a prediction operation signal St2.
Based on the differential coefficient ΔT (0) in synchronism with (n, m), the predicted temperature te in the range of 0 <m <S by equation (4) based on equation (4).
(0, m) is calculated and output.

【0013】前記周波数調整回路9は予測温度te
(0,m)にもとづいて前記発振回路1の時計内部の温
度変化による周波数シフトΔfを(2)式により演算、
補正係数fs(0,m)を出力し周波数の補正を行な
う。n=0においてはΔT=0であるため予測温度te
(0,m)=T1で一定となるため温度補正係数fs
(0,m)も一定となる。n≧1、すなわち温度補償動
作信号St1(1)以降の出力タイミングにおいて、前
記温度測定回路5は前記温度補償動作信号St1(n)
のタイミングで時計内部の温度を測定するとともに、温
度センサ出力So(n)、測定終了信号Se(n)を出
力する。前記記憶回路6は測定終了信号Se(n)を受
けると、前記記憶エリア62は前記選択回路63の選択
出力Sel(n)を温度情報T2(n)として記憶し、
また前記記憶エリア61は温度センサ出力Se(n)を
温度情報T1(n)として記憶しさらに記憶終了信号M
e(n)を出力する。ここで選択出力Sel(n)はn
−1の時刻に前記記憶エリア61に記憶された温度情報
T1(n−1)でありこれはセンサ出力So(n−1)
に相当する。前記微分係数演算回路7では記憶終了信号
Me(0)を受けると、前記記憶エリア61、前記記憶
エリア62より温度情報T1(n)、T2(n)を読み
だし、(3)式にもとづいて微分係数ΔT(n)を演算
する。
The frequency adjusting circuit 9 calculates a predicted temperature te
Based on (0, m), a frequency shift Δf due to a temperature change inside the timepiece of the oscillation circuit 1 is calculated by equation (2),
The correction coefficient fs (0, m) is output to correct the frequency. At n = 0, since ΔT = 0, the predicted temperature te
(0, m) = T1 and becomes constant, so the temperature correction coefficient fs
(0, m) is also constant. At n ≧ 1, that is, at the output timing after the temperature compensation operation signal St1 (1), the temperature measurement circuit 5 outputs the temperature compensation operation signal St1 (n).
At the same time, the temperature sensor output So (n) and the measurement end signal Se (n) are output. When the storage circuit 6 receives the measurement end signal Se (n), the storage area 62 stores the selection output Sel (n) of the selection circuit 63 as temperature information T2 (n),
The storage area 61 stores the temperature sensor output Se (n) as temperature information T1 (n) and further stores a storage end signal M
e (n) is output. Here, the selection output Sel (n) is n
The temperature information T1 (n-1) stored in the storage area 61 at the time of -1 is the sensor output So (n-1).
Is equivalent to Upon receiving the storage end signal Me (0), the differential coefficient calculation circuit 7 reads out the temperature information T1 (n) and T2 (n) from the storage area 61 and the storage area 62, and based on the equation (3). The differential coefficient ΔT (n) is calculated.

【0014】つづいて前記予測回路8では予測演算信号
St2(n+m)に同期して微分係数ΔT(n)をもと
に(4)式によって0<m<Sの範囲で予測温度te
(n,m)を演算し出力する。前記周波数調整回路9は
予測温度te(n,m)にもとずいて前記発振回路1の
時計内部のの温度変化による周波数シフトΔfを(2)
式より演算して補正係数fs(n,m)を出力し周波数
の補正を行なう。なお前記温度補償動作信号St1
(n)、予測動作信号St2(n,m)、測定終了信号
Se(n)、記憶終了信号Me(n)は、図11に示す
タイムチャートの如く出力されている。上記の手順によ
る予測式温度補償を行なった場合の時間経過と共に時計
内部の温度が変化した場合の前記水晶発振器1の発振出
力を図9に示す。図9に示す如く本予測式温度補償を行
なった場合では、図7に示す従来の方式による温度補
償、すらわち温度測定の際に前記発振回路1の周波数補
正値を一義的に決めてしまう方法に比べ、時計内部の温
度変化が起きている間の発振出力の誤差が減少すること
がわかる。
Subsequently, the prediction circuit 8 synchronizes with the prediction operation signal St2 (n + m) and calculates the prediction temperature te in the range of 0 <m <S based on the differential coefficient ΔT (n) according to the equation (4).
(N, m) is calculated and output. Based on the predicted temperature te (n, m), the frequency adjustment circuit 9 sets the frequency shift Δf due to a temperature change inside the timepiece of the oscillation circuit 1 to (2).
The correction coefficient fs (n, m) is output from the equation and the frequency is corrected. The temperature compensation operation signal St1
(N), the prediction operation signal St2 (n, m), the measurement end signal Se (n), and the storage end signal Me (n) are output as in the time chart shown in FIG. FIG. 9 shows the oscillation output of the crystal oscillator 1 when the temperature inside the timepiece changes with the lapse of time when the predictive temperature compensation according to the above procedure is performed. When the predictive temperature compensation is performed as shown in FIG. 9, the frequency compensation value of the oscillation circuit 1 is uniquely determined at the time of temperature compensation by the conventional method shown in FIG. It can be seen that the error of the oscillation output during the temperature change inside the timepiece is reduced as compared with the method.

【0015】[0015]

【発明の効果】以上の如く本発明によれば、温度測定回
路の動作間隔を広げるた場合でも従来例に比べ誤差が少
なくて済むことから、時計としての精度を損なうことな
く消費電流を低く押さえることができる。また従来例と
同程度の温度測定間隔であれば発振回路の誤差を小さく
押さえることができ、時計の長寿命化、高精度化、測定
精度の向上を計れるものである。
As described above, according to the present invention, even when the operation interval of the temperature measuring circuit is extended, the error can be reduced as compared with the conventional example, so that the current consumption can be kept low without impairing the precision as a timepiece. be able to. Further, if the temperature measurement interval is almost the same as that of the conventional example, the error of the oscillation circuit can be suppressed to a small value, and the life of the timepiece can be extended, the accuracy can be improved, and the measurement accuracy can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の電子時計の回路構成を示すブロック図
である。
FIG. 1 is a block diagram showing a circuit configuration of an electronic timepiece according to the present invention.

【図2】従来例の電子時計の回路構成を示すブロック図
である。
FIG. 2 is a block diagram showing a circuit configuration of a conventional electronic timepiece.

【図3】周波数発振特性が2次カーブとなる発振回路の
周波数温度特性を示す周波数温度特性図である。
FIG. 3 is a frequency-temperature characteristic diagram illustrating a frequency-temperature characteristic of an oscillation circuit whose frequency oscillation characteristic has a secondary curve.

【図4】従来例および本発明の温度補償動作信号を示す
タイムチャートである。
FIG. 4 is a time chart showing a temperature compensation operation signal according to a conventional example and the present invention.

【図5】時計内部の温度変化を示す特性図である。FIG. 5 is a characteristic diagram showing a temperature change inside the timepiece.

【図6】従来例の温度補償時の温度情報を示す特性図で
ある。
FIG. 6 is a characteristic diagram showing temperature information at the time of temperature compensation in a conventional example.

【図7】従来例の発振回路の発振出力を示す特性図であ
る。
FIG. 7 is a characteristic diagram illustrating an oscillation output of a conventional oscillation circuit.

【図8】本発明の予測温度情報を示す特性図である。FIG. 8 is a characteristic diagram showing predicted temperature information of the present invention.

【図9】本発明の発振回路の発振出力を示す特性図であ
る。
FIG. 9 is a characteristic diagram showing an oscillation output of the oscillation circuit of the present invention.

【図10】従来例のタイミング信号出力をしめすタイム
チャートである。
FIG. 10 is a time chart showing a timing signal output of a conventional example.

【図11】本発明のタイミング信号出力をしめすタイム
チャートである。
FIG. 11 is a time chart showing a timing signal output of the present invention.

【符号の説明】[Explanation of symbols]

1 発振回路 2 分周回路 3 演算回路 4 記憶回路 5 温度測定回路 6 記憶回路 61 記憶エリア1 62 記憶エリア2 63 選択回路 7 微分係数演算回路 8 予測回路 9 周波数調整回路 10 タイミング発生回路 DESCRIPTION OF SYMBOLS 1 Oscillation circuit 2 Divider circuit 3 Operation circuit 4 Storage circuit 5 Temperature measurement circuit 6 Storage circuit 61 Storage area 1 62 Storage area 2 63 Selection circuit 7 Differential coefficient calculation circuit 8 Prediction circuit 9 Frequency adjustment circuit 10 Timing generation circuit

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 周波数−温度特性が2次カーブとなる水
晶発振器と、該水晶発振器出力から計時単位信号を作成
する分周回路と、温度測定回路とを備えた温度補償付電
子時計に於いて、前記温度測定回路から出力される少な
くとも2つ以上の温度情報を記憶する記憶回路と該記憶
回路に保持された2つ以上の温度情報を基に現在の温度
変化の微分係数を演算する演算回路と、該演算回路で演
算された微分係数をもとに現在の温度を予測する予測回
路と該予測回路の温度情報を基に水晶発振器の周波数調
整を行なう周波数調整回路を備えた電子時計。
1. An electronic timepiece with temperature compensation comprising: a crystal oscillator having a quadratic curve in frequency-temperature characteristics; a frequency dividing circuit for generating a clock unit signal from an output of the crystal oscillator; and a temperature measuring circuit. A storage circuit for storing at least two or more pieces of temperature information output from the temperature measurement circuit, and an arithmetic circuit for calculating a differential coefficient of a current temperature change based on the two or more pieces of temperature information held in the storage circuit And an electronic timepiece comprising: a prediction circuit for predicting a current temperature based on a differential coefficient calculated by the calculation circuit; and a frequency adjustment circuit for adjusting a frequency of the crystal oscillator based on temperature information of the prediction circuit.
JP3109634A 1991-04-16 1991-04-16 Electronic clock with temperature compensation Expired - Fee Related JP3027021B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3109634A JP3027021B2 (en) 1991-04-16 1991-04-16 Electronic clock with temperature compensation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3109634A JP3027021B2 (en) 1991-04-16 1991-04-16 Electronic clock with temperature compensation

Publications (2)

Publication Number Publication Date
JPH04315989A JPH04315989A (en) 1992-11-06
JP3027021B2 true JP3027021B2 (en) 2000-03-27

Family

ID=14515255

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3109634A Expired - Fee Related JP3027021B2 (en) 1991-04-16 1991-04-16 Electronic clock with temperature compensation

Country Status (1)

Country Link
JP (1) JP3027021B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102132492B (en) * 2008-08-28 2014-07-30 松下电器产业株式会社 Synthesizer and reception device and electronic device using same
CN103454904B (en) * 2013-09-04 2016-04-06 成都天奥电子股份有限公司 Improve quartz watch to keep time the method for precision and quartz watch

Also Published As

Publication number Publication date
JPH04315989A (en) 1992-11-06

Similar Documents

Publication Publication Date Title
US6472943B1 (en) Oscillating circuit and method for calibrating same
US4443116A (en) Electronic timepiece
CN113031428B (en) Real-time clock device and electronic apparatus
US8901983B1 (en) Temperature compensated timing signal generator
US11251750B1 (en) Crystal oscillator and startup method for a crystal oscillator
EP2854293B1 (en) Temperature compensated timing signal generator
EP2854294B1 (en) Temperature compensated timing signal generator
JP2002217722A (en) Reference frequency generator
JP3027021B2 (en) Electronic clock with temperature compensation
US8896359B1 (en) Temperature compensated timing signal generator
JP2002228778A (en) Real-time clock and clocking circuit
US10466655B1 (en) Electronic timepiece and control method of electronic timepiece
EP2884351B1 (en) Sensor signal acquisition data
GB2132042A (en) Frequency and timing sources
US6049240A (en) Logical delaying/advancing circuit used
JP2006303764A (en) Temperature compensation method of temperature compensation oscillation circuit, temperature compensation oscillation circuit, piezoelectric device, and electronic apparatus
JPH0245837Y2 (en)
JPS62237386A (en) Electronic timepiece
JP2000004152A (en) Time frequency reference signal generator and reference time frequency generating device, and reference time generating device using the same
JPS5841379A (en) Electronic time piece with temperature compensation
CN109976139A (en) The control method of electronic watch and electronic watch
JP2005069948A (en) Electronic timepiece, its stepping compensation method, and recording time correction method therefor
JP2006303855A (en) Temperature compensation method of temperature compensation oscillation circuit, temperature compensation oscillation circuit, and piezoelectric device
CN116633346A (en) Crystal oscillator and starting method for crystal oscillator
KR100809801B1 (en) Method for holdover handling in phase-locked loop

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees