JP3026906B2 - Continuous casting of steel - Google Patents

Continuous casting of steel

Info

Publication number
JP3026906B2
JP3026906B2 JP6023560A JP2356094A JP3026906B2 JP 3026906 B2 JP3026906 B2 JP 3026906B2 JP 6023560 A JP6023560 A JP 6023560A JP 2356094 A JP2356094 A JP 2356094A JP 3026906 B2 JP3026906 B2 JP 3026906B2
Authority
JP
Japan
Prior art keywords
powder
oscillation
mold
equation
solidification temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP6023560A
Other languages
Japanese (ja)
Other versions
JPH07214266A (en
Inventor
良朗 大塚
俊哉 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=12113907&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP3026906(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP6023560A priority Critical patent/JP3026906B2/en
Publication of JPH07214266A publication Critical patent/JPH07214266A/en
Application granted granted Critical
Publication of JP3026906B2 publication Critical patent/JP3026906B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は鉄鋼製造業における鋼の
連続鋳造法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for continuously casting steel in the steel manufacturing industry.

【0002】[0002]

【従来の技術】鋼の連続鋳造は省工程、省エネルギーの
観点から、鉄鋼製造時の製鋼〜圧延間での無手入れ状態
で熱鋳片を処理できることが重要な造り込み上の課題と
なっている。その中で、特にいわゆる中炭素鋼(0.0
8≦[C]≦0.18%)では、スラブ表面の縦割れ疵
低減が特に大きな改善要素として上げられる。
2. Description of the Related Art In continuous casting of steel, it is important from the viewpoint of saving steps and energy saving that it is possible to treat a hot slab without care between steel making and rolling during steel production. . Among them, especially so-called medium carbon steel (0.0
(8 ≦ [C] ≦ 0.18%), reduction of the vertical cracks on the slab surface is a particularly significant improvement factor.

【0003】その対策として、最近の製鉄各社の動向は
モールドでの抜熱量を押えた緩冷化が指向されその一還
として、モールドパウダーの高凝固温度化及び低粘性化
が積極的に行われており、その一例を示すと図1のよう
に、高凝固温度化によって縦割れの低減の効果が確認さ
れている。また、一方でパウダーの高凝固温度化はブレ
ークアウトを惹起する原因になる等、操業上問題を発生
しやすいとされており、それを回避する手段として低粘
性化を併せて行なうというのがパウダーの一般的な改善
手段となっている。
[0003] As a countermeasure, the recent trend of iron and steel companies is to reduce the amount of heat released from the mold by slowing down the cooling. In order to remedy this, the solidification temperature and the viscosity of the mold powder are actively reduced. As an example, as shown in FIG. 1, it has been confirmed that the effect of reducing longitudinal cracks by increasing the solidification temperature is confirmed. On the other hand, it is said that increasing the solidification temperature of the powder is likely to cause operational problems, such as causing a breakout, and as a means of avoiding this, it is necessary to reduce the viscosity together with the powder. Has become a common remedy.

【0004】しかし、パウダーの高凝固温度化によって
縦割れの害を除くことができるが、その他の鋳片表面品
質への影響が懸念される。その例の一つとしてオシレー
ション割れがパウダーの高凝固温度化によって悪化する
場合がある。
[0004] However, by increasing the solidification temperature of the powder, the harm of vertical cracks can be eliminated, but there is a concern that other influences on the surface quality of the slab may be obtained. As one of the examples, there is a case where oscillation cracking is worsened by increasing the solidification temperature of the powder.

【0005】[0005]

【発明が解決しようとする課題】本発明は、パウダーの
高凝固温度化においては連続鋳造時のモールド振動条件
によってはオシレーション割れを引き起こすことがある
ので、それを回避しようとするものである。
SUMMARY OF THE INVENTION The present invention is intended to avoid oscillation cracks at high solidification temperatures of powders, which may cause oscillation cracks depending on the conditions of mold vibration during continuous casting.

【0006】[0006]

【課題を解決するための手段】本発明は前記課題を解決
するものであって、1300℃における粘性が2poi
se以下及び凝固温度1000〜1300℃のパウダー
を0.08≦[C]≦0.18%成分の鋼に使用する
際、凝固温度、パウダー粘性、及びモールド振動条件を
以下に示す範囲で設定し、鋳造する方法にその特徴があ
る。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems, and has a viscosity of 2 poi at 1300 ° C.
When powder having a solidification temperature of 1000 ° C or less and a solidification temperature of 1000 ° C to 1300 ° C is used for steel having a component of 0.08 ≦ [C] ≦ 0.18%, the solidification temperature, powder viscosity, and mold vibration conditions are set in the following ranges. The casting method has its characteristics.

【0007】[0007]

【数2】 (Equation 2)

【0008】[0008]

【作用】一般的にオシレーション割れはモールド振動時
に生成するオシレーションマーク深さが起点となり、曲
げ或いは矯正帯での鋳片表面温度と歪み量により、割れ
となって発現すると云われており、その改善のポイント
は起点となるオシレーションマーク深さの低減である。
[Action] In general, it is said that an oscillation crack starts as an oscillation mark depth generated at the time of vibration of a mold, and develops as a crack depending on a surface temperature and a strain amount of a slab in a bending or correcting zone. The point of the improvement is a reduction in the depth of the oscillation mark serving as a starting point.

【0009】図2はネガティブ時間とオシレーションマ
ーク深さの関係を示したもので、ネガティブストリップ
時間Bが短い程オシレーションマーク深さが浅くなって
いる。そのためネガティブストリップ時間の短縮化が図
られ、通常オシレーションのショートストローク・ハイ
サイクル操業が指向されている。
FIG. 2 shows the relationship between the negative time and the oscillation mark depth. The shorter the negative strip time B, the shallower the oscillation mark depth. Therefore, the negative strip time is reduced, and the short-stroke high-cycle operation of the normal oscillation is aimed at.

【0010】さて、本発明者等の経験では[C]:0.
12%、鋳造速度:1.1m/min、振動数:190
cpm、ストローク:6mm、ネガティブストリップ時
間:0.13秒、パウダー凝固温度:1220℃の連続
鋳造条件にて鋳造した厚板材にて非常に程度の悪いオシ
レーション割れが多発した。(従来の調査結果では当該
ネガティブストリップ時間でのオシレーションマーク深
さは200〜350μmであったが、当該材は400μ
mを越える深さであった)。
Now, according to the experience of the present inventors, [C]: 0.
12%, casting speed: 1.1 m / min, frequency: 190
Oscillation cracks of a very low degree frequently occurred in a thick plate material cast under continuous casting conditions of cpm, stroke: 6 mm, negative strip time: 0.13 second, and powder solidification temperature: 1220 ° C. (Oscillation mark depth at the negative strip time was 200 to 350 μm in the result of the conventional investigation, but the material was 400 μm.
m).

【0011】そこで、本発明者等はその原因について種
々の研究、検討を重ねた。前記の知見によれば図2に示
したように条件的には従来の実績からオシレーション割
れが回避できる条件に適合しており、問題は起らないは
ずであるにもかかわらず割れが発生した。当該材は縦割
れ対策として高凝固温度パウダーを使用しており、この
パウダーが悪影響を及ぼしていることが予測されたの
で、この点について鋭意解明を試みた。オシレーション
割れはオシレーションマーク深さと湾曲部の冷却及び歪
みによって論じられ、そして、その起点であるオシレー
ションマーク深さはモールド振動条件によってのみ考察
されている。
Therefore, the present inventors have conducted various studies and studies on the cause. According to the above-mentioned findings, as shown in FIG. 2, the condition is met with the condition that the oscillation crack can be avoided from the conventional results, and the crack occurred although the problem should not occur. . This material uses a high solidification temperature powder as a countermeasure for longitudinal cracking, and it was predicted that this powder had an adverse effect. Oscillation cracking is discussed by oscillation mark depth and the cooling and distortion of the bend, and the origin of the oscillation mark depth is only considered by mold vibration conditions.

【0012】本発明者等は、オシレーションマーク深さ
について、モールド内での生成過程において2つの条件
が存在するとの見解に至った。その一つは従来の考え方
に立脚するもので、前記図2に示したモールド振動条件
によるものであり、もう一つは本発明者等が新たに得た
知見によってその解明に努めたモールドと鋳片間の摩擦
によるものである。
The present inventors have come to the view that there are two conditions for the depth of the oscillation mark in the generation process in the mold. One is based on the conventional concept, which is based on the mold vibration conditions shown in FIG. 2, and the other is a mold and a casting mold that the present inventors have tried to clarify based on newly obtained knowledge. This is due to friction between the pieces.

【0013】図3はオシレーション割れの発生と鋳型内
添加パウダーの状況を模式的に示したものである。つま
り、初期凝固時にモールド振動条件によって生成したオ
シレーションマークは、その後モールド下端通過までの
モールド/鋳片間の摩擦力(潤滑性)によって、更に拡
大過程を経て割れが増長されていく。それが、元来モー
ルド振動条件によって決定されてきたオシレーションマ
ーク深さを予想以上に深くし、遂には割れに至らしめ
る。その摩擦力を全面的に支配するものがパウダーの凝
固温度及び粘性である。
FIG. 3 schematically shows the occurrence of oscillation cracks and the state of powder added to the mold. In other words, the oscillation mark generated during the initial solidification under the conditions of the mold vibration is further increased in cracking through the enlarging process due to the frictional force (lubricity) between the mold and the slab until it passes through the lower end of the mold. This makes the depth of the oscillation mark, which was originally determined by the vibration conditions of the mold, deeper than expected, eventually leading to cracking. What completely controls the frictional force is the solidification temperature and viscosity of the powder.

【0014】この現象は高凝固温度パウダー使用によっ
てはじめて顕在化してきたものであり、従って、オシレ
ーション割れ回避のためにはモールド振動条件ばかりで
なく、パウダーの物性値を包含した形で新たな適正条件
を見出す必要が生じた。そこでモールド/鋳片間摩擦力
の算定方法として、従来から公知の下記式を使用した。
[0014] This phenomenon has been first manifested by the use of high solidification temperature powder. Therefore, in order to avoid oscillation cracking, not only the mold vibration conditions but also the new physical properties including the physical properties of the powder are required. It became necessary to find conditions. Therefore, as a method for calculating the friction force between the mold and the slab, the following known formula was used.

【0015】[0015]

【数3】 (Equation 3)

【0016】η、Vm、V、Hは鋳造条件で、dL はパ
ウダー物性、原単位及びモールド、鋳片温度で、そして
μは実験によって各々決定される(μは実機調査の結果
0.25とした)。ここで、モールドと鋳片間のパウダ
ーの固・液状態を模式的に示したのが図4で、この図か
らパウダーの固体厚・液体厚を求めた。
Η, Vm, V, H are the casting conditions, d L is the powder physical property, the basic unit and mold, the slab temperature, and μ are determined by experiments (μ is 0.25 as a result of the actual machine investigation). And). FIG. 4 schematically shows the solid / liquid state of the powder between the mold and the slab, from which the solid thickness and the liquid thickness of the powder were determined.

【0017】次に式の計算手順は以下のように行っ
た。 1)原単位より総パウダーフィルム厚みを算出。 2)モールドメニスカス部〜下端までのモールド表面温
度及び鋳片表面温度を実測あるいは計算。 3)各点(例えば図4のbMD及びbSL)での各々の温度
とパウダー凝固温度からパウダーフィルム厚み内の液層
パウダー厚み(例えば図4のtの値)を算出。 4)以上の値を式へ代入する。
Next, the calculation procedure of the equation was performed as follows. 1) Calculate the total powder film thickness from the basic unit. 2) Measure or calculate the mold surface temperature and the slab surface temperature from the mold meniscus to the lower end. 3) The liquid layer powder thickness (for example, the value of t in FIG. 4) within the powder film thickness is calculated from each temperature at each point (for example, b MD and b SL in FIG. 4) and the powder solidification temperature. 4) Substitute the above values into the formula.

【0018】摩擦力はメニスカスから任意の点での固体
摩擦と液体摩擦の大小により、その点における支配摩擦
力が決定される。潤滑は相対的に小さい方で行われる。
液体摩擦>固体摩擦となる液体摩擦力は物理的意味はな
く、その時点で液体摩擦は消失する(完全固体摩擦)と
考えて差支えない。固体摩擦(式)はモールドサイズ
から一義的に決定される。液体摩擦(式)はモールド
振動条件及び速度を固定すると、パウダー粘性と凝固温
度(高凝固温度ほど液層パウダー厚みは減少する)によ
り左右される。メニスカスからの任意の点に注目する
と、粘性が高いほど、高凝固温度ほど(液層パウダー厚
が薄いほど)液体摩擦は大きくなる。
The friction force is determined by the magnitude of solid friction and liquid friction at any point from the meniscus, and the dominant friction force at that point is determined. Lubrication is performed on the smaller side.
The liquid friction force that satisfies liquid friction> solid friction has no physical meaning, and the liquid friction disappears at that point (perfect solid friction). The solid friction (formula) is uniquely determined from the mold size. The liquid friction (formula) depends on the powder viscosity and solidification temperature (the liquid layer powder thickness decreases as the solidification temperature increases) when the mold vibration conditions and speed are fixed. Focusing on any point from the meniscus, the higher the viscosity, the higher the solidification temperature (the thinner the liquid layer powder), the greater the liquid friction.

【0019】図5はパウダー凝固温度をパラメーターに
1150〜1200℃での計算結果を示したもので、こ
こで重要なことは、高凝固温度化するほど、液体→固体
摩擦の遷移点(式と式の交点)が、メニスカス側へ
移動することである。つまり、このことは凝固初期の脆
弱な鋳片に相対的に潤滑性能の劣る固体摩擦力が作用す
ることであり、オシレーションマークというノッチ部を
もった鋳片に過大な力が加わる時、その切りかき効果で
オシレーションマークが深くなると推察できる。
FIG. 5 shows the calculation results at 1150 to 1200 ° C. using the powder solidification temperature as a parameter. It is important to note that the higher the solidification temperature, the higher the transition point of liquid-solid friction (formula and equation). (Intersection of the equation) moves to the meniscus side. In other words, this means that solid friction force with relatively poor lubrication performance acts on the brittle slab in the early stage of solidification, and when excessive force is applied to the slab having a notch part called an oscillation mark, It can be inferred that the oscillation mark is deepened by the cutting effect.

【0020】以上の知見から、オシレーションマーク深
さを極力浅くしてやることが疵発生抑制の条件であり、
モールド振動で一義的に決定されるオシレーションマー
ク深さから摩擦によって更に拡大しないように諸条件を
決定してやることが極めて重要である。なぜなら摩擦に
よる拡大過程は凝固初期鋳片の強度が明確でないため推
定が困難であり、最低限拡大過程を抑制する条件を品質
データからでも明確にしておけば、後はモールド振動を
従来知見から設定することにより、オシレーション割れ
を防止することが可能である。
From the above findings, it is a condition for suppressing the generation of flaws that the oscillation mark depth should be made as shallow as possible.
It is extremely important to determine various conditions from the oscillation mark depth uniquely determined by mold vibration so as not to further expand by friction. Because the expansion process due to friction is difficult to estimate because the strength of the early solidification slab is not clear, if the conditions for suppressing the expansion process are clarified at least from quality data, the mold vibration will be set from the conventional knowledge By doing so, it is possible to prevent oscillation cracks.

【0021】図5で示した液体→固体摩擦への遷移点を
条件別に表したものを、図6に示した。パウダー凝固温
度が高くなるほど、またネガティブストリップ時間が短
くなるほど(=ネガティブストリップ率が大きくなるほ
ど)固体摩擦領域が拡大することがわかる。逆に言う
と、高凝固温度パウダーを使用しても、モールド振動条
件(ネガティブ時間)を調整することにより、固体摩擦
領域を制御できる。但し、その際ネガティブストリップ
時間を長くする方向の対策となり、確かにオシレーショ
ンマーク深さの拡大は軽減されるが、生成時点で既に深
さが深くなってしまうため、結果的には調整範囲は制限
される。オシレーション割れの発生指数を図6に併記し
ているが、この結果から固体摩擦力が有害となるのはメ
ニスカス〜約30cm程度の位置からだと判断した。
FIG. 6 shows transition points from liquid to solid friction shown in FIG. 5 according to conditions. It can be seen that the solid friction region increases as the powder solidification temperature increases and the negative strip time decreases (= the negative strip ratio increases). Conversely, even if a high solidification temperature powder is used, the solid friction region can be controlled by adjusting the mold vibration conditions (negative time). However, in that case, it is a countermeasure for extending the negative strip time, and the expansion of the oscillation mark depth is certainly reduced, but since the depth is already deep at the time of generation, the adjustment range is consequently limited. Limited. The index of occurrence of oscillation cracking is also shown in FIG. 6, and it was determined from this result that the solid frictional force was detrimental from the meniscus to a position of about 30 cm.

【0022】条件式は、式及び上記の品質データか
ら、、、の式を導き出した。この式を満足すれ
ば、オシレーション割れは発生しない。(はネガティ
ブストリップ時間B≦0.15秒の意味)。ここで、
はオシレーションマーク拡大過程防止条件、はオシ
レーションマーク生成抑制条件を示す。但し、これは特
に式にて煩雑な計算が必要であり実用的には不向きで
ある。そこで、パウダー物性と振動条件をある定数にて
リンクし、実用の上で計算が簡便にでき、且つ、適用の
結果においても前記式での計算値と大差なく、充分実行
できる現場作業に最適な下記式を創出した。
As the conditional expression, the following expression was derived from the expression and the above-mentioned quality data. If this equation is satisfied, no oscillation cracking occurs. (Means negative strip time B ≤ 0.15 seconds). here,
Indicates an oscillation mark enlargement process prevention condition, and indicates an oscillation mark generation suppression condition. However, this requires a particularly complicated calculation in an equation, and is not practical. Therefore, the physical properties of the powder and the vibration conditions are linked by a certain constant, so that the calculation can be simplified in practical use, and even in the result of application, there is not much difference from the calculated value in the above formula, and it is most suitable for the field work that can be performed sufficiently. The following formula was created.

【0023】[0023]

【数4】 (Equation 4)

【0024】従来から本発明等の調査結果から初期に生
成するオシレーションマーク深さを400μm以下にコ
ントロールすることによって、オシレーション割れは回
避できることがわかっている。それはネガティブストリ
ップ時間0.15秒以下にすることにより達成される
(式)。また式については、式=式とおいて、
Conventionally, it has been found from the investigation results of the present invention and the like that oscillation cracks can be avoided by controlling the depth of the initially generated oscillation mark to 400 μm or less. It is achieved by making the negative strip time 0.15 seconds or less (equation). Also, regarding the equation, the equation = equation,

【0025】[0025]

【数5】 (Equation 5)

【0026】である。この中で、ηは平均値議論からす
ると、鋳造方向で(温度が下がるから)粘性値は高くな
るが、ここでは液体潤滑する際のパウダー粘性が問題で
あり、鋳片に隣接した部分を局部的にみると潤滑作用の
ある領域の粘性は一定とみてよい。従って、(a)式は
## EQU1 ## Among them, η is considered to be an average value, but the viscosity value increases in the casting direction (because the temperature decreases). Here, however, the powder viscosity at the time of liquid lubrication is a problem. From a viewpoint, it can be considered that the viscosity of the region having the lubricating action is constant. Therefore, equation (a) is

【0027】[0027]

【数6】 (Equation 6)

【0028】である。(c)式において、TSL=120
0〜1300℃、TMD=280〜320℃より分母はど
の断面もTSL(x)−TMD(x)≒constとなる。
また、パウダーは原単位0.35kg/t−s±0.3
となるよう設計するからdもほぼ一定の値をとる。 ∴dL (x)≒Q(TSL(x)−BP)=Q(1300−BP)・・(e) (d)式において、品質結果よりx=30cm位置より
メニスカス側で固定摩擦力が支配的になる際、オシレー
ションマーク深さに影響を及ぼすとしたから、 ∴H(x)=30ρ≒const=R ・・・(f)
Is as follows. In the equation (c), T SL = 120
0 to 1,300 ° C., the denominator from T MD = 280 to 320 ° C. Which section also becomes T SL (x) -T MD ( x) ≒ const.
The powder is 0.35kg / t-s ± 0.3
Since d is designed to be, d also takes a substantially constant value. ∴d L (x) ≒ Q (T SL (x) −BP) = Q (1300−BP) (e) In the equation (d), the fixed friction force on the meniscus side from the position x = 30 cm is obtained from the quality result. When it becomes dominant, it affects the oscillation mark depth, so that ∴H (x) = 30ρ ≒ const = R (f)

【0029】以上から(b)式は、 η(Vm−V)/Q(1300−BP)=μR ・・・(g) (g)式を変形すると、From the above, equation (b) can be expressed as follows: η (Vm−V) / Q (1300−BP) = μR (g) By transforming equation (g),

【0030】[0030]

【数7】 (Equation 7)

【0031】となり、式が導かれる。オシレーション
割れは連鋳機のプロフィール及び冷却条件によってもそ
の感受性がことなるため、式の右辺定数Bの値や式
の定数Aは各マシンによって、夫々定ってくる。オシレ
ーション割れは起点となるオシレーションマーク深さば
かりでなく、マシン特性(プロフィル、冷却方法、鋳片
厚)によっても大きく左右される。そこで、曲げ半径
7.5m及び鋳片厚み280mmと条件的には国内外を
含め厳しいマシンを想定したとき、Aの上限値は2.3
及びBの上限値は0.15となる。
And the equation is derived. Since the sensitivity of the oscillation crack varies depending on the profile of the continuous casting machine and the cooling conditions, the value of the constant B on the right side of the equation and the constant A of the equation are determined by each machine. Oscillation cracking is greatly affected not only by the depth of the oscillation mark as a starting point but also by machine characteristics (profile, cooling method, slab thickness). Therefore, assuming that the bending radius is 7.5 m and the thickness of the slab is 280 mm, which is a severe machine in Japan and overseas, the upper limit of A is 2.3.
And B have an upper limit of 0.15.

【0032】[0032]

【実施例】以下本発明の実施例を従来の比較例と共に示
す。表1は供試材の溶鋼成分、表2はパウダー成分を示
し、表3は鋳造条件とスラブ表面品質状況を示した。
EXAMPLES Examples of the present invention will be shown below together with conventional comparative examples. Table 1 shows the molten steel component of the test material, Table 2 shows the powder component, and Table 3 shows the casting conditions and the slab surface quality.

【0033】[0033]

【表1】 [Table 1]

【0034】[0034]

【表2】 [Table 2]

【0035】[0035]

【表3】 [Table 3]

【0036】表3から明らかなように本発明によれば比
較例に比べ縦割れ、オシレーション割れ共に少ないスラ
ブが得られており、本発明の如き最適連続鋳造条件を選
択することにより、パウダーの高凝固温度化によっても
表面品質の優れたスラブを確保できる。
As is clear from Table 3, according to the present invention, a slab with less vertical cracks and oscillation cracks was obtained as compared with the comparative example. A slab with excellent surface quality can be secured even by increasing the solidification temperature.

【0037】[0037]

【発明の効果】本発明によればモールドパウダーの高凝
固温度化によって縦割れの減少の効果を維持しながら、
オシレーション割れも同時に防ぐ事ができ表面性状の優
れたスラブが得られる。
According to the present invention, while maintaining the effect of reducing vertical cracks by increasing the solidification temperature of the mold powder,
Oscillation cracking can be prevented at the same time, and a slab with excellent surface properties can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】パウダーの凝固温度と縦割れ発生の関係を示す
FIG. 1 is a diagram showing the relationship between the solidification temperature of powder and the occurrence of vertical cracks.

【図2】オシレーションでのネガティブストリップ時間
とオシレーションマークの深さの関係を示す図
FIG. 2 is a diagram showing a relationship between a negative strip time in an oscillation and a depth of an oscillation mark.

【図3】オシレーション割れ発生と鋳型内での添加パウ
ダーの状態を模式的に示した図
FIG. 3 is a diagram schematically showing the occurrence of oscillation cracks and the state of added powder in a mold.

【図4】モールドと鋳片間のパウダーの固・液状態を模
式的に示した図
FIG. 4 is a diagram schematically showing a solid / liquid state of powder between a mold and a slab.

【図5】メニスカスからの距離と摩擦力の関係をパウダ
ーの凝固温度別に示した図
FIG. 5 is a diagram showing the relationship between the distance from the meniscus and the frictional force for each powder solidification temperature.

【図6】液体→固体摩擦への遷移点とパウダーの凝固温
度・ネガティブストリップ時間及びオシレーション割れ
指数の関係を示す図
FIG. 6 is a diagram showing a relationship between a transition point from liquid to solid friction, a solidification temperature of powder, a negative strip time, and an oscillation cracking index.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平7−9104(JP,A) 特開 平6−106302(JP,A) 特開 昭59−220261(JP,A) 特開 昭59−191547(JP,A) 特開 昭57−130741(JP,A) 特開 平4−59151(JP,A) 材料とプロセス 4〔4〕(1991) P.1253 (58)調査した分野(Int.Cl.7,DB名) B22D 11/16 105 B22D 11/16 B22D 11/108 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-7-9104 (JP, A) JP-A-6-106302 (JP, A) JP-A-59-220261 (JP, A) JP-A-59-220261 191547 (JP, A) JP-A-57-130741 (JP, A) JP-A-4-59151 (JP, A) Materials and processes 4 [4] (1991) 1253 (58) Field surveyed (Int.Cl. 7 , DB name) B22D 11/16 105 B22D 11/16 B22D 11/108

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 1300℃における粘性が2poise
以下及び凝固温度1000〜1300℃のパウダーを
0.08≦[C]≦0.18%成分の鋼に使用する際、
凝固温度、パウダー粘性、及びモールド振動条件を以下
に示す範囲で設定し、鋳造する方法。 【数1】
1. The viscosity at 1300 ° C. is 2 poise
When a powder having a solidification temperature of 1000 to 1300 ° C. is used for steel having a component of 0.08 ≦ [C] ≦ 0.18%,
A method in which the solidification temperature, powder viscosity, and mold vibration conditions are set in the following ranges and casting is performed. (Equation 1)
JP6023560A 1994-01-27 1994-01-27 Continuous casting of steel Expired - Lifetime JP3026906B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6023560A JP3026906B2 (en) 1994-01-27 1994-01-27 Continuous casting of steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6023560A JP3026906B2 (en) 1994-01-27 1994-01-27 Continuous casting of steel

Publications (2)

Publication Number Publication Date
JPH07214266A JPH07214266A (en) 1995-08-15
JP3026906B2 true JP3026906B2 (en) 2000-03-27

Family

ID=12113907

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6023560A Expired - Lifetime JP3026906B2 (en) 1994-01-27 1994-01-27 Continuous casting of steel

Country Status (1)

Country Link
JP (1) JP3026906B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3275903B2 (en) * 2000-01-28 2002-04-22 住友金属工業株式会社 Initial solidification control method for steel
CN111644586B (en) * 2020-06-11 2021-06-29 中冶南方连铸技术工程有限责任公司 Method for determining optimal vibration parameters of crystallizer
CN114226672B (en) * 2021-12-21 2023-03-07 东北大学 Method for determining vibration parameters of low-carbon steel continuous casting crystallizer

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
材料とプロセス 4〔4〕(1991)P.1253

Also Published As

Publication number Publication date
JPH07214266A (en) 1995-08-15

Similar Documents

Publication Publication Date Title
JP6369122B2 (en) Continuous casting method and continuous casting slab
JP2007098408A (en) Iron-base preform for forming metal matrix composite material and journal part structure having the iron-base preform
JP3026906B2 (en) Continuous casting of steel
JPH05247565A (en) Hardenable copper alloy
JP4057831B2 (en) Steel continuous casting method
JP5042785B2 (en) Short side taper control method for continuous casting mold.
JP4747954B2 (en) Continuous casting method of high alloy steel
JP3008808B2 (en) Method of continuously changing vibration waveform of continuous casting mold
JPS6235854B2 (en)
JPS59166358A (en) Continuous casting method
KR20040058814A (en) Method for manufacturing slab of martensitic stainless steel
JPH08150454A (en) Method for oscillating mold at the time of continuously casting austenitic stainless steel
JP4021355B2 (en) Method for continuous casting of steel to prevent internal cracks in slabs
JP5828295B2 (en) Continuous casting mold and steel continuous casting method using the same
JP3158233B2 (en) Steel continuous casting method
JP4613579B2 (en) Steel casting method
JP3971636B2 (en) Continuous casting method of steel
JP3342774B2 (en) Mold powder for continuous casting
JPH08309483A (en) Continuous casting method for stainless steel containing boron
JP7273307B2 (en) Steel continuous casting method
JPH08187562A (en) Method for continuously casting steel
JPH06262325A (en) Continuous casting method
JP3329305B2 (en) Continuous casting method of round billet slab
JP2003170248A (en) Mold for continuous casting and method for continuous casting of steel using the same
JP2005211916A (en) High speed continuous casting method for carbon steel

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000104

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090128

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100128

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110128

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120128

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130128

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130128

Year of fee payment: 13

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130128

Year of fee payment: 13

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130128

Year of fee payment: 13

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130128

Year of fee payment: 13

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140128

Year of fee payment: 14

EXPY Cancellation because of completion of term